Малоотражающее покрытие на основе омега-частиц и способ его изготовления



Малоотражающее покрытие на основе омега-частиц и способ его изготовления
Малоотражающее покрытие на основе омега-частиц и способ его изготовления
Малоотражающее покрытие на основе омега-частиц и способ его изготовления
Малоотражающее покрытие на основе омега-частиц и способ его изготовления

 


Владельцы патента RU 2497245:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет" (RU)

Изобретение относится к малоотражающим покрытиям и может быть использовано в наземной, наводной, авиационной и космической технике, а также в объектах и устройствах бытового назначения для уменьшения радиолокационной заметности объектов. Технический результат - уменьшение коэффициента отражения электромагнитной волны от покрытия в широкой полосе частот. Для этого покрытие изготавливается в виде трех слоев, первый - поглотитель, два последующих - трехмерные решетки из резонансных металлических плоских омега-частиц в диэлектриках во взаимно ортогональных плоскостях, совпадающих с направлением падения волны. Способ создания конформного покрытия объектов включает нанесение трех слоев: первый слой из поглотителя непосредственно на защищаемом объекте, второй и третий слои из диэлектриков с решетками с взаимно перпендикулярными ориентациями резонансных элементов. 2 н.п. ф-лы, 7 ил.

 

Изобретение относится к малоотражающим покрытиям и может быть использовано в наземной, наводной, авиационной и космической технике, а также в объектах и устройствах бытового назначения для уменьшения радиолокационной заметности объектов.

Известен поглотитель электромагнитных волн RU 2119216 С1 [Борзенко Г.П., Ткачев Н.А. Поглотитель электромагнитных волн и способ его изготовления. - 9611654/09. Заяв. 1996.08.13. (РФ). Опубл. 1998.09.20. (статус: по данным на 17.09.2007 - прекратил действие). Патент RU 2119216 C1], который может быть использован для создания малоотражающих покрытий для снижения радиолокационной видимости объектов в диапазоне миллиметровых, сантиметровых и дециметровых электромагнитных волн. Однако данный поглотитель имеет сложную структуру, т.к. она представляет собой многослойное покрытие (причем слои переменной толщины) и двухмерные решетки и имеет достаточно узкую полосу частот, в которой будут наблюдаться малые коэффициенты отражения электромагнитных волны (ЭМВ).

Известен также поглотитель интерференционного типа, который состоит из слоя диэлектрика толщиной d=λ/4, двух взаимно перпендикулярных дипольных решеток, расположенных на внешней поверхности и настроенных на волны 3,2 см, а также двух аналогичных решеток, расположенных в диэлектрическом слое на удалении в 0,25λ от металлической подложки и настроенных на волны 1,6 см. Данный поглотитель имеет коэффициент отражения (КО) по полю до 16% между двумя точками согласования на волнах 1,6 и 3,2 см в полосе длин волн 1,4-4,25 см [Радиотехнические системы в ракетной технике. / Великанов В.Д. [и др.] / М.: Воениздат, 1974].

Наиболее близким к предлагаемому техническому решению задачи является конформное покрытие объектов малоотражающее ЭМВ, и способ его изготовления RU 2374725 С1 [Вороной А.А., Неганов В.А., Табаков Д.П. Конформное покрытие объектов, малоотражающее электромагнитные волны, и способ его изготовления. - 2008133917/09. Заяв. 2008.08.13 (РФ). Опубл. 2009.11.27. Бюл. №33. Патент RU 2374725 С1]. В нем покрытие изготавливается в виде трех слоев, первый - поглотитель, два последующих -трехмерные решетки из резонансных металлических разомкнутых плоских колец в диэлектриках во взаимно ортогональных плоскостях, совпадающих с направлением падения волны, а разрывы разомкнутых колец ориентированы к поглотителю.

Техническим результатом заявленного изобретения является уменьшение коэффициента отражения электромагнитной волны от покрытия в широкой полосе частот. Указанный технический результат достигается тем, что конформное покрытие объектов, малоотражающее ЭМВ включает три слоя: первый - поглотитель, два последующих представляют собой решетки из резонансных элементов в диэлектриках. Трехмерные решетки во втором и третьем слоях диэлектрика формируются из плоских омега-частиц (фиг.1, а), используемых при создании метаматериалов [Negative-zero-positive metamaterial with omega-type metal inclusions / F. Zhang [et al.] // Journal of Applied Physics. 2008. Vol.103. P.084312-1-8], таким образом, чтобы соседние омега-частицы имели противоположное расположение зазоров (фиг.1, б).

Радиус а металлических разомкнутых плоских колец и расстояние между соседними центрами разомкнутых колец d определяются из соотношений

, ,

где λn - центральная длина волны диапазона ЭМВ падающих на защищаемый объект; ε - относительная диэлектрическая проницаемость диэлектрика во втором и третьем слоях.

Запись max{х12} означает, что берется максимальная величина из х1 и х2. Размер «уса» а1 подбирается из минимума отражения от покрытия и определяет согласование границы воздух-покрытие.

На фиг.2 показано покрытие объектов малоотражающее ЭМВ для снижения радиолокационной видимости объектов и увеличения его широкополосности: структура малоотражающего покрытия (a) и заполнение диэлектрических параллелепипедов (б - второй слой, в - третий слой) решеткой ориентированных плоских омега-частиц. На фиг.3 показана рассчитанная амплитудная диаграмма направленности (ДН) в азимутальной плоскости дифрагированного поля плоской ЭМВ Н-поляризации (вектор Н перпендикулярен плоскости частицы) на двух омега-частицах. Стрелкой указано направление падения плоской волны.

По отношению к поглотителю, приведенном в работе [Борзенко Г.П., Ткачев Н.А. Поглотитель электромагнитных волн и способ его изготовления. - 9611654/09. Заяв. 1996.08.13. (РФ). Опубл. 1998.09.20. (статус: по данным на 17.09.2007 - прекратил действие). Патент RU 2119216 С1], в котором применяется система замкнутых колец, образующих двухмерные решетки, используются решетки из омега-частиц, представляющие собой разомкнутые системы, поэтому предлагаемое малоотражающее покрытие является более широкополосным. Другим важным преимуществом предлагаемого покрытия является то обстоятельство, что используются частицы, которые в отличие от замкнутых изотропных переизлучателей, являются неизотропными переизлучателями электромагнитной мощности.

Для доказательства утверждения широкополосности малоотражающего покрытия проведены расчеты амплитудной диаграммы направленности в азимутальной плоскости для случая 2πa/λn=1,15 и показано, что характер кривой меняется незначительно при изменении длины волны. Расчет амплитудной диаграммы направленности осуществлен методом сингулярных интегральных уравнений, разработанным проф. В.А. Негановым [Неганов В.А., Нефедов Е.И., Яровой Г.П. Электродинамические методы проектирования устройств СВЧ и антенн. Учебное пособие для вузов / под ред. Неганова В.А. - М.: Радио и связь, 2002. 416 с.]. Для сравнения, метод сингулярных интегральных уравнений в случае замкнутого кольца дает при a/λn=π/4 отражения от него примерно в 1,5 раза больше по сравнению с отражением от ориентированного разомкнутого кольца.

На фиг.3 для сравнения пунктирной кривой приведена амплитудная диаграмма направленности в азимутальной плоскости на разомкнутом кольце, сплошной кривой - случай падения на плоскую омега-частицу. Для проверки результатов обе задачи были рассчитаны с помощью пакета CST Microwave Studio. Результаты были подтверждены с графической точностью.

Для устранения зависимости коэффициента отражения от поляризации волны в третьем слое поглощающего покрытия (фиг.2) вводится трехмерная решетка из плоских частиц, повернутых на 90° в меридиональной плоскости к частицам первой решетки во втором слое поглощающего покрытия. Коэффициент отражения покрытия с двумя такими взаимно перпендикулярными решетками практически не зависит от угла поляризации падающей на него волны.

В качестве поглощающего слоя может быть использовано, например, покрытие, включающее в себя в качестве полимерного связующего синтетический клей «Элатон» на основе латекса и в качестве магнитного наполнителя - порошкообразный феррит или карбонильное железо при соотношении компонентов, мас.%: синтетический клей «Элатон» на основе латекса 80-20, порошкообразный феррит или карбонильное железо 20-80 [Шабанов С.Г. Радиопоглощающее покрытие, способ получения и управления его свойствами и устройство для дистанционного измерения отражательных свойств покрытий на объектах в СВЧ-диапазоне радиоволн. 2155420 С1. - 2000.08.27].

Известен способ изготовления малоотражающего покрытия для электромагнитных волн, включающий несколько слоев из различных пластмасс и формирования на одной из их поверхности двухмерных решеток резонансных элементов [Борзенко Г.П., Ткачев Н.А. Поглотитель электромагнитных волн и способ его изготовления. - 9611654/09. Заяв. 1996.08.13. (РФ). Опубл. 1998.09.20. (статус: по данным на 17.09.2007 - прекратил действие). Патент RU 2119216 С1]. Однако этот способ дает технологию изготовления только двухмерных решеток.

Техническим результатом изобретения является возможность создания форм малоотражающих покрытий конформных поверхностям защищаемых объектов и технология изготовления трехмерных решеток из резонансных разомкнутых плоских омега-частиц.

Указанный технический результат достигается тем, что способ создания конформного покрытия объектов, малоотражающего электромагнитные волны, включает нанесение трех слоев: первый слой из поглотителя непосредственно на защищаемом объекте, второй и третий слои из диэлектриков с решетками со взаимно перпендикулярными ориентациями резонансных элементов. При формировании трехмерных решеток во втором и третьем слоях предварительно созданы одинаковые гибкие диэлектрические прямые параллелепипеды с ширинами, равными длине между соседними центрами частиц, высотами не менее размера плоских частиц. Длины параллелепипедов определены размерами защищаемого объекта на одной из граней прямых диэлектрических параллелепипедов, определяющих высоту второго и третьего слоев. Изготовлены двухмерные решетки из плоских омега-частиц с одинаковой перпендикулярной ориентацией разрывов по отношению к одному из ребер этих граней. При создании второго слоя грани этих гибких параллелепипедов с двухмерными решетками последовательно приклеены в горизонтальных плоскостях к противоположным граням по отношению к граням с двухмерными решетками следующего прямого диэлектрического параллелепипеда с одновременным приклеиванием перпендикулярной грани прямого диэлектрического параллелепипеда к слою поглотителя, чтобы ориентация разрывов в разорванных кольцах частиц были направлены к направлению падения волны. При создании третьего слоя гибкие диэлектрические прямые параллелепипеды точно также последовательно склеены между собой в вертикальных областях и одновременно приклеены к поверхности второго слоя.

Способ реализуется следующим образом.

На первом этапе на поверхность защищаемого объекта наносится слой поглощающего материала (первый слой в покрытии). На втором этапе создаются двухмерные решетки из элементарных диэлектрических кубиков с расположенными на них омега-частицами (фиг.4). Соседние частицы должны иметь противоположно направленные зазоры, например к точкам D, D', С', С первого кубика необходимо присоединить точки С, С', D, D' второго. Затем точки А, В, С, D совместить с точками С, D', А', В', тем самым получив второй слой. Третий слой создается таким же образом, затем разворачивается на 90° и клеится ко второму. В результате в третьем и втором слоях малоотражающего покрытия формируются взаимно перпендикулярные трехмерные решетки из плоских омега-частиц с ориентацией разрывов в кольцах частиц к направлению падения волн.

1. Малоотражающее покрытие в виде трех слоев: первый слой - поглотитель, два последующих слоя - решетки из резонансных элементов в диэлектриках, отличающееся тем, что слои образованы плоскими омега-частицами во взаимно ортогональных плоскостях со средним радиусом a = λ n 2 π ε и расстоянием между соседними центрами d λ n 2 ε , где λn - центральная длина волны диапазона ЭМВ, падающих на защищаемый объект; ε - относительная диэлектрическая проницаемость диэлектрика во втором и третьем слоях.

2. Способ создания малоотражающего покрытия, отличающийся тем, что наносится три слоя: первый слой из поглотителя непосредственно на защищаемом объекте, второй и третий слои из диэлектриков с решетками с взаимно перпендикулярными ориентациями резонансных элементов; при формировании трехмерных решеток во втором и третьем слоях предварительно созданы одинаковые гибкие диэлектрические прямые параллелепипеды с ширинами, равными длине между соседними центрами частиц, высотами не менее размера плоских частиц; длины параллелепипедов определены размерами защищаемого объекта на одной из граней прямых диэлектрических параллелепипедов, определяющих высоту второго и третьего слоев; изготовлены двухмерные решетки из плоских омега-частиц с одинаковой перпендикулярной ориентацией разрывов по отношению к одному из ребер этих граней; при создании второго слоя грани этих гибких параллелепипедов с двухмерными решетками последовательно приклеены в горизонтальных плоскостях к противоположным граням по отношению к граням с двухмерными решетками следующего прямого диэлектрического параллелепипеда с одновременным приклеиванием перпендикулярной грани прямого диэлектрического параллелепипеда к слою поглотителя, чтобы ориентация разрывов в разорванных кольцах частиц была направлена к направлению падения волны; при создании третьего слоя гибкие диэлектрические прямые параллелепипеды точно также последовательно склеены между собой в вертикальных областях и одновременно приклеены к поверхности второго слоя.



 

Похожие патенты:

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала.

Изобретение относится к полимерным композициям, предназначенным для поглощения воздействующих излучений. Полимерная композиция содержит в качестве основы каучук низкомолекулярный диметилсилоксановый СКТН, катализатор холодного отверждения К-68, в качестве поглощающего наполнителя железо карбонильное радиотехническое Р-10, дополнительно содержит раствор высокомолекулярного каучука СКТ в жидкости полиметилсилоксановой и тетраэтоксисилане или его производных, а также полиэтиленполиамин в качестве регулятора скорости отверждения.

Изобретение относится к области защиты сухопутной и морской техники от естественного и искусственного излучения. .
Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры.

Изобретение относится к радиопоглощающему материалу. .

Изобретение относится к швейной промышленности и может использоваться при изготовлении швейных изделий. .
Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры.

Изобретение относится к радиотехнике, а более конкретно к функциональным покрытиям, обеспечивающим поглощение в СВЧ-диапазоне частот и поглощение в акустическом диапазоне частот.

Изобретение относится к классу эластичных антирадарных материалов, состав и структура которых обеспечивают эффективное поглощение электромагнитной энергии в диапазоне радиоволн, которые могут найти применение для снижения радиолокационной контрастности летательных аппаратов, а также морских и наземных объектов.
Изобретение относится к материалам для защиты от ионизирующих излучений и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды.

Изобретение относится к радиопоглощающему материалу, содержащему полимерное связующее и наполнитель, состоящий из порошкообразного карбонильного железа. При этом в наполнитель введены дискретные углеродные волокна в соотношении, мас.%: дискретные углеродные волокна 40-10, порошкообразное карбонильное железо 60-90, при следующем соотношении компонентов, мас.%: связующее 85-15, наполнитель 15-85. Также изобретение относится к поглотителю электромагнитных волн, использующему указанный материал. Использование настоящего изобретения позволяет снизить вероятность обнаружения защищаемых объектов и их распознавания за счет расширения диапазона частот от 5 до 20 ГГц поглощаемых электромагнитных волн от стационарных и мобильных радиолокаторов и снижения уровня мощности отраженного сигнала. Также уменьшается вес, толщина и стоимость изготовления. 2 н. и 1 з.п. ф-лы, 4 ил.
Изобретение относится к области радиоэлектроники, а именно к полимерным композиционным материалам, предназначенным для поглощения высокочастотной энергии в СВЧ-устройствах. Полимерный композиционный материал для поглощения высокочастотной энергии включает, мас.ч.: каучук синтетический низкомолекулярный диметилсилоксановый СКТН 15-20, каучук высокомолекулярный СКТ 3-4, этилсиликат, выбранный из этилсиликата-40 и этилсиликата-32, 2-3, полиметилсилоксан, выбранный из ПМС-50 и ПМС-200, до 3, порошок альсиферовой фракции размером частиц не более 63 мкм 75-85, катализатор холодного отверждения К-68 1,0-1,5, полиэтиленполиамин до 1,0. Описан также способ получения полимерного композиционного материала, заключающийся в перемешивании составляющих компонентов при следующей последовательности: альсиферовый порошок перемешивают со смесью низкомолекулярного диметилсилоксанового каучука СКТН, высокомолекулярного каучука СКТ и этилсиликата, где смесь при необходимости содержит полиметилсилоксановую жидкость. Вновь полученную смесь выдерживают в течение 24 часов, затем вносят катализатор или его смесь с полиэтиленполиамином. Технический результат - высокие физико-механические характеристики полимерного композиционного материала, отсутствие воздушных включений в отвержденном материале. 2 н. и 1 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к способу изготовления поглощающего покрытия, обеспечивающего поглощение в инфракрасном диапазоне длин волн для создания эталонов абсолютно черного тела в имитаторах излучения для аппаратуры дистанционного зондирования земли со стабильными характеристиками. Способ изготовления поглощающего покрытия включает формирование на пластине-носителе последовательно адгезионного слоя; полиимидного слоя с углеродными нанотрубками из раствора пиромилитового диангидрида и оксидианилина в полярном растворителе методом центрифугирования или полива с последующей сушкой. На высушенном полиимидном слое с углеродными нанотрубками формируют методом центрифугирования или полива слой из дисперсии углеродных нанотрубок в полярном растворителе: диметилформамиде или диметилацетамиде. Далее проводят сушку и термоимидизацию полиимидного слоя с углеродными нанотрубками и с углеродными нанотрубками из дисперсии, внедренными частично в растворенный приповерхностный слой полиимида. На слое из углеродных нанотрубок, внедренных и выступающих из полиимидного слоя, прошедшего термоимидизацию, формируют упрочняющий и поглощающий слой из нитрида кремния методом плазмохимического осаждения. Технический результат - создание воспроизводимого и стабильного во времени процесса изготовления покрытия с высокой поглощающей способностью инфракрасного излучения, работающего в широком диапазоне температур. 2 ил., 1 пр.
Изобретение относится к области изготовления объемных поглотителей СВЧ-энергии из высокотемпературного поглощающего материала, применяемых в высокочастотных трактах радиоэлектронной аппаратуры. Способ изготовления объемных поглотителей СВЧ-энергии состоит в формировании механической обработкой из керамических заготовок поглотителей необходимой конфигурации. Для повышения теплопроводности поглотителей и обеспечения стабильности их радиотехнических характеристик осуществляют пропитку полученных поглотителей составом, содержащим герметик Эласил 137-182, разбавленный нефрасом в соотношении 1:1, при температуре 25±10°C при давлении от 1,3 до 2,6 кПа в течение 30 минут, затем при давлении 300-400 кПа в течение 5-10 минут с последующей сушкой при температуре 25±10°C в течение 24 часов. 1 табл.

Изобретение относится к антенной технике, а именно к поглотителям электромагнитных волн, и может быть использовано при оснащении безэховых камер и экранированных помещений. Технический результат - повышение эффективности экранирования. Поглотитель электромагнитных волн для безэховых камер и экранированных помещений, содержащий шиповидный полый трудногорючий корпус из микрогофракартона, во внутренней полости которого находится радиопоглощающий заполнитель, отличающийся тем, что корпус имеет форму прямоугольной призмы, при этом соотношение образующих прямой угол сторон и толщины призмы составляет величины 6(±1):3(±0,5):1. 3 ил., 1 табл.
Заявленное изобретение относится к области электротехники, а именно к составу углеродсодержащей композиции для получения радиозащитных материалов. Композиция содержит 5-16 мас.% ультрадисперсного активного углерода со средним размером частиц 5-100 нм и удельной поверхностью 16-320 м2/г, диспергатор в виде водного раствора натриевого стекла и стабилизатор в виде насыщенного раствора лингосульфоната аммония. Дополнительно в состав композиции может быть введен высокодисперсный коллоидный графит. Используется свойство композиции поглощать электромагнитное излучение радиоволнового диапазона при ее непосредственном равномерном распределении внутри твердой матрицы строительного материала или при нанесении на поверхности радиопоглощающих конструкций и строительных материалов. Повышение радиозащитных свойств материала является техническим результатом изобретения. 1 з.п. ф-лы, 3 табл.

Изобретение относится к антенной технике, в частности к поглотителям электромагнитных волн, используемых в конструкциях антенн для оптимизации их радиотехнических характеристик, устранения резонансных явлений и уменьшения паразитных отражений от проводящих объектов, расположенных вблизи антенн. Поглотитель электромагнитных волн состоит из эпоксидно-эластомерного связующего, в котором распределен магнитный наполнитель - нанокристаллический порошок, представляющий собой частицы сплава Fe-Cu-Nb-Si-B с нанокристаллической структурой с содержанием в частицах сплава нанокристаллов соединений α-(Fe,Si) объемной плотностью (2,8÷2,9)·10-5 1/нм3, при следующем соотношение компонентов, мас.ч.: эпоксидный эластомер 100 отвердитель 10 нанокристаллический порошок 200÷700, при этом нанокристаллический порошок имеет размер частиц от 1 до 100 мкм. Технический результат - использование нового поглотителя обеспечило уменьшение коэффициента отражения в нижней и верхней части диапазона УВЧ, при удовлетворительном коэффициенте отражения в средней части диапазона, монотонность формы диаграмм направленности малогабаритной широкополосной антенны. 1 ил.

Изобретение относится к области защиты окружающей среды от электромагнитного фона. Технический результат - повышение эффективности нейтрализации электромагнитного фона. Для этого устройство содержит корпус из диэлектрика, заполненный веществом, обладающим проводимостью, в качестве которого использована биологически активная жидкость, и закрытый герметично крышкой, по меньшей мере, один генератор поляризованных фотонов, расположенный в корпусе из диэлектрика в биологически активной жидкости, и, по меньшей мере, одну трубку, установленную герметично, по меньшей мере, в одном отверстии, выполненном в крышке корпуса, причем трубка изготовлена из диэлектрического материала, имеющего положительное значение поверхностного заряда статического электричества. Один конец трубки погружен в биологически активную жидкость, а другой конец трубки выходит из корпуса и закрыт пробкой из органического материала, прозрачного для фотонов и выбранного из группы, состоящей из смол лиственных или хвойных пород деревьев, причем биологически активная жидкость частично заходит внутрь трубки. 3 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники, касается вопроса применения полимерных композитов в составе устройства для снижения радиолокационной заметности и решает задачу оптимизации конструкции по радиопоглощающим свойствам. Предлагаемое устройство состоит из трех слоев: два наружных слоя конструкции и ребра жесткости выполнены из полимерных композитов, а средний слой - из легковесного наполнителя, содержащего ребра жесткости. В ребра жесткости и во внешние несущие слои введены электропроводящие материалы с поверхностным электрическим сопротивлением 90÷1200 Ом, обеспечивающие поглощение падающих электромагнитных волн и приводящие к снижению отражения радиоволн в диапазонах СВЧ S, С, X, Ku, Ка от поверхности устройства из полимерных композитов в 3÷5 раз, а относительно металлической поверхности - в 5÷50 раз. Технический результат заключается в повышении эффективности устройства для снижения радиолокационной заметности за счет расширения частотного диапазона радиопоглощения падающего электромагнитного излучения. 1 з.п. ф-лы, 2 ил.

Заявлен ферритовый материал с малыми диэлектрическими потерями и высокими значениями остаточной магнитной индукции. Ферритовый материал получен из смеси порошков, содержащей Fe2O3, Li2CO3, MnCO3, Bi2O3, ZnO, CdO, SnO2, TiO2 при следующем соотношении компонентов, мас.%: оксид железа 71,39±0,1, карбонат лития 5,61±0,1, оксид цинка 8,58±0,1, оксид кадмия 5,41±0,1, оксид олова 3,18±0,1, оксид титана 0,69±0,03, карбонат марганца 4,84±0,1, оксид висмута 0,3±0,03. Ферритовый материал получают по обычной керамической технологии. Снижение диэлектрических потерь и повышение значения остаточной индукции в заявленном материале является техническим результатом изобретения, что позволяет его использовать при изготовлении высокоэффективных СВЧ-элементов дальнодействующих антенн. 1 табл.
Наверх