Сегментированный ротор турбины и турбина

Сегментированный ротор турбины содержит множество рядов лопаток турбины и множество сегментов ротора. Сегменты ротора включают первый сегмент ротора, соединенный со вторым сегментом ротора в шве. Шов содержит различные материалы от каждого из первого и второго сегментов ротора. Каждый из первого и второго сегментов ротора содержит материал, выбранный из группы, состоящей из суперсплава, мартенситной нержавеющей стали, низколегированной стали и титанового сплава. Первый сегмент ротора из множества сегментов ротора сегментированного ротора турбины содержит кольцевой сегмент ротора, имеющий ось, по существу параллельную центральной оси ротора. Кольцевой сегмент ротора образует полость, расположенную в его центре, и имеет внешнюю поверхность, поддерживающую более одного ряда из множества рядов лопаток турбины. Участок перегородки имеет первый конец и второй конец. Первый конец расположен вблизи центральной оси ротора. Фланцевый участок выполнен за одно целое со вторым концом участка перегородки. Фланцевый участок расположен параллельно центральной оси, тем самым образуя полость, расположенную между участком перегородки и фланцевым участком. Кольцевой сегмент ротора не имеет участка перегородки, проходящего радиально внутрь, тем самым образуя концентричную оболочку. Также объектом изобретения является турбина, содержащая внешнюю раму и сегментированный ротор турбины, описанный выше, расположенный внутри внешней рамы. Изобретение позволяет уменьшить массу сегментированного ротора. 2 н. и 5 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение. Настоящее изобретение, в общем, относится к турбинам, а более конкретно к роторам турбин. Современные роторы турбин, такие, как используемые, например, в паровых турбинах, могут изготавливаться из большого моноблока, из которого посредством ковки получают одинарный большой ротор. В качестве альтернативы, роторы турбин, такие, как используемые, например, в газовых турбинах, могут включать в себя узел, состоящий из нескольких колес, причем каждое колесо включает в себя один ряд лопаток турбины, который представляет собой ступень турбины (см., например, DE 972310 C, F01D 5/06, 02.07.1959). Колеса могут быть объединены друг с другом с помощью сварки или болтового соединения. Указанные выше конструкции ротора турбины обеспечивают в результате ротор турбины, который имеет большие вес и тепловую массу. Вес и тепловая масса роторов современных конструкций приводят к компромиссному управлению зазорами и увеличенным процедурам запуска турбины для приспособления к изменениям температуры и скорости ротора. Соответственно, существует необходимость в такой конструкции ротора турбины, при которой преодолеваются указанные недостатки.

Сущность изобретения

Один вариант осуществления изобретения включает в себя сегментированный ротор турбины. Сегментированный ротор турбины имеет множество рядов лопаток турбины. По меньшей мере один сегмент ротора из множества сегментов ротора сегментированного ротора турбины включает в себя кольцо, расположенное вокруг по его периферии и имеющее ось, по существу параллельную центральной оси ротора, причем кольцо образует полость, расположенную в его центре и имеющую внешнюю поверхность, поддерживающую по меньшей мере один ряд из множества рядов лопаток турбины.

Другой вариант осуществления изобретения включает в себя турбину, содержащую внешнюю раму, сегментированный ротор турбины, расположенный внутри внешней рамы, причем сегментированный ротор турбины включает в себя множество сегментов ротора и множество рядов лопаток турбины, функционально соединенных с сегментированным ротором турбины. По меньшей мере один сегмент ротора из множества сегментов ротора включает в себя кольцо, расположенное вокруг по его периферии и имеющее ось, по существу параллельную центральной оси ротора, тем самым образующее полость, расположенную в его центре, причем кольцо имеет внешнюю поверхность, поддерживающую по меньшей мере один ряд из множества рядов лопаток турбины.

Эти и другие преимущества и признаки могут быть лучше поняты из последующего подробного описания предпочтительных вариантов осуществления изобретения, приведенного совместно с прилагаемыми чертежами.

Краткое описание чертежей

На прилагаемых примерных чертежах одинаковые элементы обозначены одинаковыми ссылочными позициями.

Фиг. 1 представляет собой схематичный вид турбины согласно варианту осуществления изобретения.

Фиг. 2, 3, 4 представляют собой поперечные сечения ротора турбины согласно вариантам осуществления изобретения; и

Фиг. 5 представляет собой поперечное сечение сегмента ротора турбины и лопатки турбины согласно варианту осуществления изобретения.

Подробное описание изобретения

Согласно одному варианту осуществления изобретения предлагается сегментированный ротор для турбины, включающий в себя соединенные сваркой сегменты, которые могут включать в себя более одного ряда лопаток турбины. Сегментированный ротор может включать в себя одно или более колец вместе с одним или более дисками и включает в себя по существу полое внутреннее пространство для уменьшения веса и тепловой массы сегментированного ротора в сравнении с современными конструкциями ротора.

На фиг. 1 представлен схематичный вид варианта выполнения турбины 20, в которой используется множество лопаток турбины, функционально соединенных с ротором 24, для преобразования тепловой и кинетической энергий в механическую энергию путем поворота ротора 24 относительно внешней рамы 26. Турбина 20 может представлять собой газовую турбину, которая преобразует тепловую и кинетическую энергии, получаемые в результате расширения горючих газов 12, для получения механической энергии, чтобы приводить в движение транспортное средство, такое как, например, самолет, корабль или поезд, для генерирования электроэнергии, или для получения механической энергии для других областей применения, таких как, например, обеспечение работы насоса. В качестве альтернативы, турбина 20 может представлять собой паровую турбину, которая преобразует тепловую и кинетическую энергии, получаемые в результате расширения высокотемпературного пара 12, в механическую энергию для любого вида применения, таких как, например, описанные выше.

На фиг. 2 представлено поперечное сечение сегментированного ротора 28. Сегментированный ротор 28 включает в себя более одного сегмента 30 ротора, такого как сегменты 32, 34, 36, 38, 40, 42, 44 ротора. Лопатки 48 турбины установлены на сегментированном роторе 28 в виде множества рядов 52, также известных как ступени. Хотя непосредственно обозначены только четыре лопатки турбины, следует понимать, что ссылочная позиция 48 будет относиться ко всем таким лопаткам турбины в целом. Следует понимать, что хотя каждый ряд 52 лопаток 48 турбины представлен только лопаткой 48 турбины, показанной на фиг. 2, он включает в себя множество лопаток 48 турбины, которые проходят по периферии вокруг центра или центральной оси 56 сегментированного ротора 28 на одной линии с показанными лопатками 48 турбины. По меньшей мере один из сегментов 30 ротора, такой как показанные сегменты 36, 40, 44 ротора, включает в себя более одного ряда 52 лопаток 48 турбины.

В варианте осуществления, показанном на фиг. 2 (в иллюстративных и неограничивающих целях), сегментированный ротор 28 включает в себя семь сегментов 32, 34, 36, 38, 40, 42, 44 ротора, на которых расположены двенадцать рядов 52 лопаток 48 турбины.

Со ссылкой в частности на сегменты 34, 42 ротора, также называемые здесь «диски», сегменты 34, 42 обеспечивают получение конструкции, имеющей перегородку 144, 148 и фланец 152, 156, образующие общую «Т» образную форму в сечении, как показано на фиг. 2. В варианте осуществления сегменты 34, 42 ротора представляют собой одинарные «дисковые» сегменты ротора, имеющие фланцы 152, 156, выполненные за одно целое с перегородкой 144, 148. Перегородка 144, 148 имеет первый конец 145, 149 и второй конец 147, 151. Первый конец 145, 149 перегородки 144, 148 проходит радиально в направлении вовнутрь, и расположен вблизи центра 56 ротора 24. Второй конец 147, 151 расположен вблизи фланца 152, 156, который ориентирован перпендикулярно перегородке 144, 148 и расположен по периферии вокруг центра 56. В одном варианте осуществления дисковые сегменты ротора, такие как, например дисковые сегменты 34 ротора, включают в себя канал 58 или отверстие для обеспечения доступа во внутреннее пространство сегментированного ротора 28 для осмотра и любой требуемой зачистки сварных швов, как будет описано ниже.

Первый сегмент, такой как, например, сегмент 32, расположен рядом со вторым сегментом, таким как, например, сегмент 34, таким образом, что фланец 154 первого сегмента 32 контактирует с фланцем 152 второго сегмента 34. Другими словами, фланец 152, 156 ориентирован параллельно центру 56 и формирует концентричную оболочку, окружающую центр 56.

Со ссылкой в частности на сегменты 36, 38, 40 ротора, также называемые здесь «кольца», сегменты 36, 38, 40 обеспечивают получение конструкции, которая является тороидальной, имеющей, по существу, прямоугольную форму 37 в поперечном сечении, как показано на фиг. 2. Тороидальная или кольцевая конструкция сегментов 36, 38, 40 ротора образует полость или центральную область открытого пространства 45, 46, 47 таким образом, что кольцевые сегменты 36, 38, 40 ротора являются полыми. По существу прямоугольная форма в поперечном сечении кольцевых сегментов 36, 38, 40 ротора расположена по периферии вокруг центра 56. В одном варианте осуществления сегменты 36, 38, 40 ротора представляют собой одинарные «кольцевые» сегменты 36, 38, 40 ротора, у которых отсутствуют любые дисковые части, проходящие радиально внутрь, и тем самым они формируют концентричную оболочку, которая окружает и имеет ось 57, по существу параллельную центральной оси 56 ротора 24, подобно фланцу 152, 156 сегментов 34, 42 ротора. В другом варианте осуществления ось 57 каждого из кольцевых сегментов 36, 38, 40 ротора совпадает с центральной осью 56 ротора 28. Кольцевые сегменты ротора, такие как кольцевые сегменты 36, 38, 40 ротора включают в себя внешнюю поверхность 39, которая поддерживает один или более рядов 52 лопаток 48 турбины.

На фиг. 3 показан вариант выполнения сегментированного ротора 28, имеющего альтернативное взаимное расположение дисковых и кольцевых сегментов ротора. Например, дисковый сегмент 200 ротора расположен вблизи центра 204 ротора 28, рядом с двумя кольцевыми сегментами 208, 212 ротора. В варианте осуществления фланец, такой как фланец 216, обеспечивает поверхность 220, противоположную перегородке 224, которая может поддерживать более одного ряда 52 лопаток 48 турбины.

Хотя описываемые варианты осуществления изобретения имеют семь сегментов 30 ротора и в целом двенадцать рядов 52 лопаток 48 турбины, следует понимать, что объем изобретения не ограничивается этим, и что изобретение будет также применимо к сегментированным роторам 28, которые имеют различное количество сегментов 30 ротора, над которыми расположено различное количество рядов 52 лопаток 48 турбины, в зависимости от того, что может потребоваться для конкретного варианта применения турбины 20. В варианте осуществления количество сегментов 30 и количество рядов 52 лопаток 48 турбины на сегмент 30 могут быть оптимизированы исходя из напряжения, технологичности изготовления, стоимости и легкости проведения качественного осмотра. Кроме того, хотя варианты осуществления описываются для конкретного взаимного расположения дисковых сегментов ротора относительно кольцевых сегментов ротора, следует понимать, что объем изобретения не ограничивается этим, и что изобретение будет также применимо к сегментированным роторам 28, которые используют различные варианты взаимного расположения дисковых и кольцевых сегментов ротора, такие как, например, включающие в себя вариант взаимного расположения, при котором каждый дисковый сегмент ротора расположен рядом с кольцевым сегментом ротора.

Со ссылкой снова к фиг. 2, использование такой конструкции сегментов 32, 34 ротора, при которой два дисковых сегмента ротора расположены рядом друг с другом и включают в себя, как описано выше, фланец 152, 154 и перегородку 144, 146, обеспечивает получение областей отрытого пространства 72, 76, или полостей, образованных перегородкой 144, 146 и фланцем частью 152, 154 смежных сегментов 32, 34 ротора и расположенных между ними. Области открытого пространства 72, 76, обеспечиваемые дисковыми сегментами 32, 34, 42, 44 ротора, в дополнение к областям открытого пространства 45, 46, 47, обеспечиваемым кольцевыми сегментами 36, 38, 40 ротора, способствуют уменьшению веса и тепловой массы сегментированного ротора 28 в сравнении с современными конструкциями ротора.

На Фиг. 4 показан вариант выполнения сегментированного ротора 28 с таким взаимным расположением кольцевых сегментов 300, 304, 308, 312 ротора, при котором отсутствуют какие-либо дисковые сегменты ротора, кроме сегментов 316, 318 ротора, расположенных на ближних к месту крепления концах 320, 322 ротора 28.

Со ссылкой снова к фиг. 2, в примерном варианте осуществления сегменты 32, 34 ротора расположены в контакте друг с другом и соединены друг с другой с помощью сварки в сварном шве 60. Подобным образом, сегменты 34, 36 ротора соединены друг с другом с помощью сварки в сварном шве 64, расположенном между фланцем 152 сегмента 34 и кольцевым сегментом 36. Подобным образом сегменты 36, 38 ротора, сегменты 38, 40 ротора, сегменты 40, 42 ротора и сегмента 42, 44 ротора соединены друг с другом с помощью сварки в сварных швах 68. В варианте выполнения сегментированного ротора 28 будут использоваться сварные швы 60, 64, 68, которые получаются путем дуговой сварки в узкий зазор вольфрамовым электродом в среде инертного газа для уменьшения до минимума количества материала шва, требуемого для соединения сегментов 30 ротора. Кроме того предполагается, что для соединения сегментов 30 могут быть использованы альтернативные способы сварки, такие как электронно-лучевая сварка, лазерная сварка и другие способы сварки. Предполагается локальная тепловая обработка перед сваркой участков 84, 88, 92 сегментов 30 ротора вблизи сварных швов 60, 64, 68 для подготовки сегментов 30 ротора для сварки. Кроме того, предполагается локальная тепловая обработка перед сваркой участков 84, 88, 92 для оптимизации характеристик сварного шва, таких как, например, микроструктура, остаточное напряжение и перекос шва. В одном варианте осуществления два смежных сегмента 30 ротора включают в себя различные основные материалы или основные материалы из разнородных сплавов. Предполагается, что указанная локальная тепловая обработка выполняется таким образом, чтобы получить управляемый перепад температур для содействия свариванию сегментов 30 ротора, которые включают в себя основные материалы из разнородных сплавов. Локальная тепловая обработка предполагается для того, чтобы подвергнуть каждый сегмент 30 ротора, имеющий основные материалы из разнородных сплавов, воздействию разных температур для оптимизирования характеристик каждого из основных материалов из разнородных сплавов в сварных швах 60, 64, 68.

В сравнении с современными конструкциями ротора газовой турбины 20, которые используют несколько колес, соединенных друг с другом с помощью болтов, сегментированный ротор 28 уменьшает вес, тепловую массу и сложность конструкции, связанную с большим количеством колес и болтов. Уменьшение сложности конструкции соответственно уменьшает стоимость изготовления сегментированного ротора 28. Уменьшение веса и тепловой массы ротора 24 делает более эффективным степень расширения и сокращения ротора 24. Соответственно, использование сегментированного ротора 28, имеющего уменьшенную тепловую массу предполагает улучшение управления зазорами путем лучшего согласования степени расширения ротора 24 с расширением смежных стационарных компонентов турбины 20. Кроме того, уменьшение веса и тепловой массы предполагает упрощение процедуры пуска, так как сегментированный ротор 28 будет достигать скоростей и температур установившегося режима за более короткий период времени. В одном варианте осуществления предполагается, что вес сегментированного ротора 28 будет на 40 процентов меньше, чем у сравнимого ротора, использующего современные конструкцию и варианты взаимного расположения компонентов.

Хотя современные паровые турбины 20 могут использовать роторы 24, изготовленные из материалов, которые позволяют механическую обработку одного большого ротора 24, предполагаемое использование материалов с улучшенными свойствами, которые лучше подходят для конкретных рабочих условий в турбинах 20, будет мешать механической обработке одного большого ротора 24, так как такие материалы часто не доступны в тех размерах, которые соответствовали бы размеру одного большого ротора 24. Соответственно, применение сегментов 30 ротора в паровой турбине, как предполагается, будет способствовать использованию ротора 24 более легкого веса, который включает в себя материалы с улучшенными свойствами. Примеры материалов с улучшенными свойствами включают в себя суперсплавы, такие как, например, сплавы 718, 706, Rene 95, 625, Nimonic 263 и другие коммерческие суперсплавы, мартенситные нержавеющие стали, такие как, например, Ml52 (ранее известный как Jethete Ml52), AISI 403, 450, низколегированные стали, такие как, например, NiCrMoV, CrMoV (ASTM A470), и титановые сплавы, такие как, например Ti-6-4, Ti6Q2. Вышеприведенные примеры приведены только в иллюстративных целях, а не для ограничения.

В примерном варианте осуществления предполагается, что различные сегменты 30 ротора изготавливаются из различных материалов, причем каждый сегмент 30 ротора изготавливается из материала, который подходит для конкретных рабочих условий в турбине 20, которым он подвергается. Например, предполагается, что различные сегменты 30 ротора, которые подвергаются действию разных температур, нагрузки или центробежной силы, которые зависят от веса лопатки 48, изготавливаются из различных материалов, выбираемых исходя из их способности выдерживать данные температуру, нагрузку или центробежную силу. Предполагается, что сегментированные роторы 28, собираемые из таких сегментов 30 ротора, изготовленных из разных материалов, далее будут использовать разную тепловую обработку после сварки, оптимизированной в соответствии с требованиями разных материалов.

На фиг. 5 показан другой вариант осуществления сегмента 96 ротора. Имеются канавки 100 типа ласточкин хвост, выполненные в сегменте 96 ротора путем механической обработки, для тангенциального входа узла лопаток турбины, таких как лопатка 104 турбины, которая включает в себя хвостовик 108, имеющий геометрические параметры, которые соответствуют геометрическим параметрам канавки 100 типа ласточкин хвост. Канавка 100 типа ласточкин хвост вырезается во внешней поверхности 112 фланца 114.

Отдельные варианты осуществления изобретения могут включать в себя некоторые из следующих преимуществ: ротор турбины, имеющий уменьшенный вес; ротор турбины, имеющий уменьшенную тепловую массу; ротор турбины, имеющий уменьшенную сложность сборки; турбина, имеющая упрощенную процедуру пуска; ротор турбины, имеющий улучшенное управление зазорами; ротор турбины, имеющий разные материалы, подходящие для зависящих от конкретного места рабочих условий внутри турбины; и ротор турбины, имеющий уменьшенную стоимость изготовления.

Хотя изобретения было описано для примерных вариантов осуществления, специалистам в данной области техники будет понятно, что различные изменения могут быть выполнены, и различные элементы могут быть заменены их эквивалентами, не выходя при этом за пределы объема изобретения. Кроме того, на основе изобретения могут быть сделаны различные модификации для приспосабливания к конкретной ситуации или материалу, не выходя за пределы его сущности. Поэтому подразумевается, что изобретение не ограничивается конкретным вариантом осуществления, раскрытым как наиболее или только частично предполагаемый для осуществления данного изобретения, но что изобретение будет включать в себя все варианты осуществления, попадающие в пределы объема прилагаемой формулы изобретения. Кроме того, на чертежах и в описании были раскрыты примерные варианты осуществления изобретения, и хотя возможно были использованы специфические термины, они, если не заявлено иначе, используются только в родовом и описательном смысле и не в целях ограничения, и поэтому объем изобретения не ограничивается этим. Более того, использование терминов «первый», «второй» и т.д. не обозначают какого-либо порядка или важности, но скорее термины «первый», «второй» и т.д. используются для того, чтобы отличить один элемент от другого.

1. Сегментированный ротор (28) турбины, содержащий:
множество рядов (52) из множества лопаток (48) турбины;
множество сегментов (30) ротора, включающее в себя первый сегмент (34) ротора, соединенный со вторым сегментом (36) ротора в шве (60), (64), (68), при этом шов (60), (64), (68) содержит различные материалы от каждого из первого (34) и второго (36) сегментов ротора, причем каждый из первого (34) и второго (36) сегментов ротора содержит материал, выбранный из группы, состоящей из суперсплава, мартенситной нержавеющей стали, низколегированной стали и титанового сплава, при этом первый сегмент (34) ротора из множества сегментов (30) ротора сегментированного ротора (28) турбины содержит кольцевой сегмент (36), (38), (40) ротора, имеющий ось (57), по существу параллельную центральной оси (56) ротора (28), причем кольцевой сегмент (36), (38), (40) ротора образует полость (45), (46), (47), расположенную в его центре, и имеет внешнюю поверхность (39), поддерживающую более одного ряда (52) из множества рядов (52) лопаток (48) турбины;
участок (144) перегородки, имеющий первый конец (145) и второй конец (147), при этом первый конец (145) расположен вблизи центральной оси (56) ротора (28); и
фланцевый участок (152), выполненный за одно целое со вторым концом (147) участка (144) перегородки, причем фланцевый участок (152) расположен параллельно центральной оси (56), тем самым образуя полость (45), (46), (47), расположенную между участком (144) перегородки и фланцевым участком (152), при этом кольцевой сегмент (36), (38), (40) ротора не имеет участка (144) перегородки, проходящего радиадьно внутрь, тем самым образуя концентричную оболочку.

2. Ротор по п.1, в котором
участок (144) перегородки, имеющий первый конец (145) и второй конец (147), содержит стенку с первым концом и вторым концом, а фланцевый участок (152) выполнен за одно целое со вторым концом стенки участка (144) перегородки.

3. Ротор по п.1, в котором шов (60), (64), (68) содержит:
сварной шов (64), расположенный между первым сегментом (34) ротора и вторым сегментом (36) ротора.

4. Ротор по п.1, в котором по меньшей мере один из множества сегментов (30) ротора дополнительно содержит:
более одного ряда (52) из множества канавок (100) в форме ласточкиного хвоста во внешней поверхности (39), при этом лопатка (104) турбины из множества лопаток (48) турбины удерживается каждой канавкой (100) в форме ласточкиного хвоста из множества канавок (100) в форме ласточкиного хвоста.

5. Турбина (20), содержащая:
внешнюю раму (26);
сегментированный ротор (28) турбины, расположенный внутри внешней рамы (26), причем сегментированный ротор (28) турбины содержит множество сегментов (30) ротора, включающее в себя первый сегмент (34) ротора, соединенный со вторым сегментом (36) ротора в шве (60), (64), (68), при этом шов (60), (64), (68) содержит различные материалы от каждого из первого (34) и второго (36) сегментов ротора, причем каждый из первого (34) и второго (36) сегментов ротора содержит материал, выбранный из группы, состоящей из суперсплава, мартенситной нержавеющей стали, низколегированной стали и титанового сплава;
множество рядов (52) из множества лопаток (48) турбины, функционально соединенных с сегментированным ротором (28) турбины;
при этом первый сегмент (34) ротора из множества сегментов (30) роторе содержит кольцевой сегмент (36), (38), (40) ротора, имеющий ось (57), по существу параллельную центральной оси (56) ротора (28), тем самым образуя полость (45), (46), (47), расположенную в центре кольцевого сегмента (36), (38), (40) ротора, при этом кольцевой сегмент (36), (38), (40) ротора имеет внешнюю поверхность (39), поддерживающую по меньшей мере один ряд (52) из множества рядов (52) лопаток (48) турбины;
участок (144) перегородки, имеющий первый конец (145) и второй конец (147), при этом первый конец (145) расположен вблизи центральной оси (56) ротора (28); и
фланцевый участок (152), выполненный за одно целое со вторым концом (147) участка (144) перегородки, причем фланцевый участок (152) расположен параллельно центральной оси (56), тем самым образуя полость (45), (46), (47), расположенную между участком (144) перегородки и фланцевым участком (152), при этом кольцевой сегмент (36), (38), (40) не имеет участка (144) перегородки, проходящего радиально внутрь, тем самым образуя концентричную оболочку.

6. Турбина по п.5, в которой
участок (144) перегородки, имеющий первый конец (145) и второй конец (147), содержит стенку с первым концом и вторым концом, а фланцевый участок (152) выполнен за одно целое со вторым концом стенки участка (144) перегородки.

7. Турбина по п.5, в которой шов (60), (64), (68) содержит:
сварной шов (64), расположенный между первым сегментом (34) ротора и вторым сегментом (36) ротора.



 

Похожие патенты:

Изобретение относится к турбовентиляторным двигателям авиационного применения. .

Изобретение относится к роторам компрессора газотурбинных турбовентиляторных двигателей. .

Изобретение относится к ротору для лопаточной машины с осевым потоком, содержащему несколько расположенных стопкой роторных дисков, которые сжаты друг с другом в осевом направлении с помощью, по меньшей мере, одного стяжного болта и имеют каждый наружный диаметр.

Изобретение относится к области двигателестроения. .

Изобретение относится к газовой турбине, содержащей, по меньшей мере, один ротор, который имеет расположенные в нескольких плоскостях на окружности роторных дисков рабочие лопатки, при этом стяжной болт проходит вдоль выемок в роторных дисках и удерживает роторные диски вместе в виде одного блока, и при этом ротор дополнительно имеет, по меньшей мере, один кольцеобразно окружающий стяжной болт канал, при этом, по меньшей мере, в одном канале предусмотрена, по меньшей мере, одна выполненная кольцеобразно распорка для фиксации положения стяжного болта относительно средней оси ротора, и распорка имеет выемки, которые расположены в радиальном направлении относительно стяжного болта или, соответственно, относительно его средней оси и проходят коаксиально.

Изобретение относится к ротору в соответствии с ограничительной частью пункта 1 формулы. .

Изобретение относится к способу изготовления вала для турбины и/или генератора посредством сварного соединения и к валу, изготовленному упомянутым способом. Осуществляют удаление по меньшей мере с одной стороны основной ограничивающей круговой поверхности соответственно одной центральной части соответствующего элемента (5) вала относительно оси вращения (2) для получения соответственно одной открытой полости (11) по меньшей мере в одном цилиндре (3) в пределах оставшегося трубообразного ребра (13). Размещают два элемента (5) вала вдоль оси вращения (2) коаксиально друг другу с образованием полого пространства (15). Получают первый трубчатый кольцевой шов (17) посредством электродуговой сварки в узкий зазор. В одном из двух элементов (5) вала выполняют сквозное отверстие (18) снаружи в полое пространство (15). Осуществляют оценку качества первого трубчатого кольцевого шва (17) изнутри полого пространства (15) во время и/или после сварки посредством введенного через сквозное отверстие (18) в полое пространство (15) воспринимающего устройства (19) или источника (19а) излучения. Таким образом, можно непосредственно регулировать процесс сварки. 2 н. и 12 з.п. ф-лы, 2 ил.

Радиальный кольцевой фланец содержит на внутренней или внешней периферии чередование выступов, имеющих отверстия для стягивающих крепежных болтов, и впадин, а также средства предотвращения неверного углового соединения, препятствующие прохождению болтов во впадину. Средства предотвращения неверного углового соединения образованы дном, по меньшей мере, одной впадины внутренней или, соответственно, внешней периферии, радиус которой относительно оси турбомашины меньше или, соответственно, больше радиуса круга, внешне или, соответственно, внутренне касательного к отверстиям для прохода болтов в выступах. Другое изобретение группы относится к соединению элементов газотурбинного двигателя, содержащему указанный выше кольцевой фланец, скрепленный при помощи болтов с кольцевыми зажимами. Болты размещены в отверстиях зажимов и в отверстиях выступов фланца, а дно меньшего или, соответственно, большего радиуса размещено между двумя выступами фланца и между двумя выступами, по меньшей мере, одного из зажимов. Еще одно изобретение группы относится к газотурбинному двигателю, содержащему указанное выше соединение. Изобретение позволяет исключить риск неверного монтажа кольцевого фланца. 3 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к многоступенчатым газовым силовым турбинам авиационных двигателей и установок наземного применения. Многоступенчатая газовая силовая турбина включает диски ротора, соединенные между собой фланцами с осевыми штифтами. С внутренней стороны от ступиц дисков установлен стяжной вал, на входном по потоку газа хвостовике которого радиальным ребром зафиксирован в радиальном и осевом направлениях первый по потоку диск ротора турбины. Радиальное ребро расположено в междисковой полости между гайкой затяжки ротора и регулировочным кольцом. Изобретение позволяет снизить габариты многоступенчатой газовой силовой турбины, а также повысить ее надежность. 2 ил.

Радиальный кольцевой фланец элемента ротора или статора турбины газотурбинного двигателя содержит на внутренней периферийной части или на наружной периферийной части, соответственно, чередующиеся выпуклые части и части с углублениями, содержащие донные зоны. Выпуклые части содержат отверстия для болтов крепления. Донная зона части с углублением, предотвращающей неправильное соединение, на внутренней периферийной части или на наружной периферийной части, соответственно, располагается радиально внутри или снаружи, соответственно, по отношению к окружности, центрированной на оси фланца и касательной снаружи или изнутри, соответственно, к отверстиям выпуклых частей. Обе части с углублениями, располагающиеся по одну и по другую стороны от части с углублением, предотвращающей неправильное соединение, имеют донную зону вогнутой формы, располагающуюся радиально снаружи или изнутри, соответственно, по отношению к по существу плоским донным зонам других частей с углублениями. Другие изобретения группы относятся к турбине низкого давления, содержащей указанный выше кольцевой фланец, а также газотурбинному двигателю, включающему такую турбину. Группа изобретений позволяет повысить надежность кольцевого фланца за счет снижения вероятности образования трещин в зонах концентрации напряжений. 3 н. и 6 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к области турбостроения и может быть использовано в конструкциях многоступенчатых компрессоров и турбин газотурбинных двигателей, энергетических установках паро- и гидротурбинах. Ротор газотурбинного двигателя содержит диски рабочих колес, сопряженные поверхностями посадочных кольцевых элементов, в которых выполнены цилиндрические радиальные сквозные отверстия с фиксирующими элементами. На части каждого из отверстий во внутренних посадочных кольцевых элементах выполнен расширенный участок со стороны их внешней поверхности. Фиксирующие элементы выполнены в виде втулок с внутренней резьбой, расположенных в расширенных участках отверстий и штифтов с соответствующей наружной резьбой, зафиксированных от проворота в отверстиях методом развальцовки. Диски рабочих колес жестко соединены между собой в их средней части вдоль продольной оси ротора. Изобретение позволяет повысить надежность, технологичность и ремонтопригодность ротора газотурбинного двигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области турбостроения и может быть использовано в конструкциях осевых компрессоров и турбин газотурбинных двигателей и энергетических установок. Ротор газотурбинного двигателя содержит диски, соединенные резьбовыми соединениями, расположенными в их средней части вдоль продольной оси ротора. Периферийный кольцевой участок одного диска с его внутренней стороны снабжен выступами и чередующимися с ними продольными пазами, расположенными по окружности диска. Периферийный кольцевой участок другого диска, контактирующего с предыдущим, снабжен лепестками с выступами и чередующимися с ними продольными пазами по его наружной стороне в количестве, равном числу продольных пазов на дисках. Торцевые поверхности выступов выполнены коническими. Лепестки установлены выступающими по окружности диска за контактную поверхность с возможностью сопряжения поверхностей выступов одного диска с конической поверхностью выступов другого диска. Изобретение позволяет повысить надежность ротора газотурбинного двигателя. 1 з.п. ф-лы, 5 ил.

Предложен вкладыш (10) и способ изменения уравновешивающего пар сквозного отверстия (54) в рабочем колесе (52) ротора паровой турбины. Вкладыш (10) содержит корпус (12), имеющий продольную ось (14) и противоположно расположенные первый и второй концы (16, 18). Фланец (20) вкладыша проходит радиально от второго конца (18) корпуса (12). Внешняя поверхность (22) расположена по периферии корпуса (12) между указанными первым концом (16) и фланцем (20). Первый канал (24), выполненный в корпусе (12), образует первое отверстие (28) на первом конце (16), при этом указанный первый канал (24) и внешняя поверхность (22) корпуса (12) вместе ограничивают между собой стенку (32), выполненную с возможностью пластической деформации в радиальном наружном направлении. Второй канал (26), выполненный в корпусе (12), сообщается с указанным первым каналом (24) и имеет меньшее поперечное сечение, чем первый канал (24). Способ установки включает установку вкладыша (10) в сквозное отверстие (54) и развальцовку стенки (32) с обеспечением захвата осевой толщины рабочего колеса (52) между фланцем (20) и развальцованной стенкой (32) вкладыша (10). Достигается несложная установка вкладыша, которая может быть выполнена одним рабочим без модификаций колеса, устраняется опасность деформации смежных колес во время процесса установки. 2 н. и 5 з.п. ф-лы, 5 ил.

Турбина низкого давления газотурбинного двигателя содержит лопаточные диски, соединенные с валом турбины через конусную цапфу. Лопаточные диски и конусная цапфа содержат на своей внутренней и наружной периферии, соответственно, кольцевые фланцы с выступами, образованными чередованием сплошных частей и полых частей. Сплошные части содержат отверстия для прохождения крепежных органов. Каждая сплошная часть соединена с периферией диска или конусной цапфы, соответственно, посредством двух вогнутых закруглений, которые являются асимметричными. Другие изобретения группы относятся к диску и конусной цапфе указанной выше турбины низкого давления, а также к газотурбинному двигателю, содержащему такую турбину. Группа изобретений позволяет увеличить срок службы фланцев диска и конусной цапфы турбины низкого давления. 4 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к роторам высокотемпературных турбомашин газотурбинных двигателей авиационного и наземного применения. В роторе (1) высокотемпературной турбомашины между первым (7) и вторым (8) и предпоследним (9) и последним (10) по потоку газа (11) уплотнительными гребешками в ободе (6) промежуточного диска 5 выполнены радиальные каналы (13) и (14), соединяющие воздушную междисковую полость (4) с газовой полостью (12) турбины. Радиальные стенки (15) и (16) каналов (13) и (14) выполнены плоскими, а соединяющие их стенки (17) и (18) выполнены цилиндрическими. Отношение длины L канала в окружном направлении к радиусу R цилиндрической стенки канала находится в пределах 2...6. Путем исключения загрязнения внутренней поверхности промежуточного диска и снижения концентрации напряжений в ободе диска повышается надежность ротора высокотемпературной турбомашины. 2 ил.

Изобретение относится к турбинам двухконтурных газотурбинных двигателей авиационного применения. Турбина двухконтурного газотурбинного двигателя включает турбины высокого и низкого давлений с опорами ротора турбин. Внутри ротора турбины низкого давления расположена воздушная полость повышенного давления, соединенная на входе с воздушной полостью первого соплового аппарата турбины низкого давления, а на выходе через заднее лабиринтное уплотнение - с проточной частью турбины низкого давления. Воздушная полость повышенного давления ограничена с внутренней стороны - первым и вторым лабиринтными уплотнениями. Уплотнения отделяют воздушную полость повышенного давления от воздушной полости пониженного давления. Воздушная полость пониженного давления разделена на переднюю и заднюю полости. Передняя полость расположена между опорой турбины высокого давления и конусным фланцем вала турбины низкого давления. Задняя полость расположена между конусным фланцем вала турбины низкого давления и опорой турбины низкого давления. Первое и второе лабиринтные уплотнения расположены друг относительно друга таким образом, чтобы отношение минимального диаметра по уплотнительным гребешкам первого лабиринтного уплотнения к минимальному диаметру по уплотнительным гребешкам второго лабиринтного уплотнения составляло 1,2…2,0. Изобретение позволяет повысить надежность и КПД турбины. 3 ил.
Наверх