Способ градуировки и поверки измерительных преобразователей больших постоянных токов

Изобретение относится к области электрических измерений, в частности к измерениям больших постоянных токов, более конкретно к способам поверки и градуировки измерителей больших постоянных токов, в частности при поверке и градуировке волоконно-оптических датчиков тока - ВОДТ, применяемых в химической и металлургической промышленности. Техническим результатом изобретения выступает повышение точности градуировки измерительных преобразователей больших постоянных токов за счет снижения методических и инструментальных погрешностей. Технический результат достигается благодаря тому, что способ включает следующую последовательность действий: при градуировке измерительный элемент в виде замкнутого контура (петли) оптического волокна пропускают через измерительные катушки с заданным числом витков, на которые подают импульсы тока от стабильного источника постоянного тока с возможностью регулировки амплитуды импульсов тока по результатам измерения падения напряжения на эталонном шунте, включенном последовательно с измерительными катушками и электронным ключом, а градуировку измерительных преобразователей производят по результатам сравнения величины стабильного постоянного тока в цепи с измерительными катушками с показанием величины тока поверяемого (градуируемого) измерительного преобразователя. 1 ил.

 

Изобретение относится к области электрических измерений, в частности к измерениям больших постоянных токов, используемых в химической и металлургической промышленности, более конкретно к способам поверки и градуировки датчиков силы тока.

Известен способ градуировки на основе расчета магнитной индукции в месте установки измерительного элемента (ИЭ) (Пат. РФ №2119169. Опубл. 20.09.98, бюл. №26, аналог). В данном способе количество измерительных элементов выбирают равным n, причем число n - четное, но не кратное четырем, и размещают их при градуировке равномерно вокруг пакета шин по окружности, а расчет для каждого элемента проводят для какого-либо выбранного значения расчетного измеряемого тока в предположении, что этот ток протекает по линейному проводнику, на основании чего определяют коэффициент пропорциональности между суммарной расчетной индукцией n элементов и расчетным током, а коэффициент преобразования любого элемента находят как произведение коэффициента пропорциональности и частного отделения отклика этого элемента к сумме откликов всех n элементов, причем последние две величины находят путем измерения при протекании неизвестного тока по пакету шин. Причем, при необходимости обеспечить погрешность поверки элементов порядка 0,1% радиус окружности расположения измерительных элементов выбирают из условия, чтобы он был равен или превышал длину большей стороны пакета шин, а количество измерительных элементов n выбирают равным 10, при погрешности же проверки элементов порядка 0,5% число n выбирают равным 6 при тех же размерах окружности расположения элементов.

Недостатками аналога являются значительные погрешности градуировки которые обусловлены: - отклонениями в установке элементов от окружности, которую выбирают из условия «чтобы радиус был равен или превышал длину большей стороны пакета шип»;

- неидентичностью характеристик измерительных элементов и изменениями характеристик ИЭ (датчиков Холла) во времени;

- некоторой неопределенностью в расчетах поскольку - «расчет для каждого элемента проводят для какого-либо выбранного значения расчетного измеряемого тока в предположении, что этот ток протекает по линейному проводнику»

Известен «СПОСОБ ГРАДУИРОВКИ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ БОЛЬШИХ ПОСТОЯННЫХ ТОКОВ» (Паи. РФ №2226699. Опубл. 10.04.2004, прототип). Для реализации прототипа число ИЭ n выбирают из ряда: n=7+4m, где m=0, 1, 2, ….

а, для снижения методической погрешности поверки до 0,01% число n выбирают равным 7, при обеспечении погрешности ниже 0,01% число n выбирают равным 11, причем диаметр окружности расположения ИЭ выбирают из условия, чтобы он не менее чем в 1,6 раз превышал длину большей стороны пакета шин.

К недостатками прототипа следует отнести зависимость погрешности градуировки от отклонений в установке элементов от заданной окружности, разбросом параметров измерительных элементов и их зависимостью от параметров окружающей среды и времени.

Задачей предлагаемого технического решения является устранение отмеченных недостатков, а именно повысить точность градуировки измерительных преобразователей больших постоянных токов за счет снижения методических и инструментальных погрешностей.

Для решения поставленной задачи в способ градуировки и поверки измерительных преобразователей больших постоянных токов включающий: установку измерительного элемента (ИЭ) около пакета шин и отдельной поверке этого элемента с помощью источника однородного магнитного поля, дополнительно используют ИЭ в виде замкнутого контура (петли) оптического волокна который пропускают через измерительные катушки с заданным числом витков, на измерительные катушки подают импульсы тока от стабильного источника постоянного тока с возможностью регулировки амплитуды импульсов тока, по результатам измерения падения напряжения на эталонном шунте, включенном последовательно в электрическую цепь с измерительными катушками. Градуировку измерительных преобразователей производят по результатам сравнения величины стабильного постоянного тока в цепи с измерительными катушками с показанием поверяемого (градуируемого) измерителя силы тока.

Существенным отличием является то, что предлагаемом техническом решении используют ИЭ в виде замкнутого контура (петли) оптического волокна который пропускают через измерительные катушки с заданным числом витков, на измерительные катушки подают импульсы тока от стабильного источника постоянного тока с возможностью регулировки амплитуды импульсов тока по результатам измерения падения напряжения на эталонном шунте, включенном последовательно с измерительными катушками. Данное решение позволяет не только с высокой точностью градуировать измерители тока с первичным датчиком-преобразователем в виде оптоволоконной петли, но и измерители тока с датчиками Холла или пояса Роговского.

Вторым существенным отличием является то, что градуировку измерительных преобразователей производят по результатам сравнения величины стабильного постоянного тока в цепи с измерительными катушками с показанием поверяемого (градуируемого) измерителя силы тока. Т.е. градуировку производят путем сравнения показаний поверяемого измерителя тока с величиной стабильного тока, установленной с погрешностью не превышающей 10-4-10-5 от заданной величины.

На фиг.1 изображена функциональная схема реализации способа градуировки и поверки измерительных преобразователей больших постоянных токов (волоконно-оптические датчики тока - ВОДТ), где приняты следующие обозначения: измерительная катушка - 1, намотана в виде соленоида; оптоволоконный кабель - 2, один из концов которого свернут в контур оптического волокна - 3; блок питания - 4, включен в электрическую цепь из последовательно соединенных измерительной катушки (1), электронного ключа 5 и шунта амперметра - 6; измерительный блок - 7, измеритель постоянного тока в диапазоне 25-300 кА (волоконно-оптический датчик тока); поляризационная пластинка 8.

Принцип действия устройства реализующего способ градуировки и поверки измерительных преобразователей больших постоянных токов основан на сравнении величины стабильного постоянного тока, установленного с помощью блока питания (4) и измеренного амперметром (5) с показанием поверяемого волоконно-оптического датчика тока (ВОДТ).

Как видно из фиг.1, устройство состоит из измерительной катушки (1) с точно заданным числом витков (ампервитков), источника стабильного тока (4), электронного ключа (5) и амперметра (6) для однократной подачи импульса тока в катушку (1). По оси измерительной катушки проложено оптоволокно (2). Один конец оптоволокна (2) подключен к измерительному блоку (7), а второй свернут в виде замкнутого измерительного контура (3), образуя петлю за счет стыковки второго конца волокна (2) (скол) с поляризационной пластинкой (8).

Устройство работает следующим образом: С помощью источника стабильного тока (4) и амперметра устанавливают ток в цепи катушек, согласно равенства

I а м п = I р а б N ,

где: Iамп - показания амперметра; Iраб - значение тока из рабочего диапазона ВОДТ, N - общее количество витков катушки (1). Одновременно снимают показания тока Iизм с измерительного блока (7). Далее производят расчет масштабного коэффициента из выражения K м а с ш = I а м п I и з м , для каждого из 10 значений тока рабочего диапазона ВОДТ: K м а с ш 1 , K м а с ш 2 , .. K м а с ш 10 . На основе полученных результатов измерений, производят расчет среднего значения масштабного коэффициента по формуле K = i = 1 10 K м а с ш i 10 .

Конструктивный размер соленоида и диаметр провода, выбраны с учетом минимума сопротивления, при максимуме числа витков измерительной катушки.

Изобретение может быть использовано, для поверки и калибровки измерительных преобразователей больших постоянных токов, более конкретно для ВОДТ и др.

Способ градуировки и поверки измерительных преобразователей больших постоянных токов, включающий: установку измерительного элемента (ИЭ) около пакета шин и отдельную поверку этого элемента с помощью источника однородного магнитного поля, отличающийся тем, что измерительный элемент в виде замкнутого контура (петли) оптического волокна пропускают через измерительные катушки с заданным числом витков, на которые подают импульсы тока от стабильного источника постоянного тока с возможностью регулировки амплитуды импульсов тока по результатам измерения падения напряжения на эталонном шунте, включенном последовательно с измерительными катушками и электронным ключом, а градуировку измерительных преобразователей производят по результатам сравнения величины стабильного постоянного тока в цепи с измерительными катушками с показанием величины тока поверяемого (градуируемого) измерительного преобразователя.



 

Похожие патенты:

Изобретение относится к области электротехники. Сущность: последовательно проводят испытания исходного и высоковольтного устройств.

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного напряжения, преимущественно в электроэнергетических сетях 6 (10) кВ и выше.

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного тока, преимущественно при напряжениях от 6(10) кВ.

Изобретение относится к частотно-широтно-импульсным преобразователям аналоговых сигналов. .

Изобретение относится к электротехнике и может быть использовано для контроля состояния заземляющих устройств, а также при экспериментальных исследованиях молнии и электромагнитной обстановки на объектах электроэнергетики.

Изобретение относится к электротехнике и электроэнергетике, предназначено для измерения тока в переходных и установившихся режимах и может быть использовано при построении устройств релейной защиты.

Изобретение относится к электроизмерительному оборудованию, а именно к датчикам постоянного и переменного тока, которые входят в состав аналоговых измерительных цепей.

Изобретение относится к измерительной технике и может быть использовано при измерениях малых электрических токов и зарядов. .

Изобретение относится к устройствам измерения тока. Техническим результатом заявленного устройства является обеспечение устройства измерения тока, имеющего широкий динамический диапазон измерения, низкое входное полное сопротивление и простую и надежную конструкцию, а также обеспечение блока обработки. Технический результат достигается благодаря тому, что устройство измерения тока содержит первый измерительный резистор (1A) для приема измеряемого тока (Is, IsA) и первый усилитель (2A) сигнала, имеющий вход, подключенный к упомянутому первому измерительному резистору, и выход для обеспечения первого сигнала (SA) измерения. Второй измерительный резистор (1B) подключен последовательно с упомянутым первым измерительным резистором (1A), и первое средство (6A, 8, 9) ограничения напряжения подключено параллельно с первым измерительным резистором (1A) для отделения первого тока (IL1) шунта, когда первое предельное напряжение (VL1) достигается на упомянутом первом измерительном резисторе (1А). Значение первого измерительного резистора (1A) больше значения второго измерительного резистора (1B), причем отношение между значением первого измерительного резистора (1A) и второго измерительного резистора (1В) составляет от 5 до 15. А также блок обработки содержит, по меньшей мере, одно упомянутое устройство измерения тока. 2 н. и 8 з.п. ф-лы, 4 ил.

Заявленное изобретение относится к комбинированным измерительным устройствам для измерения тока и/или напряжения электрического проводника. Техническим результатом заявленного изобретения является создание усовершенствованного измерительного устройства. Технический результат достигается благодаря тому, что комбинированное измерительное устройство (100) для измерения тока и/или напряжения электрического проводника, содержащее опорное тело (101), датчик (5) тока, размещенный внутри опорного тела (101), и датчик напряжения, расположенный, по меньшей мере, частично внутри опорного тела. Защитный экран (11) расположен вокруг датчика (5) тока. Датчик (5) тока и датчик напряжения взаимно расположены так, что защитный экран (11) экранирует, по меньшей мере, частично как датчик (5) тока, так и датчик напряжения от помех внешних электрических полей. 3 н. и 12 з.п.ф-лы, 11 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах и устройствах для измерения электрических величин тока, мощности, энергии, а также в системах защиты и автоматики. Техническим результатом заявленного изобретения является высокая точность, небольшие вес и габариты, расширенный диапазон выходной мощности устройства, соответствующие разным типам нагрузок и режимам эксплуатации, что позволяет широко применить такое устройство в измерительных системах и системах автоматики. Технический результат достигается благодаря тому, что в устройство для масштабного преобразования тока последовательно с третьей выходной обмоткой второго трансформатора и выходной обмоткой первого трансформатора введено дополнительное сопротивление нагрузки. При этом возможно, что в устройстве для масштабного преобразования тока дополнительное сопротивление нагрузки выполнено в виде последовательно включенных гальванически разделяемого от основной нагрузки дополнительного сопротивления нагрузки и третьего трансформатора, так что его первичная обмотка подключена последовательно с выходной обмоткой первого трансформатора и они имеют одну общую клемму, а к вторичной обмотке подключается дополнительное гальванически разделяемое от основного сопротивление нагрузки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано в устройствах для измерения тока в различных системах космических аппаратов. Датчик постоянного тока с развязкой включает в себя измерительный шунт, операционный усилитель (ОУ), четырехобмоточный трансформатор, два резистивных делителя напряжения с равными коэффициентами деления; конденсатор, p-n-р-транзистор, RC-фильтр, блокинг-генератор, собранный с использованием третьей и четвертой обмотки трансформатора, диода, двух резисторов, конденсатора и второго транзистора, и другие элементы, показанные на фиг. 1. Результатом применения изобретения является упрощение устройства, снижение количества элементов, повышение надежности и помехоустойчивости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в системах электрохимической защиты подземных металлических сооружений от коррозии, в частности для измерения поляризованного и суммарного потенциалов. Техническим результатом заявленного изобретения является уменьшение погрешности измерения, в первую очередь поляризационного потенциала подземного сооружения, и упрощение процесса измерения суммарного и поляризационного потенциалов. Технический результат достигается благодаря тому, что в устройство для измерения потенциалов подземного сооружения введены второй блок преобразования отрицательного напряжения, второй аналого-цифровой преобразователь, формирователь цикла измерения с двумя выходами и одним входом, блок выделения сигнала помехи, блок программирования. Выходы формирователя цикла измерения соединены с управляющими входами электронного коммутатора. Вход блока выделения сигнала помехи подключен через последовательно соединенные между собой второй аналого-цифровой преобразователь и второй блок преобразования отрицательного напряжения к выходу буферного усилителя суммарного потенциала. Выход блока выделения сигнала помехи, вход формирователя цикла измерения и вход блока программирования подключены к портам процессора. Первый блок преобразования отрицательного напряжения включен между выходом буферного усилителя поляризационного потенциала и входом первого аналого-цифрового преобразователя. Изобретение позволяет уменьшить погрешность измерения, в первую очередь поляризационного потенциала подземного сооружения, и упростить процесс измерения потенциалов - поляризационного и суммарного. 1 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к измерительной технике, а именно к конструкциям измерительных шунтов, предназначенных для измерения токов, и может быть применено для измерения импульсных токов. Сущность изобретения заключается в следующем: параллельно потенциальным выводам измерительного шунта присоединяется последовательная RC-цепочка с постоянной времени, равной постоянной времени шунта, при этом напряжение U вых, снимаемое с конденсатора C, является пропорциональным измеряемому току J. Применение RC-цепочки позволяет уменьшить влияние паразитной собственной индуктивности L ш на сигнал, снимаемый с шунта. Технический результат изобретения состоит в расширении частотного диапазона и увеличении точности при измерении тока. 2 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения переменных токов высокого уровня и определения момента перехода тока через нулевое значение в сильноточных цепях сетей промышленной частоты. В устройство для измерения тока, содержащее два коаксиально расположенных металлических цилиндра, соединенных на одном торце с помощью фланцев, а на другом торце имеющих каждый свой токоподвод, высокочастотный разъем, закрепленный на фланце одного из цилиндров, с коаксиально расположенным центральным электродом и по крайней мере одну токовую отпайку, расположенную в пространстве между внутренним и внешним цилиндрами и соединенную одним концом с внутренним цилиндром в начале его рабочей части, а другим - через отверстие в стенке внутреннего цилиндра и интегрирующую RC-цепочку с центральным электродом высокочастотного разъема, введен, по крайней мере, один дополнительный резистор, включенный между выводом центрального электрода высокочастотного разъема и корпусом внутреннего цилиндра последовательно с конденсатором RC-цепочки, а величины длин токовой отпайки и рабочей части внутреннего цилиндра выбраны в соответствии с соотношением: где l - длина отпайки; H - длина рабочей части внутреннего цилиндра. Токовая отпайка может быть выполнена в виде трубки с продольным разрезом охватывающей внутренний цилиндр. Конденсатор RC-цепочки и дополнительный резистор могут быть установлены в электронном усилительном блоке, соединенном с устройством с помощью высокочастотного кабеля. RC-цепочка и дополнительный резистор могут быть установлены в электронном усилительном блоке, соединенном с устройством с помощью высокочастотного кабеля. Результатом применения изобретения является повышение точности измерений за счет уменьшения неравномерности амплитудно-частотной характеристики устройства, а также уменьшения сдвига фазы между напряжением, наводимым на отпайке и током, протекающим по устройству. 4 ил., 3 з.п. ф-лы.

Изобретение относится к измерительной технике, в частности к измерениям физических параметров, преобразуемых в электрическую форму, и может быть использовано в системах телеметрии. Способ заключается в том, что измерение сигнала на выходе измерительного преобразователя производят в произвольно задаваемый момент времени после включения питания. При этом производят дополнительное измерение в момент времени, равный удвоенному значению первого момента времени, а установившееся значение сигнала на выходе измерительного преобразователя определяют по формуле: Y в ы х = y 2 в ы х 1 2 у в ы х 1 − у в ы х 2 , где Yвых - установившееся значение сигнала на выходе измерительного преобразователя, увых1 и увых2 - соответственно значения выходного сигнала в первый и второй моменты времени. Технический результат заключается в уменьшении времени измерения. 2 ил.

Изобретение относится к области измерения электрических величин, в частности для измерения активной составляющей тока в трехфазных сетях. Технический результат заявленного изобретения выражается в снижении материалоемкости за счет замены двух трансформаторов тока, обладающих высокой массой и стоимостью, двумя дифференцирующими индукционными преобразователями тока и упрощении конструкции и, как следствие, снижении трудоемкости изготовления за счет того, что устройство имеет два, а не четыре выходных зажима, к которым подводится пропорциональная активному току источника напряжения разность напряжений первого и второго мостовых выпрямителей. При этом в устройстве для измерения активного тока трехфазного источника напряжения в качестве измерительных преобразователей переменного тока применены первый и второй дифференцирующие индукционные преобразователи тока, катушки которых индуктивно связаны с одним и тем же токопроводом тока нагрузки, который подключен ко второму зажиму трехфазного источника напряжения, а также вторые выходные зажимы первого и второго мостовых выпрямителей объединены в один общий узел, к которому подключены вторые крайние зажимы первого и второго переменных резисторов. Начала катушек первого и второго дифференцирующих индукционных преобразователей тока подключены соответственно ко вторым входным зажимам первого и второго мостовых выпрямителей, а выводы подвижных контактов первого и второго переменных резисторов являются выходными зажимами устройства. 2ил.

Предлагаемое изобретение относится к измерительной технике, а именно к системам мониторинга режимов потребления электроэнергии. Способ основан на определении степени корреляции (статистической взаимосвязанности), разности амплитуд и разности фаз токов потребления на интервале времени анализа. По результатам анализа токов потребления принимается решение о принадлежности сигналов с датчиков токов потребления по анализируемым присоединениям к классу, соответствующему несанкционированному запараллеливанию фидеров, или к классу, соответствующему отсутствию факта запараллеливания. Устройство осуществления данного способа содержит датчики тока потребления, аналого-цифровые преобразователи, амплитудные и фазовые детекторы, коррелятор, блок вычисления невязки, пороговые устройства, блок формирования порогов, решающее устройство, устройство индикации. Технический результат заключается в возможности выявления факта несанкционированного запараллеливания фидеров распределительных подстанций на стороне потребителя. 2 н.п. ф-лы, 1 ил.
Наверх