Способ получения катализатора

Настоящее изобретение относится к технологии получения катализаторов, содержащих галогены; катализаторам, содержащим фториды, а именно к получению катализатора фторида цезия CsF, нанесенного на активированные угли. Описан способ получения катализатора, представляющего собой фторид цезия, нанесенный на активированный уголь, включающий пропитку активированного угля водным раствором фторида цезия и сушку, при этом пропитанный катализатор сушат в течение 8-12 часов при температуре 320-350°C, при чередовании операций продувания через его слой сухого азота в течение 1-1,5 часа и вакуумирования при 1-5 мм рт.ст. в течение 10 минут, после чего катализатор охлаждают в токе сухого азота. Технический эффект - высокая эффективность полученного катализатора при относительно низких температурах, сохранение эксплуатационных свойств в течение длительного времени >800 часов, позволяющие проводить процессы в непрерывном режиме, а также относительная легкость регенерации. 4 табл., 1 ил., 3 пр.

 

Настоящее изобретение относится к технологии получения катализаторов, содержащих галогены; катализаторам, содержащим фториды, а именно к получению катализатора фторида цезия CsF, нанесенного на активированные угли.

Фториды цезия CsF - известные катализаторы, используемые для изомеризации и алкилирования различных органических, в том числе и фторорганических соединений. Эти катализаторы эффективны в процессах изомеризации перфорированных эпоксидов в фторангидриды перфторированных кислот, являющихся исходными соединениями для получения мономеров, в том числе и фторангидридов, являющихся исходными соединениями, использующимися при получении сульфомономеров.

Известно применение фторида цезия (CsF), нанесенного на уголь марки АГ-3, для изомеризации окиси гексафторпропена во фторангидрид перфторпропионовой кислоты [а.с. СССР 618936, м.кл.: C07C 58/36, 51/01, опубл. 02.11.1976 г.]. Процесс ведут при температуре 160-200°C, весовое соотношение катализатор: активированный уголь 0,1-1:1. Катализатор предварительно просушивают 2 часа в токе воздуха при температуре 200°C. Активность катализатора сохраняется в течении 200 часов работы. Выход фторангидрида перфторпропионовой кислоты составляет от 96 до 98,5%.

В работе [пат. США №4238416, 1980, CA] показана низкая каталитическая активность фторидов цезия (CsF), нанесенных на активированный уголь. При приготовлении такого катализатора пропитанный фторидом цезия (5-7% вес.) уголь, сушили при температуре 200°C.

Наиболее близким к заявляемому является катализатор, применяемый в способе [а.с. СССР 569554, мкл.2 C07C 49/16, опубл. 27.09.1977 г.] получения перфторэтилизопропилкетона реакцией между окисью гексафторпропилена и гексафторпропиленом в среде ацетонитрила, где в качестве катализатора использовался фторид щелочного металла (фторида цезия), при этом процесс длился в течение 6 ч при температуре 20-25°C и атмосферном давлении. Выход перфторэтилизопропилкетона составил 31%. Взаимодействие осуществляют по схеме:

Недостатком этого метода является низкий выход целевого продукта. При повторении этого опыта был получен выход 30%.

Недостатками упомянутых катализаторов является то, что в их составе остаточное содержание в них воды в виде комплекса CsF*H2O, что снижает каталитическую активность.

Целью изобретения является создание катализатора, эффективного при низких температурах, обеспечивающего конверсию ≥99% и сохраняющего активность до 800 часов.

Сущность изобретения состоит в том, что разработан способ получения катализатора, представляющего собой фторид цезия CsF, нанесенный на активированные угли, включающий пропитку активированных углей водным раствором фторида цезия и сушку, отличающийся тем, что пропитанный катализатор сушат в течение 8-12 часов при температуре 320-350°C, при чередовании операций продувания через его слой сухого азота в течение 1-1,5 часа и вакуумирования при 1-5 мм рт.ст. в течение 10 минут, после чего катализатор охлаждают в токе сухого азота.

После того как катализатор отработал полный цикл, он может быть регененирован. Процесс регенерации заключается в продувке катализатора азотом и вакуумированием при температуре 320-350°C. В результате регенерации катализатор полностью восстанавливает свою каталитическую активность, что связано с разрушением комплексов CsF*H2O и CsF*HF, образующихся в процессе работы катализатора.

Полученный катализатор эффективен в процессах синтеза фторангидрида перфторпропионовой кислоты изомеризацией оксида пропилена, его применение способствует снижению температуры синтеза до 35-60°C.

Применение катализатора, приготовленного разработанным способом, позволяет также осуществить получение перфторэтилизопропилкетона из оксида гексафторпропена и гексафторпропена при температуре 65-110°C, давлении 0-0,25 МПа и соотношении 0,95-1:0,95-1 моль.

Катализатор готовят следующим образом: активированный уголь (БАУ-2, АГ-3, СКТ-6) заливают водным раствором CsF (3-50% вес.) выше уровня угля на 1-5 мм и затем, при перемешивании, отгоняют воду, после чего сушат пропитанный уголь при 200-220°C в сушильном шкафу, также при периодическом перемешивании. Через 12-18 часов катализатор загружают в реактор синтеза и при температуре 320-350°C, последовательно продувают через его слой сухой азот в течение 1-1,5 часа, затем вакуумируют при 1-5 мм рт.ст. в течение 10 минут. Эти операции повторяют несколько раз в течение 8-12 часов, после чего катализатор охлаждают в токе сухого азота. При этом достигается полное удаление воды из угля и CsF (при сушке с температурой 200°C в системе остается комплекс CsF*H2O, который при изомеризации окиси гексафторпропена во фторангидрид перфторпропионовой кислоты превращается в комплекс CsF*HF, не обладающий каталитической активностью:

Кроме того, чередование продувки катализатора азотом и вакуумирование при 320-350°C способствует диспергированию кристаллов CsF до размеров менее 100 нанометров и выносит его на поверхность активных центров активированного угля, что существенно увеличивает его каталитическую эффективность. В таблице 1 приведены результаты определения состава образцов, проведенных методом электронно-зондового микроанализа.

Образцы:

№1 - Активированный уголь + CsF, приготовленный при 200°C.

№2 - Активированный уголь + CsF, приготовленный при 350°C.

Результаты анализа представлены в таблице 1, а на Фигуре представлены микрофотографии образцов катализаторов, приготовленных по известному способу (№1) и по изобретению (образец №2). Как видно из микрофотографии образцов катализатора, в образце №2 кристаллы CsF оседают на поверхности катализатора, а не внутри, как в образце №1.

Полученный катализатор обладает высокой каталитической активностью и позволяет проводить изомеризацию окиси гексафторпропена во фторангидрид перфторпропионовой кислоты даже при температуре 35-60°C с конверсией ≥99%:

,

Применение нового катализатора в процессе получения перфторэтилизопропилкетона (ПФЭИК) взаимодействием окиси гексафторпропена с гексафторпропеном позволяет проводить процесс при более низкой температуре, в пределах 70-120°C и с выходом 94-95%:

ПРИМЕР 1

Опыт 1-12. В трубчатый реактор из стали 12Х18Н10Т длиной 500 мм, диаметром 38 мм и снабженный электрообогревом и внутренним теплообменником, диаметром 20 мм и длиной 470 мм, охлаждаемый проточной водой, заполняют предварительно подготовленный катализатор, а именно активированный угль марок БАУ-2, АГ-3 или СКТ-6 (50-58 г), пропитанный фтористым цезием (1,5-29 г) с весовым соотношением 1:0,03-1:0,5. Раствор фтористого цезия заполняется выше уровня угля на 1-5 мм и затем, при перемешивании отгоняется вода, после чего сушится пропитанный уголь при 200-220°C в сушильном шкафу также при периодическом перемешивании. Через 12-18 часов катализатор загружают в реактор синтеза и при температуре 320-350°C последовательно продувают через слой угля сухой азот в течение 1-1,5 часа, затем вакуумируют при 1-5 мм рт.ст. в течение 10 минут. Эти операции повторяют 8-12 часов, после чего катализатор охлаждают в токе азота. После охлаждения реактора до рабочей температуры 35-60°C подают окись гексафторпропена до избыточного давления 0,1 МПа для активации катализатора. Через час проводят подачу в реактор окиси гексафторпропена со скоростью 30-200 см3/мин при давлении 0-0,25 МПа. Основные результаты приведены в таблице 2.

Опыт 13 (сопоставительный)

Подобным образом (опыт 1-12) осуществляют реакцию, используя в качестве катализатора CsF, нанесенный на активированный уголь АГ-3 в весовом соотношении 1:1.

ПРИМЕР 2

Опыт 14-22. В трубчатый реактор из стали 12Х18Н10Т длиной 1500 мм, диаметром 150 мм и снабженный электрообогревом и внутренним теплообменником, диаметром 57 мм и длиной 1430 мм, охлаждаемый проточной водой, заполненный активированным углем БАУ-2, содержащий 5% вес. CsF и подготавливают к работе по описанной выше методике. Окись гексафторпропена подается со скоростью 2-4 кг/час при температуре 35-60°C. В таблице 3 приведены результаты эффективности катализатора в зависимости от времени эксплуатации и показана эффективность регенерации.

ПРИМЕР 3

Опыт 23-33. Трубчатые реактора из стали 12Х18Н10Т длиной 500 мм, диаметром 38 мм, снабженный электрообогревом и внутренним теплообменником, диаметром 20 мм и длиной 470 мм, охлаждаемый проточной водой, нагретым до температуры 35-60°C и реактор длиной 500 мм и диаметром 50 мм, нагретым до температуры 65-110°C заполняют активированным углем БАУ-2, содержащим 5-7% вес. CsF. Приготовленная смесь, состоящая из окиси гексафторпропена и гексафторпропена в мольном соотношении 1:1-1,03 подается со скоростью 60-200 см3/мин при давлении 0-0,25 МПа. Продукт взаимодействия собирается в ловушку, охлаждаемую до -20°C. Результаты опытов приведены в таблице 4.

К преимуществам предлагаемого катализатора относится его высокая эффективность при относительно низких температурах, сохранение эксплуатационных свойств в течение длительного времени ≥800 часов, позволяющие проводить процессы в непрерывном режиме, а также относительная легкость регенерации. Чередование продувки катализатора азотом и вакуумирование при 320-350°C способствует диспергированию кристаллов CsF до размеров менее 100 нанометров и выносит их на поверхность активных центров активированного угля, что существенно увеличивает его каталитическую эффективность.

Как видно из приведенных в таблицах опытов, наиболее успешным катализатором является CsF, нанесенный на активированный уголь (БАУ-2, АГ-3, СКТ-6), приготовленный при температуре 320-350°C при вакууме и продувкой азотом, который позволяет проводить изомеризацию окиси гексафторпропена во фторангидрид перфторпропионовой кислоты даже при температуре 35-60°C с конверсией ≥99%, а также получение ПФЭИК при температуре 65-110°C с выходом до 95%. Полученный фторангидрид перфторпропионовой кислоты используют в синтезе сульфомономеров.

Разработанный катализатор сохраняет каталитическую активность в течение 800 часов работы.

Таблица 1
Показания рентгеновского микроанализатора
S Cl K Ca Cs F Cs/F Формула
1 0,2 0,05 0,3 0,7 5,2 1,5 3,5 CsF*HF
2 0,1 - 0,4 0,5 6,3 0,9 7,0 CsF
Таблица 2
Изомеризация окиси гексафторпропена на катализаторе CsF/активированный уголь
№ опыта Марка активир. угля CsF, % вес. Т, °C Конверсия окиси гексафторпропена Выход фторангидрида
1 БАУ-2 2 35 76 76
АГ-3 2 35 75,8 75,7
СКТ-6 2 35 76,5 76,3
2 БАУ-2 3 35 95,3 95,3
АГ-3 3 35 94,8 94,8
СКТ-6 3 35 95,5 95,5
3 БАУ-2 3 45 100 100
АГ-3 3 45 100 100
СКТ-6 3 45 100 100
4 БАУ-2 5 45 100 100
АГ-3 5 45 100 100
СКТ-6 5 45 100 100
5 БАУ-2 5 60 100 100
АГ-3 5 60 100 100
СКТ-6 5 60 100 100
6 БАУ-2 5 75 100 98,5
АГ-3 5 75 100 98,3
СКТ-6 5 75 100 98,6
7 БАУ-2 5 100 100 92
8 БАУ-2 10 60 100 100
9 БАУ-2 15 60 100 100
10 БАУ-2 20 60 100 100
11 БАУ-2 30-50 60 100 99
12 СКТ-6 50 160 100 45
13 АГ-3 100 60 22 10
АГ-3 100 100 65 18
АГ-3 100 160 98 32
Таблица 3
Конверсия окиси гексафторпропена на катализаторе - (5% вес.) CsF/активированный уголь БАУ-2, в зависимости от времени работы
№ опыта Время процесса, час Конверсия окиси гексафторпропена во фторангидрид перфторпропионовой кислоты
14 100 100
15 300 100
16 700 100
17 800 97,1
18 900 87,3
19 1000 71,2
После регенерации катализатора
20 100 100
21 400 100
22 750 99
Таблица 4
Синтез перфторэтилизопропилкетона на катализаторе CsF (5-7% вес), нанесенном на активированный уголь БАУ-2
№ опыта Температура процесса, °C Примеси, % масс. Содержание ПФЭИК, % масс. Выход ПФЭИК, % масс.
1-й реактор 2-й реактор
23 35 65 3,5 96,5 94,5
24 50 65 2,5 97,5 95
25 60 65 2,5 97,5 95
26 60 80 2,49 97,51 95
27 60 90 2,51 9,49 95
28 80 65 6 94 92,8
29 100 80 7,9 92,1 90,4
30 125 80 10,3 89,7 88,1
31 60 90 2,52 97,48 95
32 60 110 2,54 97,46 94,49
33 60 125 2,75 97,25 94,38

Способ получения катализатора, представляющего собой фторид цезия, нанесенный на активированные угли, включающий пропитку активированных углей водным раствором фторида цезия и сушку, отличающийся тем, что пропитанный катализатор сушат в течение 8-12 ч при температуре 320-350°C, при чередовании операций продувания через его слой сухого азота в течение 1-1,5 ч и вакуумирования при 1-5 мм рт.ст. в течение 10 мин, после чего катализатор охлаждают в токе сухого азота.



 

Похожие патенты:
Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы.

Изобретение относится к способам изготовления каталитически формованных изделий и их использованию. Описан способ изготовления каталитически активных геометрических формованных изделий К, содержащих в качестве активной массы многоэлементный оксид I общей стехиометрии (I): [ B i a Z b 1 O x ] p [ B i c M o 1 2 F e d Z e 2 Z f 3 Z g 4 Z h 5 Z i 6 O y ] 1   ( I ) , согласно которой Z1 означает вольфрам или вольфрам и молибден, при условии, что количество вольфрама составляет по меньшей мере 10% мол.

Изобретение относится к способам изготовления каталитических формованных изделий и их использованию. Описан способ изготовления каталитически активных геометрических формованных изделий К, содержащих в качестве активной массы многоэлементный оксид I общей стехиометрии (I): [Bi1WbOx]a[Mo12Z1 cZ2 dFeeZ3 fZ4gZ5 hOy]1 (I), в которой Z1 означает элемент или несколько элементов, выбранных из группы, включающей никель и кобальт, Z2 означает элемент или несколько элементов, выбранных из группы, включающей щелочные металлы, щелочноземельные металлы и таллий, Z3 означает элемент или несколько элементов, выбранных из группы, включающей цинк, фосфор, мышьяк, бор, сурьму, олово, церий, ванадий, хром и висмут, Z4 означает элемент или несколько элементов, выбранных из группы, включающей кремний, алюминий, титан, вольфрам и цирконий, Z5 означает элемент или несколько элементов, выбранных из группы, включающей медь, серебро, золото, иттрий, лантан и лантаноиды, а означает число от 0,1 до 3, b означает число от 0,1 до 10, с означает число от 1 до 10, d означает число от 0,01 до 2, е означает число от 0,01 до 5, f означает число от 0 до 5, g означает число от 0 до 10, h означает число от 0 до 1, и x, y соответственно означают числа, которые определяются валентностью и количеством отличающихся от кислорода атомов в формуле (I), причем формируют тонкодисперсный смешанный оксид Bi1WbOx в виде исходной массы А1, диаметр частиц которой d 50 A 1 удовлетворяет условию 1 мкм≤ d 50 A 1 ≤10 мкм, используя источники отличающихся от кислорода элементов составной части T=[Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 hOy]1 многоэлементного оксида I, в водной среде формируют однородную водную смесь М, причем каждый из используемых источников в процессе формирования водной смеси М проходит через степень дисперсности Q, которой соответствует диаметр частиц d 90 Q ≤5 мкм, и водная смесь М содержит молибден, Z1, Z2, железо, Z3, Z4 и Z5 в стехиометрии (I*): Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 h (I*), из водной смеси М путем сушки и регулирования степени дисперсности формируют тонкодисперсную исходную массу А2, диаметр частиц d 90 A 2 которой удовлетворяет условию 200 мкм≥ d 90 A 2 ≥20 мкм, исходную массу А1 смешивают с исходной массой А2 или смешивают друг с другом исходную массу А1, исходную массу А2 и тонкодисперсное вспомогательное средство для формования, получая тонкодисперсную исходную массу A3, которая содержит вводимые в нее через исходные массы А1 и А2, отличающиеся от кислорода элементы многоэлементного оксида I в стехиометрии (I**): [Bi1Wb]a[Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 h]1 (I**), используя тонкодисперсную исходную массу A3, формуют геометрические формованные изделия V и формованные изделия V подвергают термической обработке при повышенной температуре, получая каталитически активные формованные изделия К, причем произведение F : ( d 5 0 A 1 ) 0 , 7 ⋅ ( d 9 0 A 2 ) 1 , 5 ⋅ ( a − 1 ) составляет ≥820.

Изобретение относится к способам получения катализаторов. Описан способ получения нанесенного катализатора гидропереработки тяжелых нефтяных фракций, состоящего из углеродного носителя с размерами частиц 10-100 нм и карбида молибдена, включающий пропитку углеродного носителя раствором соли молибдена, сушку и твердофазную карбидизацию в инертной атмосфере, причем в качестве носителя используют углеродный материал глобулярной структуры, а твердофазную карбидизацию проводят методом механохимической активации в аппарате механического или гидродинамического действия, предпочтительно в планетарной центробежной мельнице, при комнатной температуре в течение 30-60 минут и ускорении мелющих тел не менее 1000 м/с2.

Настоящее изобретение относится к области химии кетонов, конкретно, к способу приготовления катализатора для получения 3-ацетилгептан-2,6-диона и к способу получения 3-ацетилгептан-2,6-диона с использованием полученного катализатора.

Изобретение относится к технологии переработки углеводородного сырья, в частности к способу получения катализатора для процесса получения синтез-газа из газообразного углеводородного сырья, например метана, природного газа или попутных нефтяных газов.

Изобретение относится к производству ионитных формованных катализаторов. Описан ионитный формованный катализатор органического синтеза, содержащий смесь сополимеров с макропористой и гелевой структурой сульфированного сополимера стирола и дивинилбензола, и термопластичный связующий компонент-полипропилен, причем массовое соотношение гелевой и макропористой составляющих выбрано равным (3.7÷14.0):1 соответственно в расчете на сухой катализатор, количество связующего компонента составляет 20-30 мас.% в расчете на сухой катализатор, исходные компоненты взяты с остаточной влажностью не более 10 мас.% и фракционным составом не менее 95% фракции частиц с размером в области 50-200 мкм.

Изобретение относится к цеолитовым структурам. Описаны цеолитовые вторичные структуры, полученные способом, включающим получение цеолитовых первичных частиц, нагревание цеолитовых первичных частиц до выше около 800°С при средней скорости по меньшей мере около 10°С в минуту под давлением по меньшей мере 5,0 МПа, с образованием цеолитовой вторичной структуры, имеющей предел прочности при растяжении по меньшей мере около 0,40 МПа.

Изобретение относится к катализаторам получения алифатических углеводородов из оксида углерода и водорода и их использованию. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные каталитически активные частицы металлического кобальта или железа, причем он получен путем пиролиза макромолекул полиакрилонитрила (ПАН) в присутствии солей железа или кобальта в инертной атмосфере под действием ИК-излучения при температуре 300-700°C после предварительного отжига на воздухе.

Изобретение относится к области каталитической очистки воздуха от кислородсодержащих примесей, таких как озон, и может быть использовано, в частности, для удаления озона из воздуха.

Настоящее изобретение относится к катализаторам производства метилмеркаптана из оксидов углерода. Описан нанесенный катализатор для получения метилмеркаптана из оксида углерода, включающий: А) оксидные соединения, содержащие Мо и содержащие К, причем Мо и К могут быть составляющими одного соединения; Б) активное оксидное соединение АxОy, где А означает Re, a x и у представляют собой целые числа от 1 до 7.

Изобретение относится к области катализа. Описан катализатор гидроочистки нефтяных фракций, в котором в качестве носителя используется смесь оксида алюминия и борофосфата переменного состава, образующегося на стадии прокаливания носителя из H3BO3 и H3PO4, при следующем содержании компонентов, % мас: фосфорно-молибденовый гетерополикомплекс, P·[(MoO3)12] - 14,3-27,5; оксид кобальта CoO - 3,2-8,5; оксид алюминия - 56,5-81,6; борофосфат - 0,9-7,5.

Изобретение относится к области катализа. Описан катализатор гидроочистки масляных фракций и рафинатов селективной очистки, характеризующийся следующим соотношением компонентов, % мас.: оксид молибдена (MOo3) 12,0-20,0, оксид вольфрама (WO3) 1,0-6,0, оксид никеля или оксид кобальта (NiO или CoO) 4,0-6,0, оксид фосфора (P2O5) 0,5-0,9, оксид цинка (ZnO) 0,2-6,0, оксид алюминия 61,1-82,3.
Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы.

Изобретение относится к способам получения катализаторов. Описан способ получения нанесенного катализатора гидропереработки тяжелых нефтяных фракций, состоящего из углеродного носителя с размерами частиц 10-100 нм и карбида молибдена, включающий пропитку углеродного носителя раствором соли молибдена, сушку и твердофазную карбидизацию в инертной атмосфере, причем в качестве носителя используют углеродный материал глобулярной структуры, а твердофазную карбидизацию проводят методом механохимической активации в аппарате механического или гидродинамического действия, предпочтительно в планетарной центробежной мельнице, при комнатной температуре в течение 30-60 минут и ускорении мелющих тел не менее 1000 м/с2.

Изобретение относится к катализаторам сжигания водорода. Описан катализатор сжигания водорода, включающий каталитически активный металл, нанесенный на носитель катализатора, образованный неорганическим оксидом, при этом носитель включает органический силан по меньшей мере с одной алкильной группой из трех или менее атомов углерода, путем замещения присоединенной к концу каждой из определенной части или ко всем гидроксильным группам на поверхности носителя; и каталитически активный металл нанесен на носитель катализатора, включающий присоединенный к нему органический силан.

Изобретение относится к катализаторам. Описаны способы получения кобальтового катализатора синтеза Фишера-Тропша, включающие приготовление гранулированного носителя из исходного сырья - оксидов металлов III и IV групп Периодической таблицы Д.И.

Изобретение относится к катализаторам Фишера-Тропша. Описан способ получения катализатора синтеза Фишера-Тропша, включающий прокаливание сырья: нитрата, оксонитрата, гидроксид или оксогидроксид алюминия, циркония, кремния или титана при температуре 400-800°С с измельчением частиц до размеров не выше 0,5 мм, гранулирование, прокаливание гранул при температуре 400-800°С, пропитывание раствором соединений кобальта в количестве от 20 до 30 мас.% и промоторов, выбранных из группы: Re, Ru, с последующим прокаливанием при температуре 270-450°С, последующее измельчение гранул до размеров частиц не выше 0,5 мм, смешивание с цеолитом, выбранным из группы: ZSM-5, Y, β, содержание которого составляет от 30 до 70 мас.% от массы готового катализатора, гранулирование полученной смеси вместе с бемитом, масса которого составляет от 10 до 20% от массы смеси, и прокаливание при температуре 400-600°С, ионный обмен гранул с растворимыми соединениями палладия или Fe, Co, Ni, при их содержании 0,5-8,0 мас.% от массы готового катализатора, в суспензии гранул и раствора указанных соединений металлов при температуре 60-80°С в течение 1-3 часов, высушивание суспензии при температуре 80-150°С и прокаливание остатка при температуре 300-500°С, активирование катализатора водородом при 250-500°С в реакторе синтеза Фишера-Тропша с неподвижным слоем катализатора при пропускании водорода с объемной скоростью 3000 ч-1 при атмосферном давлении.
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола.

Настоящее изобретение относится к катализатору окисления ртути (варианты) и способу его приготовления (варианты). Описан катализатор окисления ртути в отходящем газе до водорастворимого соединения ртути, предотвращающий улетучивание МоО3, который содержит: TiO3 в качестве носителя; V2O5 и МоО3 в качестве активных компонентов, нанесенных на носитель, и по меньшей мере один из элементов, выбранных из группы, состоящей из W, Cu, Со, Ni, Zn и их соединений, в качестве компонента, предотвращающего улетучивание МоО3, нанесенного на носитель.

Изобретение относится к способу получения адамантана (трицикло[3.3.1.13,7]декана) осуществлением реакции изомеризации в две стадии с использованием эндо-тетрагидродициклопентадиена (трицикло[5.2.1.02,6]декана) или эндо-тетрагидродициклопентадиена (трицикло[5.2.1.02,6]декана) и экзо-тетрагидродициклопентадиена (трицикло[5.2.1.02,6]декана) в качестве исходного вещества.
Наверх