Способ выявления нарушений соединения полимерного покрытия с металлическими трубами



Способ выявления нарушений соединения полимерного покрытия с металлическими трубами
Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

 

G01N29/09 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2485493:

Открытое акционерное общество "Газпром" (RU)

Использование: для выявления нарушений соединения полимерного покрытия с металлическими трубами. Сущность: заключается в том, что осуществляют возбуждение в покрытии и металле трубы посредством сухого точечного контакта упругих волн с помощью излучающего вибратора, прием и регистрацию режима колебаний упругих волн с помощью приемного вибратора, оценку соединения покрытия с металлом трубы по изменению механического импеданса. Способ отличается тем, что получают калибровочные зависимости наличия нарушений соединения на образцах, имитирующих плотное прилегание неприклеенного покрытия к металлу трубы, для различных температур нагрева образца, выявляют нарушения соединения на трубах с покрытием в установленном на образцах оптимальном температурном диапазоне измерений, получаемом путем нагрева места контроля с внутренней поверхности трубы. Технический результат: увеличение точности выявления скрытых нарушений покрытия в случае плотного прилегания неприклеенного покрытия к металлу трубы не менее чем на 50%. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области неразрушающего контроля и может найти применение при выявлении нарушений соединения полимерного покрытия с металлическими трубами.

Известен способ выявления нарушений соединения полимерного покрытия с металлическими трубами, включающий введение импульсов ультразвуковых (УЗ) колебаний в покрытие посредством пьезоэлектрического преобразователя УЗ дефектоскопа, прием и преобразование многократно отраженных импульсов в эхо-сигналы, анализ амплитудного распределения эхо-сигналов на экране дефектоскопа, оценку соединения покрытия с металлом (см. патент РФ №2188414, МПК7 G01N 29/10, опубл. 27.08.2002).

Недостатками данного способа являются:

1. Способ не обладает достаточной производительностью контроля при выявлении нарушений соединения, что обусловлено необходимостью использования контактной жидкости для введения и приема УЗ-колебаний, сложностью реализации в зимних условиях строительства трубопроводов.

2. Способ не обладает простотой реализации, что обусловлено сложностью оценки результатов контроля из-за наличия множества трудноучитываемых мешающих факторов (изменение толщины покрытия и металла, стабильность акустического контакта и др.), а также из-за трудоемкости визуального анализа амплитудного распределения эхо-сигналов на экране дефектоскопа, требующей высокой квалификации операторов.

Наиболее близким решением, принятым в качестве прототипа, является способ выявления нарушений соединения полимерного покрытия с металлическими трубами, заключающийся в возбуждении в покрытии и металле трубы посредством сухого точечного контакта упругих волн с помощью излучающего вибратора, приеме и регистрации режима колебаний упругих волн с помощью приемного вибратора, оценке соединения покрытия с металлом трубы по изменению механического импеданса (см. «Неразрушающий контроль и диагностика», справочник под редакцией проф. В.В.Клюева, Москва, Машиностроение, 2005 г., с.213).

Недостатками данного способа являются:

1. Способ не обладает возможностью достоверного выявления нарушений соединения полимерного покрытия с металлическими трубами в случае плотного прилегания неприклеенного покрытия к металлу трубы без зазора.

2. Способ недостоверен при проведении контроля в условиях низкой температуры воздуха, при которой происходит изменение физико-акустических свойств покрытия, приводящее к уменьшению чувствительности импедансного метода к наличию нарушений соединения.

Перечисленные недостатки известного способа выявления нарушений соединения полимерного покрытия с металлическими трубами не позволяют эффективно выявлять скрытые нарушения соединения с плотным прилеганием неприклеенного покрытия к металлу трубы без зазора при контроле в зимнее время, что приводит к развитию отслаиваний покрытия при последующей эксплуатации трубопровода с риском развития щелевой коррозии и в целом к снижению качества нового строительства трубопроводов.

Задачей изобретения является создание способа неразрушающего контроля полимерного изоляционного покрытия при строительстве трубопроводов, позволяющего выявлять скрытые нарушения соединения такого покрытия с металлом трубы.

Технический результат при осуществлении способа, сущность которого основана на заявленном изобретении, проявляется в том, что достигают увеличения точности выявления скрытых нарушений покрытия в случае плотного прилегания неприклеенного покрытия к металлу трубы не менее чем на 50%.

Поставленная задача решается, а технический результат достигается тем, что в способе выявления нарушений соединения полимерного покрытия с металлическими трубами, включающем возбуждение в покрытии и металле трубы посредством сухого точечного контакта упругих волн с помощью излучающего вибратора, прием и регистрацию режима колебаний упругих волн с помощью приемного вибратора, оценку соединения покрытия с металлом трубы по изменению механического импеданса, дополнительно получают калибровочные зависимости наличия нарушений соединения на образцах, имитирующих плотное прилегание неприклеенного покрытия к металлу трубы, для различных температур нагрева образца, выявляют нарушения соединения на трубах с покрытием в установленном на образцах оптимальном температурном диапазоне измерений, получаемом путем нагрева места контроля с внутренней поверхности трубы. При этом оптимального температурного диапазона измерений достигают в процессе выполнения монтажных сварных швов трубопровода.

Способ поясняется с помощью фиг.1, 2. На фиг.1 показан разрез образца для получения калибровочных зависимостей наличия нарушений соединения, имитирующих плотное прилегание неприклеенного покрытия к металлу трубы без зазора. На фиг.2 показаны калибровочные зависимости для определения оптимального температурного диапазона проведения контроля.

Заявленный способ реализуют следующим образом.

Перед проведением контроля производят настройку дефектоскопа на образце, состоящем из верхнего стяжного элемента 1 и нижнего стяжного элемента 2, между которыми зажимается полиэтиленовое покрытие 3 без склеивания (фиг.1). Образец имитирует плотное прилегание неприклеенного покрытия. Верхний стяжной элемент 3 представляет собой стальное кольцо, обод которого имеет прямоугольное сечение и в котором выполнены отверстия, для установки стяжных болтов 4. Нижний стяжной элемент 2 также представляет собой стальное кольцо, обод которого имеет L-образный профиль. Внешний диаметр нижнего стяжного элемента 2 соответствует внешнему диаметру верхнего стяжного элемента 1, внутренний диаметр нижнего стяжного элемента 2 изменяется ступенчато, причем в верхней части соответствует внутреннему диаметру верхнего стяжного элемента 1, а в нижней уменьшается на величину, необходимую для размещения резьбовых отверстий для установки нажимных болтов 5. Нажимные болты 5 при закручивании упираются в нажимной элемент 6, который имеет Т-образный профиль и устанавливается в нижний стяжной элемент 2, при этом верхняя часть нажимного элемента 6 взаимодействует с нижней поверхностью полиэтиленового покрытия 3. Контактное давление, возникающее между нижней поверхностью полиэтиленового покрытия 3 и верхней поверхностью нажимного элемента 6, определяется перемещением нажимных болтов 5 при их закручивании, контроль контактного давления выполняется по величине момента затяжки нажимных болтов 5. Для исключения возможности среза полиэтиленового покрытия 3 при нагружении в торцевой части верхнего стяжного элемента 1, контактирующей с покрытием, с внутренней стороны, а также на контактной поверхности нажимного элемента выполнена фаска. Контактные поверхности верхнего стяжного элемента 1 и нижнего стяжного элемента 2 имеют шероховатость, исключающую проскальзывание полиэтиленового покрытия при нагружении. После завершения сборки, образец ступенчато нагревают, на каждой ступени нагрева определяют величину сигнала импедансного дефектоскопа. При нагреве образца происходит расширение полиэтиленового покрытия 3, в результате чего зазор между нажимным элементом 6 и нижней поверхностью полиэтиленового покрытия 3 увеличивается до некоторой величины, что способствует увеличению выходного сигнала индикатора дефектоскопа при проведении измерений. В итоге получают калибровочную зависимость 1 (см. фиг.2) показаний импедансного дефектоскопа от температуры на образце с плотным прилеганием неприклеенного покрытия.

Аналогичным образом изготавливают образец с хорошим приклеиванием покрытия и получают аналогичную калибровочную зависимость 2 и зависимость 3 усилия отрыва приклеенного покрытия от металла от температуры.

По калибровочным зависимостям определяют оптимальный диапазон температур контроля Δt по величине информативного расхождения показаний дефектоскопа для приклеенного и неприклеенного покрытия и величине некритичного уменьшения прочности приклеивания покрытия к металлу при изменении температуры.

Контроль полиэтиленового покрытия после сварки труб выполняют в прикромочной зоне изоляционного полимерного покрытия, а также в районе продольного сварного шва трубы. Перед проведением измерений область проведения исследований нагревают с внутренней поверхности трубы до необходимой температуры, после чего датчик дефектоскопа перемещают по поверхности покрытия, и по показаниям прибора устанавливают наличие отслоений, а также их геометрические размеры.

Пример.

Необходимо провести обследование полиэтиленового покрытия заводского нанесения на стальных трубах диаметром 1420 мм и толщиной стенки 17 мм, сваренных в плеть. Температура окружающей среды минус 20°С.

Показания индикатора импедансного дефектоскопа при контроле полиэтиленового покрытия, хорошо приклеенного к металлу трубы, составляют 2-7 мкА в диапазоне температур от минус 30 до плюс 70°С. В том случае, если в месте проведения измерений покрытие не приклеено, но, за счет внутренних напряжений плотно прилегает к поверхности трубы, показания прибора при температуре окружающей среды от минус 30 до плюс 10°С составляют 10-15 мкА, что не позволяет выявлять отслоения покрытия при проведении обследований. При нагреве отслоившегося полиэтиленового покрытия до температуры плюс 35-45°С происходит его тепловое расширение, сопровождающееся увеличением зазора между покрытием и внешней поверхностью стенки трубы. Увеличение зазора между внешней поверхностью стенки трубы и полиэтиленовым покрытием при нагреве объясняется тем, что при увеличении геометрических размеров, отслоившийся участок покрытия, упираясь в граничащие с ним приклеенные области, поднимается над внешней поверхностью стенки трубы. При контроле области покрытия, не приклеенной к поверхности трубы и прогретой до температуры 35-45°С, показания индикатора прибора составляют 75-85 мкА, что позволяет определять отслоения при проведении обследований, дальнейший нагрев приводит к чрезмерному размягчению покрытия, и как следствие, к снижению показаний индикатора дефектоскопа до 40-60 мкА. Нагрев покрытия до температуры выше плюс 50°С ведет к снижению прочности клеевого соединения покрытия и, как следствие, способствует возникновению новых отслоений или увеличению размеров уже существующих за счет перемещения перегретой области покрытия под действием внутренних напряжений. Температурный диапазон контроля Δt определяется условиями нагрева трубы и последующего прогрева покрытия, при достижении температуры покрытия 35°С нагрев трубы следует прекращать, так как вследствие недостаточной теплопроводности полиэтиленового покрытия разность температур с внутренней и внешней сторон полиэтиленового покрытия может достигать 10-15°С.

Выполняют сборку образца, состоящего из двух стяжных элементов, между которыми зажимают полиэтиленовое изоляционное покрытие. Стяжные элементы представляют собой стальные кольца, обод верхнего имеет прямоугольный профиль с шестью сквозными отверстиями, обод нижнего имеет L-образный профиль с шестью резьбовыми отверстиями М8. Стяжные элементы соединяют между собой шестью винтами М8, момент затяжки подбирают из условия фиксации полиэтиленового покрытия при нагружении. Нагружение покрытия производят с помощью нажимного элемента, который устанавливают в нижнем стяжном элементе каждого образца и перемещают вертикально при затяжке шести нажимных винтов М8. Образец имитирует отслоение площадью 0,004 м2.

Калибруют импедансный дефектоскоп, для чего образец помещают в термостатирующее устройство и охлаждают до минус 30°С, датчик дефектоскопа устанавливают в центральную часть образца на полиэтиленовое покрытие и, постепенно нагревая, получают данные, показывающие зависимость выходных данных прибора от температуры покрытия.

Контроль прикромочной области покрытия выполняют после проведения сварочных работ, в момент, когда температура покрытия достигнет необходимой величины. При контроле областей покрытия, далеко отстоящих от кромок трубы, проводят предварительный подогрев до нужной температуры с помощью газовой горелки или паяльной лампы с внутренней стороны трубы. По показаниям прибора определяют наличие отслоения, а также его геометрические размеры.

Предлагаемый способ позволяет выявлять отслоения изоляционного покрытия с высокой точностью и тем самым значительно снизить развитие коррозионных повреждений, возникающих на внешней стороне стенки подземного стального трубопровода при контакте металла трубы под отслоением и грунтовой воды, окружающей трубопровод.

С целью подтверждения возможности решения поставленной задачи обследовали прикромочную область полиэтиленового изоляционного покрытия в области сварных стыков трубной плети, состоящей из пяти труб, при температуре воздуха минус 20°С. Заявленный способ сравнивали с результатами выявления отслоений покрытия от металла трубы способом, выбранным в качестве прототипа, а также визуальным способом, выбранным в качестве эталонного и предполагающим механическое отслоение изоляционного полиэтиленового покрытия и последующий осмотр отслоенной поверхности покрытия и металла трубы. Обследование, выполненное по методу, выбранному в качестве прототипа, позволило выявить в прикромочной области три отслоения общей площадью 85 см2. Контроль прикромочной области покрытия предлагаемым способом позволил выявить семь отслоений общей площадью 145 см2. Механическое отслоение покрытия со всех контролируемых областей и осмотр отклеенной поверхности позволили выявить восемь отслоений общей площадью 180 см2, из чего следует, что эффективность способа, выбранного в качестве прототипа, составляет 37,5%, эффективность заявленного способа - 87,5%.

Таким образом, точность определения отслоений изоляционного покрытия заявленным способом превосходит точность способа, выбранного в качестве прототипа, на 50%.

1. Способ выявления нарушений соединения полимерного покрытия с металлическими трубами, включающий возбуждение в покрытии и металле трубы посредством сухого точечного контакта упругих волн с помощью излучающего вибратора, прием и регистрацию режима колебаний упругих волн с помощью приемного вибратора, оценку соединения покрытия с металлом трубы по изменению механического импеданса, отличающийся тем, что получают калибровочные зависимости наличия нарушений соединения на образцах, имитирующих плотное прилегание неприклеенного покрытия к металлу трубы, для различных температур нагрева образца, выявляют нарушения соединения на трубах с покрытием в установленном на образцах оптимальном температурном диапазоне измерений, получаемом путем нагрева места контроля с внутренней поверхности трубы.

2. Способ по п.1, отличающийся тем, что оптимального температурного диапазона измерений достигают в процессе выполнения монтажных сварных швов трубопровода.



 

Похожие патенты:

Изобретение относится к области геоакустики и может быть использовано для определения расположения трубопровода, находящегося в грунте и имеющего запорно-регулирующую аппаратуру.

Изобретение относится к методам неразрушающего контроля и может быть использовано для измерения механических напряжений в одно- и двухосном напряженном состоянии конструкционных материалов эхо-импульсным методом на основе явления акустоупругости с помощью сдвиговых и продольных волн, распространяющихся по нормали к плоскости действия напряжений.

Изобретение относится к промышленности синтетического каучука, в частности к области диагностики полимеров ультразвуковыми методами контроля вязкоупругих свойств, и может быть использовано для определения молекулярно-массового распределения полимера в растворе.

Изобретение относится к промышленности синтетического каучука, в частности к области диагностики полимеров ультразвуковыми методами контроля вязкоупругих свойств, и может быть использовано для определения молекулярно-массового распределения полимера в растворе.

Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки.
Изобретение относится к области диагностики неразрушающими методами деталей и конструкций и может быть использовано для прецизионного определения плотности в процессе эксплуатации изделий, составной частью которых являются контролируемые детали из высоконаполненных композитных материалов на основе октогена, в горно-рудной и военной промышленности, а также в строительной индустрии.

Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких, как подвижность флюида и пьезопроводность глинистой корки.

Изобретение относится к устройству неразрушающего контроля и к способу неразрушающего контроля, а конкретнее, относится к устройству и способу для неразрушающего контроля текучей среды ультразвуковыми волнами.

Изобретение относится к области неразрушающих методов контроля биологических объектов

Изобретение относится к области медицинского приборостроения, в частности к устройствам для ультразвуковой эхо-локации внутренних органов

Изобретение относится к способу и устройству для классификации генерирующих звук процессов, например, звуковых сигналов, которые генерируются при рабочих процессах машины или при химических процессах установки

Изобретение относится к измерительной технике и может быть использовано для оценки технического состояния работающего длительное время силового высоковольтного энергетического оборудования

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения влажности

Изобретение относится к железнодорожному транспорту и может быть использовано для контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути. Согласно способу после наезда колеса (9) на стык (4) в колесе начинает распространяться круговая волна, которая проходя по колесу (9), вызывает появление акустической волны, исходящей от колеса и регистрируемой датчиком (1). Датчик преобразует акустическую волну в электрический сигнал. При отсутствии трещин длительность и частота сигнала будут иметь определенное значение. В случае наличия трещины в колесе указанные параметры изменятся - длительность и частота уменьшатся, что будет свидетельствовать о недопустимости дальнейшей эксплуатации этого колеса. Затем колесо (9) начнет катиться по участку (5), протяженность которого в данном случае равна половине длины окружности колеса, на котором с помощью акустических датчиков осуществляется проверка качества поверхности катания. В результате упрощается конструкция осуществляющего контроль устройства, повышаются эксплуатационные характеристики, снижается энергопотребление. 7 з.п. ф-лы, 3 ил.

Изобретение относится к способу определения консистенции пищевого материала. Способ определения консистенции пищевого продукта содержит стадии, на которых осуществляют приложение вибрационного импульса с заданной частотой к пищевому материалу, измерение вибрационного отклика пищевого материала на вибрационный импульс и сравнение вибрационного отклика с опорной величиной, определенной перед измерением. Пищевой материал находится в жидком или полутвердом состоянии и содержится внутри контейнера. Устройство для определения консистенции пищевого материала содержит блок для генерирования вибрационного импульса, имеющий пьезоэлектрический исполнительный механизм, устройство для измерения вибраций, выполненное в виде виброметра, удерживающий механизм, содержащий контейнер для удерживания в нем пищевого материала или струну для прикрепления к ней пищевого материала, и анализатор для сравнения измеренных вибраций с опорной величиной, определенной перед измерением. Технический результат группы изобретений - повышение точности измерений, что позволяет обнаруживать незначительные изменения в вибрационном отклике. 2 н. и 14 з.п. ф-лы, 6 ил.

Изобретение относится к медицинской технике, а именно к устройствам для абляции ткани. Устройство содержит катетер с излучателем энергии и фотоакустическим датчиком. Излучатель энергии испускает луч внутрь целевого участка ткани для образования в ней участка поражения. К катетеру прикреплен надувной баллон, окружающий, излучатель энергии и фотоакустический датчик. Баллон наполнен оптоакустической передающей средой. Излучатель энергии также испускает фотовозбуждающий луч внутрь целевого участка ткани. Фотоакустический датчик определяет фотоакустический отклик ткани. Система для абляции содержит систему управления абляцией и устройство для абляции, при этом излучатель энергии управляет системой управления абляцией для испускания луча, иссекающего ткань, и испускания фотовозбуждающего луча. Устройство для абляционной терапии ткани, кроме того, содержит контроллеры, управляющие излучателем энергии, и монитор. Использование изобретения позволяет определить образование участка абляционного поражения в реальном времени с помощью фотоакустического эффекта. 3 н. и 10 з.п. ф-лы, 9 ил.

Использование: для сравнительной оценки свойств материалов. Сущность заключается в том, что осуществляют инденторное нагружение исследуемых материалов, регистрацию сигналов акустической эмиссии в процессе нагружения, обработку сигналов акустической эмиссии и выявление параметра сигналов, информативного за физико-механическую характеристику материала и, соответственно, за эксплуатационное свойство изделия, выполненного из данного материала, при этом в качестве информативного параметра сигнала используют энергию импульсов акустических сигналов, а сравнение эксплуатационных свойств изделий, выполненных из разных исследуемых материалов, производят по величинам накопленной энергии импульсов за время нагружения, в том числе по величине угла наклона касательной на графике зависимости «накопленная величина энергии сигналов - время нагружения материала». Технический результат: повышение производительности оценки свойств материала и расширение технических возможностей, а именно возможность применения способа для оценки коррозионной стойкости материалов с покрытиями. 1 з.п. ф-лы, 6 ил., 1 табл.

Использование: для дефектоскопии и толщинометрии при исследовании различного рода материалов. Сущность: заключается в том, что пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, сопряженную с пьезоэлементами со стороны излучающей поверхности пьезоэлементов, при этом пьезоэлементы расположены под острым углом к акустической оси пьезоэлектрического преобразователя, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя, причем пьезоэлементы имеют относительно продольной оси преобразователя попарно одинаковую форму, с электродами на их противоположных поверхностях, подключенными к электрическому герметичному разъему, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, электроды пьезоэлементов, расположенные с одной стороны, последовательно электрически соединены между собой, акустические оси всех пьезоэлементов расположены в одной плоскости, проходящей через продольную ось преобразователя, а линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом. Технический результат: увеличение длины рабочей зоны пьезоэлектрического преобразователя и расширение его диаграммы направленности. 3 з.п. ф-лы, 2 ил.
Наверх