Способ получения пентаоксида ванадия


 


Владельцы патента RU 2497964:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "КОРПОРАЦИЯ ВСМПО-АВИСМА" (RU)

Изобретение относится к цветной металлургии и может быть использовано при получении пентаоксида ванадия из окситрихлорида ванадия - побочного продукта производства губчатого титана. Способ включает разложение окситрихлорида ванадия щелочным раствором с получением метаванадата натрия, загрузку твердого аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония, затем осадка метаванадата аммония, его промывку, сушку и прокаливание до получения пентаоксида ванадия. В качестве щелочного раствора используют смесь карбоната натрия с гидроксидом натрия при массовом соотношении (0,05-0,1):1, для чего в водный раствор в виде маточных растворов от промывки пульпы метаванадата натрия и промывки пульпы метаванадата аммония, последовательно загружают твердый карбонат натрия, затем раствор гидроксида натрия при массовой концентрации 100-150 г/л. В полученный щелочной раствор загружают раствор окситрихлорида ванадия до содержания рН среды, равной 7-8, с получением пульпы. Маточный раствор метаванадата натрия после фильтрации пульпы обрабатывают твердой солью аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония. Техническим результатом является повышение степени извлечения ванадия в готовый продукт до 98,5-98,8%. 8 з.п. ф-лы, 1 пр.

 

Изобретение относится к цветной металлургии и может быть использовано при получении пентаоксида ванадия из окситрихлорида ванадия - побочного продукта производства губчатого титана.

При производстве губчатого титана в процессе очистки тетрахлорида титана образуется полупродукт - технический окситрихлорид ванадия, который перерабатывают на пентаоксид ванадия различными методами (ст. Освоение технологии производства пятиокиси ванадия из технического окситрихлорида ванадия. - Яковенко Б.И., Кунгина Н.И., Перминова А.С., Ельцов Б.И., Бокман Г.Ю. - Ж.Цветная металлургия, 1976, №11, стр.29-30).

Недостатком данного способа является то, что технический окситрихлорид ванадия содержит значительное количество примесей, таких как титан, кремний, железо и др., которые затрудняют процесс перехода ванадия в готовый продукт, либо не позволяют вести процесс с достаточной производительностью, забивая коллоидными соединениями фильтры.

Известен способ получения пентаоксида ванадия (пат. РФ №2172789, опубл. 27.08.2000, бюл.24), включающий разложение окситрихлорида ванадия щелочным раствором, содержащим гидроксид натрия с добавками хлорида натрия и аммонийсодержащего неорганического соединения, с получением метаванадата аммония, который затем отделяют от маточного раствора, осадок промывают, сушат и прокаливают с получением пентаоксида ванадия. В маточные растворы, содержащие ванадий, хлориды и нитраты натрия и аммония, вводят гидроксид натрия до концентрации 100 г/л и повторно используют для разложения окситрихлорида ванадия. Это позволяет повысить производительность процесса за счет сокращения расхода промвод, необходимых для промывки, уменьшения времени промывки и сокращения потерь ванадия с промводами.

Недостатком способа является то, что степень извлечения ванадия в готовый продукт низкая и составляет 86%, что приводит к большим потерям ванадия с промводами и создает дополнительные операции доизвлечения ванадия из сточных вод, так как примесь ванадия является экологически вредным компонентом для окружающей среды.

Известен способ получения пентаоксида ванадия (пат. РФ №2175990, опубл. 20.11.2001, бюл.32), по количеству общих признаков принятый за ближайший аналог-прототип и включающий заливку окситрихлорида ванадия в щелочной раствор (2-3 н раствор карбоната натрия) до рН 8,0, обработку раствором соляной кислоты до рН 1-2, нагрев до температуры 60-100°С, выдержку 1-3 часа, нейтрализацию щелочным реагентом, например гидроксидом натрия до рН 6-8, загрузку в подготовленный раствор твердого аммонийсодержащего неорганического соединения, например хлорида и/или нитрата аммония, с получением пульпы, фильтрацию, отделение осадка метаванадата аммония от маточного раствора, промывку, сушку и прокаливание при температуре 550°С. Это позволяет снизить потери ванадия с отходами производства.

Недостатком способа является то, что степень извлечения ванадия в готовый продукт низкая и составляет 86%, что приводит к большим потерям ванадия с промводами и создает дополнительные операции доизвлечения ванадия из сточных вод, так как примесь ванадия является экологически вредным компонентом для окружающей среды.

Технический результат направлен на устранение недостатков прототипа и позволяет повысить степень извлечения ванадия в готовый продукт до 98,5-98,8 мас.%.

Технический результат достигается тем, что предложен способ получения пентаоксида ванадия, включающий разложение окситрихлорида ванадия щелочным раствором с получением метаванадата натрия, загрузку твердого аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония, перемешивание, отделение осадка метаванадата аммония от маточного раствора, его промывку, сушку и прокаливание, в котором новым является то, что, в качестве щелочного раствора используют смесь карбоната натрия с гидроксидом натрия при массовом соотношении (0,05-0,1):1, для чего в реактор заливают водный раствор, последовательно загружают в него при непрерывном перемешивании твердый карбонат натрия, затем раствор гидроксида натрия, перемешивают, в полученный щелочной раствор загружают при непрерывном перемешивании раствор окситрихлорида ванадия с получением пульпы, пульпу выдерживают, фильтруют, промывают водой, вновь фильтруют с отделением маточного раствора метаванадата натрия, который обрабатывают твердой солью аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония.

Кроме того, в качестве водного раствора используют маточные растворы от промывки пульпы метаванадата натрия и промывки пульпы метаванадата аммония.

Кроме того, в щелочной раствор загружают окситрихлорид ванадия до содержания рН среды равной 7-8.

Кроме того, скорость подачи окситрихлорида ванадия в щелочной раствор составляет 250-300 кг/час.

Кроме того, температуру пульпы при загрузке окситрихлорида ванадия поддерживают 80-90°С.

Кроме того, продолжительность процесса выдержки при загрузке окситрихлорида ванадия составляет не менее 1 часа.

Кроме того, перемешивание растворов составляет 15-30 минут.

Кроме того, температуру маточного раствора метаванадата натрия на процессе обработки аммонийсодержащими неорганическими соединениями поддерживают 55-60°С.

Кроме того, массовая концентрация гидроксида натрия в растворе в процессе разложения составляет 100-150 г/л.

Подобранная опытным путем последовательность проведения операций получения пентаоксида ванадия позволяет исключить переход примесей в готовый продукт и тем самым повысить степень извлечения ванадия в готовый продукт.

Использование в качестве щелочного раствора смеси карбоната натрия и гидроксида натрия при соотношении, равном (0,05-0,1):1, позволяет уменьшить переход в маточной раствор метаванадата натрия соединений титана и кремния, что улучшает фильтрацию пульпы, корректирует рН среды и позволяет повысить степень извлечения ванадия в готовый продукт.

Применение в качестве водного раствора маточных растворов от промывки пульпы метаванадата натрия и промывки пульпы метаванадата аммония, а также фильтрата после фильтрации метаванадата натрия и метаванадата аммония позволяет повторно извлекать ванадий из растворов и тем самым повысить степень извлечения ванадия в готовый продукт.

Подбор определенного режима проведения процесса получения пентаоксида ванадия, а именно температура пульпы при процессе разложения 80-90°С, рН среды и время перемешивания, позволяет значительно уменьшить количество примесей за счет перехода их в твердую фазу при разложении метаванадата аммония и тем самым повысить степень извлечения ванадия в готовый продукт.

Поддержание температуры маточного раствора метаванадата натрия 55-60°С в процессе обработки твердыми аммонийсодержащими неорганическими соединениями позволяет увеличить реакционную способность раствора и, как следствие, повысить степень извлечения ванадия в готовый продукт.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволило установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения пентаоксида ванадия, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию "новизна".

Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Заявленные признаки являются новыми и не вытекают явным образом для специалиста, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".

Примеры осуществления способа.

Пример 1

В реактор разложения закачивают насосом типа ТН-70 5,0 м3 маточных растворов от процесса промывки пульпы метаванадата натрия и от процесса промывки пульпы метаванадата аммония. Включают мешалку реактора разложения и при перемешивании загружают 60 кг карбоната натрия (ГОСТ 5100-85), затем в реактор заливают 800 кг гидрооксида натрия (СТО 48-949.4-2009) при массовом соотношении 0,1:1 карбоната натрия к гидроксиду натрия, перемешивают в течение 15 минут и начинают загружать технический раствор окситрихлорида ванадия (СТО 48-375.4-2006) с содержанием VOCl3 не менее 98 мас.% и массовой доле кремния не более 0,003% и по рН-метру следят за рН раствора. Окситрихлорид ванадия загружают до рН раствора, равного 7, в количестве 800 кг при скорости подачи окситрихлорида ванадия в щелочной раствор, равной 250 кг/час.

Взаимодействие технического окситрихлорида ванадия с гидроксидом натрия происходит по реакции:

VOCl3+4NaOH=NaVO3+3NaCl+2H2O

TiCl4+4NaOH=TiO(OH)2+4NaCl+H2O

В результате реакций получают пульпу в виде маточного раствора метаванадата натрия (СТО 48-349.1-2008) и диоксида титана - в виде титано-ванадиевого кека (СТО 48-386.1-2006). Полученную пульпу подвергают фильтрации на фильтре-прессе. Отделенный осадок диоксида титана, промывают горячей водой, затем гидроксидом натрия и направляют на дальнейшую переработку. А маточный раствор метаванадата натрия перед кристаллизацией нагревают до температуры 55°С, для чего в рубашку реактора подают пар, затем насосом типа ТН-70 подают в реактор на процесс кристаллизации при обработке хлористым аммонием (ГОСТ 22-73) из расчета 2,6 кг на 1 кг пентаоксида ванадия или аммиачной селитрой - нитрат аммония (ГОСТ2-85) из расчета 4,2 кг на 1 кг пентаоксида ванадия, по реакции:

NaVO3+NH4Cl=NH4VO3+NaCl

NaVO3+NH4NO3=NH3VO3+NaNO3

При перемешивании в результате реакции образуется пульпа с метаванадатом аммония, которую фильтруют на барабанном вакуум-фильтре БОН-5. Температуру пульпы при загрузке окситрихлорида ванадия поддерживают 85°С. При фильтрации одновременно осуществляется промывка осадка от водорастворимых солей артезианской водой. Полученный осадок метаванадата аммония (ТУ 6-09-517-2002) направляют в прокалочную печь, при температуре 400-660°С метаванадат аммония разлагается:

2NH4VO3=V2O5+2NH3+H2O

В результате получают готовый продукт пентаоксид ванадия (ТУ 1761-465-05785388-2006). Выход готового продукта в виде пентаоксида ванадия составляет 98,5-98,8 мас.%. Примеси в готовом продукте - пентаоксиде ванадия составляют, мас.%: железо - 0,03-0,07, кремний - 0,03-0,07, марганец - 0,01, сера - 0,005, фосфор - 0,01, хлор - 0,01, сумма калия и натрия - 0,1-0,3.

Таким образом, предложенный способ получения пентаоксида ванадия при новой последовательности действий позволяет повысить степень извлечения ванадия в готовый продукт до 98,5-98,8 мас.%. Что значительно снижает выбросы ванадия в виде отходов в окружающую среду и уменьшает ее загрязнение.

1. Способ получения пентаоксида ванадия, включающий разложение окситрихлорида ванадия щелочным раствором, получение метаванадата натрия, загрузку твердого аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония, перемешивание, отделение осадка метаванадата аммония от маточного раствора, его промывку, сушку и прокаливание с получением пентаоксида ванадия, отличающийся тем, что в качестве щелочного раствора используют раствор, полученный из смеси карбоната натрия с гидроксидом натрия при массовом соотношении (0,05-0,1):1, для чего в водный раствор последовательно загружают при непрерывном перемешивании твердый карбонат натрия, затем раствор гидроксида натрия и перемешивают, разложение окситрихлорида ванадия осуществляют путем загрузки при непрерывном перемешивании в полученный щелочной раствор раствора окситрихлорида ванадия с получением пульпы, пульпу выдерживают, фильтруют, промывают водой, вновь фильтруют с отделением маточного раствора метаванадата натрия, который обрабатывают твердым аммонийсодержащим неорганическим соединением с получением пульпы метаванадата аммония.

2. Способ по п.1, отличающийся тем, что в качестве водного раствора при получении щелочного раствора используют маточные растворы от промывки пульпы метаванадата натрия и промывки пульпы метаванадата аммония.

3. Способ по п.1, отличающийся тем, что в щелочной раствор загружают окситрихлорид ванадия до содержания рН среды равной 7-8.

4. Способ по п.1, отличающийся тем, что скорость подачи окситрихлорида ванадия в щелочной раствор составляет 250-300 кг/ч.

5. Способ по п.1, отличающийся тем, что температуру пульпы при загрузке окситрихлорида ванадия поддерживают 80-90°C.

6. Способ по п.1, отличающийся тем, что продолжительность процесса выдержки при загрузке окситрихлорида ванадия составляет не менее 1 ч.

7. Способ по п.1, отличающийся тем, что перемешивание растворов при разложении составляет 15-30 мин.

8. Способ по п.1, отличающийся тем, что температуру маточного раствора метаванадата натрия при обработке аммонийсодержащим неорганическим соединением поддерживают 55-60°C.

9. Способ по п.1, отличающийся тем, что массовая концентрация гидроксида натрия в растворе при разложении составляет 100-150 г/л.



 

Похожие патенты:

Изобретение относится к области гидрометаллургии, а именно к способу извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд. Способ включает сорбцию ценных компонентов из продуктивных растворов противотоком ионитами при регулируемом pH среды и окислительно-восстановительного потенциала Eh.

Изобретение относится к области извлечения ценных веществ - алюминия, ванадия, урана, молибдена и редкоземельных металлов из черносланцевых руд. Способ переработки черносланцевых руд включает измельчение, противоточное двухстадиальное выщелачивание раствором серной кислоты при нагревании, разделение образующихся после выщелачивания пульп на обеих стадиях фильтрованием.

Изобретение относится к гидрометаллургии и может быть использовано для извлечения редких металлов из бедных, упорных, ультрадисперсных руд. Способ переработки черносланцевых руд с извлечением редких металлов включает выщелачивание руды раствором серной кислоты с растворением редких металлов.
Изобретение относится к способам извлечения ванадия из кислых растворов и может быть использовано для экстракционного извлечения ванадия из сернокислых, солянокислых и азотнокислых растворов, образующихся при переработке различных видов ванадийсодержащего сырья и при рафинировании солей ванадия.

Изобретение относится к способу комплексной переработки углерод-кремнеземистых черносланцевых руд, содержащих ванадий, уран, молибден, редкоземельные элементы (РЗЭ).

Изобретение относится к области экстракции оксида ванадия. .

Изобретение относится к гидрометаллургической переработке сырья и может быть использовано при переработке ванадиевого шлака. .

Изобретение относится к способу переработки ванадийсодержащего сырья, а именно продукта пирометаллургического обогащения ванадийсодержащих конвертерных шлаков и шламов ферросплавного производства.

Изобретение относится к способу вскрытия шеелитовых концентратов растворами. Способ включает предварительную механообработку исходного сырья и последующую обработку активированного материала раствором соды Na2CO3.
Изобретение относится к металлургии редких металлов, в частности молибдена, и может быть использовано для переработки молибденитовых концентратов с получением соединений молибдена.

Изобретение относится к области неорганической химии, а именно к усовершенствованному способу переработки вольфрамитового концентрата. .

Изобретение относится к способу очистки железосодержащего материала от мышьяка и фосфора, и может быть использовано для повышения содержания железа в железосодержащем материале и удаления из него нежелательных примесей, прежде всего ванадия.

Изобретение относится к способу очистки железной руды от мышьяка и фосфора. .
Изобретение относится к области получения элементного мышьяка, который используется в металлургии для легирования сплавов и придания им специфических свойств, в электронике - для изготовления полупроводников со специальными свойствами.

Изобретение относится к способу комплексной переработки необогащенных сподуменовых руд с получением литиевых продуктов и цементов. .

Изобретение относится к способу извлечения золота из твердого золотосодержащего органического сырья. .

Изобретение относится к гидрометаллургии, в частности к способу извлечения ванадия. .
Изобретение относится к способу извлечения галлия из отходов электролитического рафинирования алюминия. .
Изобретение относится к способу получения наночастиц оксида переходного металла, покрытых аморфным углеродом. .
Наверх