Способ получения тепловой и электрической энергии из возобновляемых источников


 

F23B99/00 - Устройства для сжигания твердого топлива (для одновременного или попеременного сжигания кускового с другим видом топлива F23C 1/00; устройства для сжигания в псевдоожиженном слое F23C 10/00; сжигание низкосортного топлива и мусора F23G; колосниковые решетки F23H; подача твердого топлива в устройства для сжигания F23K; конструктивные элементы камер сгорания, не отнесенные к другим подклассам F23M; бытовые отопительные устройства F24; котлы центрального отопления F24D; автономные компактные котлы F24H)

Владельцы патента RU 2499954:

Общество с ограниченной ответственностью "КИВИ Энерджи" (RU)

Изобретение относится к способу получения тепловой и электрической энергии из возобновляемых источников. Способ включает сбор растительного сырья, его измельчение и термофильное сбраживание в метантенках с подачей полученного биогаза в газгольдеры с последующим использованием биогаза для получения тепловой и электрической энергии, загрузку сырья производят в метантенки последовательно с интервалом, равным времени сбраживания и разгрузки метантенка, пульпу после сбраживания направляют на двухстадийное механическое обезвоживание до относительной влажности 40-50% с последующей сушкой полученного концентрата до абсолютной влажности 50-60%, полученный концентрат направляют в качестве топлива на сжигание в топке котельной установки с выработкой пара энергетических параметров для производства электроэнергии, а отходящие газы из котельной установки делят на два потока, один из которых направляют на сушку концентрата, а другой поток - на подогрев растительного сырья в метантенках до температуры термофильного сбраживания. Изобретение направлено на наиболее полное извлечение тепловой и электрической энергии из возобновляемых источников, преимущественно растительного сырья, характеризующееся безотходным производством. 4 з.п. ф-лы.

 

Изобретение относится к способу получения тепловой и электрической энергии из возобновляемых углеродсодержащих источников, преимущественно растительного сырья, путем биохимической переработки его биомассы с получением биогаза и энергетических твердых топливных продуктов.

В биомассе - зеленой массе растений, создаваемой в процессе фотосинтеза, - солнечная энергия запасается в виде химической энергии, которая может быть высвобождена различными путями. Вместе с тем имеется возможность использовать для получения биомассы водную среду, а именно - осуществлять культивирование водорослей и водных растений.

Специальное выращивание биомассы в виде водорослей с последующим ее сбраживанием в метан позволяет создать искусственный аналог процесса образования органических топлив, превосходящий по скорости естественные процессы. Создание специальных условий может во много раз ускорить образование разновидностей топлив. В процесс переработки биомассы в газ может быть включено все вещество, то есть естественный процесс образования углеводородов может быть значительно интенсифицирован.

Известен способ ферментативной переработки отходов растительного и животного происхождения, который осуществлен в биогазовой установке. В ферментерах происходит процесс разложения исходного субстрата метановыми бактериями. Термофильное разложение происходит при температуре 55С при постоянном перемешивании (RU 106895, 25.03.2011). Подачу сырья вферментер осуществляют регулярно несколько раз в сутки и с тем же интервалом осуществляют выгрузку перебродившего субстрата. Температура исходного субстрата обеспечивается за счет тепла, полученного в результате работы когенерационной установки, работающей на биогазе, произведенном в ферментере. Перебродивший субстрат выгружают из ферментера и выводят из процесса.

Недостатком известного способа является сниженный общий коэффициент полезного действия за счет того, что после ферментации перебродивший субстрат, удаляемый из процесса, не участвует в производстве дополнительной тепловой энергии. Кроме того, порционная загрузка и разгрузка ферментера отрицательно сказывается на полноте термофильного разложения исходного субстрата и увеличивает количество выгружаемого из ферментера сырья, которое не подверглось полной ферментативной переработке. При оптимальном режиме сбраживания этот остаток достигает 40% от массы исходного сырья.

Известен биогазовый комплекс, в котором сырье (отходы животноводческих хозяйств) измельчают, удаляют растворенный в воде кислород, осуществляют стерилизацию исходного сырья, его нагрев и подачу в метантенк, в котором осуществляется получение биогаза-метана и сельскохозяйственного удобрения (RU 2399184, 07.04.2009). Газ аккумулируется в газгольдере. Из газгольдера биогаз направляют на фильтрацию, где происходит разделение на метан и углекислый газ. Выделенный после фильтрации углекислый газ направляют в проточный резервуар с водными растениями для утилизации, где он поглощается растениями и стимулирует их рост. Обогащенный метан направляют в когенерационную установку, в которой реализуется получение тепла и электрической энергии, направляемой на собственные нужды биогазового комплекса, а также потребителю. Пульпоподобную массу после метантенка разделяют на жидкую и густую фракцию. Густую фракцию направляют в осушитель для получения сухого биоудобрения, а жидкую - в резервуар с водными растениями или используют в качестве активных биоудобрений. Корневая система водных растений очищает в резервуаре жидкую фракцию до санитарных норм ее сброса. При этом образуется зеленая масса, которая может быть использована в пищевой цепочке сельскохозяйственных животных.

Однако, данный способ не предназначен для переработки на биогаз растительного сырья, а отход производства после метантенка, пройдя обезвоживание и сушку используется в качестве удобрения. То есть, для получения тепловой и электрической энергий используется только та часть сырья, которая переработана в метантенке на биогаз, а отход сырья после сбраживания просто выводится из процесса.

Наиболее близким к разработанному способу по технической сущности и достигаемому результату является способ получения тепловой и электрической энергии из возобновляемых источников, преимущественно, растительного сырья, включающий сбор сырья, его измельчение и термофильное сбраживание в метантенках с подачей полученного биогаза в газгольдеры с последующим использованием биогаза для получения тепла и электрической энергии (RU 95567, 18.01.2010).

Указанный способ также не предусматривает прямой переработки в энергетическое топливо выгружаемой из метантенков пульпы, что в целом снижает экономическую эффективность данной технологии переработки исходного биологического сырья.

Задачей изобретения является наиболее полное извлечение тепловой и электрической энергии из возобновляемых источников, преимущественно, растительного сырья, характеризующееся безотходным производством.

Поставленная задача решается тем, что в способе получения тепловой и электрической энергии из возобновляемых источников, преимущественно, растительного сырья, включающий сбор сырья, его измельчение и термофильное сбраживание в метантенках с подачей полученного биогаза в газгольдеры с последующим использованием биогаза для получения тепловой и электрической энергии, согласно изобретению, загрузку сырья производят в метантенки последовательно с интервалом равным времени сбраживания и разгрузки метантенка, пульпу после сбраживания направляют на двухстадийное механическое обезвоживание до относительной влажности 40-50% с последующей сушкой полученного концентрата до абсолютной влажности 50-60%, полученный концентрат направляют в качестве топлива на сжигание в топке котельной установки с выработкой пара энергетических параметров для производства электроэнергии, а отходящие газы из котельной установки делят на два потока, один из которых направляют на сушку концентрата, а другой поток - на подогрев растительного сырья в метантенках до температуры термофильного сбраживания.

В вариантах изобретения термофильное сбраживание сырья осуществляют при температуре 60-65С, сырье перед подачей в метантенки предварительно обезвоживают центрифугированием до влажности 80-85%. Механическое обезвоживание пульпы, выгружаемой из метантенков, осуществляют в центрифугах, а сушку концентрата проводят в барабанных сушилках. При термофильном сбраживании выбран тип термофилов, работающих при температуре 60-65C. Процесс сбраживания в метантенках завершается за 10-12 суток, а влажность сырья для нормального протекания процесса составляет 80-85%.

Изобретение направлено на разработку способа, при осуществлении которого получают биогаз-метан из возобновляемого растительного сырья. При этом может быть создан технологически замкнутый комплекс полной переработки выращенного на том же предприятии растительного сырья для получения тепловой и электрической энергии без внешнего дополнительного энергопотребления.

Изучение нескольких тысяч видов водорослей, позволило выделить наиболее перспективные для промышленного производства биомассы. Особо выделяется водное растение - эйхорния, обладающая способностью к наибольшей скорости воспроизводства и накопления биомассы. Ее субстрат эффективен для получения углеводородов в процессе анаэробного брожения.

Одна розетка эйхорнии за 50 суток образует до одной тысячи отпрысков, каждый из которых, в свою очередь, вновь начинает делиться. В природе нет растения, способного конкурировать по биопродуктивности с этим древнейшим представителем высшей водной растительности.

Разработанный способ предусматривает использование водного растения - эйхорнии в качестве растительного сырья. Оптимальным вариантом переработки эйхорнии является получение из ее биомассы путем метанового брожения биогаза и энергетического твердотопливного продукта, используемого путем сжигания для выработки тепла и электроэнергии.

Способ основан на выращивании биомассы водорослей эйхорнии в специально разработанных фотобиореакторах, установленных на открытом воздухе или в закрытых помещениях при невозможности поддержания для выращивания эйхорнии необходимой температуры на открытом воздухе.

Культура эйхорнии является возобновляемым источником сырья и меняется раз в 4-6 месяцев, а для возобновления новый посадочный материал отбирается из урожая, направляемого на переработку. При правильном сохранении образцов культуры ее можно использовать для выращивания в течение нескольких лет. При этом учтена природная способность эйхорнии к воспроизводству своей биомассы. При определенных условиях выращивания эйхорния позволяет получить съем биомассы до 5 кг в сутки с одного квадратного метра водной поверхности.

С водной поверхности осуществляют сбор эйхорнии, достигшей технологической зрелости. Растение вместе с корнями и культуральной жидкостью направляют в фильтры, где происходит первичное разделение биомассы водорослей и жидкости. После первичного обезвоживания сырье направляют на измельчение, например, в роторно-ножевом измельчителе до получения полужидкой массы с размерами частиц ≥3 мм и далее биомассу подают на перемешивание для гомогенизации сырья перед загрузкой его в метантенки.

С целью повышения эффективности их работы дальнейшую переработку выращенной биомассы эйхорнии осуществляют с использованием термофильного процесса.

При выращивании эйхорнии содержание сухого вещества в собранной биомассе составляет 5-6,5%. Соответственно влажность биомассы 93,5- 95%. При такой высокой влажности для переработки собранной биомассы требуется значительный конструктивный объем метантенков. Влажность сырья рассчитывается по формуле: 100(Gобщ-Gсух):Gобщ.

Вычисляя по приводимой формуле, можно убедиться, что при неизменном содержании сухого вещества Gcyx из 100 кг собранной массы при снижении ее влажности от 95 до 85%, должно быть удалено 67 кг влаги. Такое снижение объема биомассы, перерабатываемой в метантенках, позволяет сократить затраты на капитальное строительство и получить существенный экономический эффект.

Поэтому собранную растительную массу направляют на механическое обезвоживание центрифугированием, при котором влажность сырья снижают на 10-15%, то есть, до влажности 80-85%, при этом объем биомассы уменьшается практически в три раза. Данная влажность является оптимальной, так как при более низкой влажности ухудшаются условия термофильной переработки сырья в метантеках, а поддержание более низкой влажности биомассы требует неоправданно увеличенной затраты энергии. Свободную от водорослей культуральную жидкость насосом подают в технологическую емкость для приготовления питательного раствора, который затем возвращают в установку.

Для поддержания термофильного процесса в метантенке требуется температура 60-65С и периодическое перемешивание. В реакторе термофильные бактерии проявляют свою жизнедеятельность, питаясь биомассой водорослей, и продуктом их жизнедеятельности является биогаз.

Температура 60-65C является оптимальной для жизнедеятельности термофильных бактерий этого типа. Метантенк герметичен, работает без доступа воздуха, и является безопасным. Процесс получения биогаза с использованием этого типа бактерий длится обычно 10-12 дней. При осуществлении сбраживания продукта и получения биогаза в нескольких работающих метантенках возможно направлять биогаз в газгольдеры непрерывно.

Загрузку сырья - биомассы производят в метантенки поочередно с интервалом равным времени сбраживания и разгрузки соответствующего метантенка. Поскольку загруженное в метантенк сырье находится в процессе технологически заданное время от загрузки до выгрузки и в этот метантенк не добавляются новые порции сырья, то сбраживание массы происходит в максимально благоприятных условиях, наиболее полно и обеспечивает высокую степень переработки биологического сырья.

Полученный в метантенках биогаз сжимают в компрессорах и направляют в хранилище - газгольдер. В состав биогаза, получаемого с помощью анаэробного метанового брожения эйхорнии входят 70-75% метана, 25-28% двуокиси углерода, по 1% водорода и сероводорода, а также незначительные примеси азота, аммиака и углеводородов. Из газгольдеров биогаз подают либо для сжигания в отопительных приборах, либо для производства электрической и тепловой энергии для отгрузки потребителям.

После окончания процесса сбраживания в метантенках остается остаток - пульпа, в сухом состоянии составляющая до 30-40% от сухой массы исходного сырья. Пульпа состоит, в основном, из лигнина, который может использоваться в качестве топлива. Пульпа, выгружаемая из метантенка, имеет влажность 95-96%, поэтому ее сначала механически обезвоживают в две стадии в центрифугах до влажности 40-50%. На первой стадии отделяется большая часть жидкости без уплотнения биомассы на ситах центрифуги, при этом энергетические затраты на отжим минимизированы. На второй стадии происходит окончательное обезвоживание биомассы до относительной влажности 40-50%, которая является оптимальной с точки зрения снижения теплозатрат для дальнейшего процесса высушивания концентрата. После центрифугирования полученный концентрат высушивают до абсолютной влажности 50-60%, при которой может производиться сжигание топлива в котельных установках. Сушка до требуемой влажности проводится в барабанной сушилке при температуре подаваемого теплоносителя 300-400С, при которой не происходит разложения органических веществ лигнина при сушке концентрата.

Получаемый сухой топливный концентрат направляют на сжигание в топке котельной установки, где вырабатывается пар энергетических параметров, необходимых для производства на электрогенерирующих модульных установках электроэнергии, потребляемой всем оборудованием по производству биогаза (насосами для перекачки и измельчения биомассы, центрифугой, мешалкой и загрузочными устройствами метантенков, компрессорами для биогаза и др.). Избыток получаемой электроэнергии отправляют в потребительские сети.

Тепло отходящих газов из котельной установки делят на два потока, один из которых направляют на сушку концентрата, получаемого из пульпы, выгружаемой из метантенков, а другой поток - на подогрев растительного сырья до температуры 60C в метантенках.

Таким образом, тепловую и электрическую энергию получают не только из биомассы, загружаемой в метантенки, но и из выгружаемой из метантенка пульпы, которая ранее выводилась из процесса и не использовалась для производства тепловой и электрической энергии.

Дополнительным преимуществом способа является совмещение в одном комплексе выращивание биомассы эйхорнии и дальнейшая ее переработка для получения энергии, что позволяет полностью обеспечить замкнутость цикла «выращивание - переработка» и перевести оборудование на полное энергетическое самообеспечение. Комплекс по выращиванию и переработки эйхорнии легко автоматизируется.

В целом в основу способа заложена безотходная, экологически чистая технология, которая позволяет получать максимальную энергию из органических продуктов переработкой эйхорнии в биотопливо, при этом минимизировав затраты на ее выращивание. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.

Разработанная технология позволяет извлекать максимальный экономический эффект от производства.

1. Способ получения тепловой и электрической энергии из возобновляемых источников, преимущественно растительного сырья, включающий сбор сырья, его измельчение и термофильное сбраживание в метантенках с подачей полученного биогаза в газгольдеры с последующим использованием биогаза для получения тепловой и электрической энергии, отличающийся тем, что загрузку сырья производят в метантенки поочередно с интервалом, равным времени сбраживания и разгрузки соответствующего метантенка, пульпу после сбраживания направляют на двухстадийное механическое обезвоживание до относительной влажности 40-50% с последующей сушкой полученного концентрата до абсолютной влажности 50-60%, полученный концентрат направляют в качестве топлива на сжигание в топке котельной установки с выработкой пара энергетических параметров для производства электроэнергии, а отходящие газы из котельной установки делят на два потока, один из которых направляют на сушку концентрата, а другой поток - на подогрев растительного сырья в метантенках до температуры термофильного сбраживания.

2. Способ по п.1, отличающийся тем, что термофильное сбраживание сырья осуществляют при температуре 60-65°C.

3. Способ по п.1, отличающийся тем, что сырье перед подачей в метантенки предварительно обезвоживают центрифугированием до влажности 80-85%.

4. Способ по п.1, отличающийся тем, что механическое обезвоживание пульпы осуществляют в центрифугах.

5. Способ по п.1, отличающийся тем, что сушку концентрата проводят в барабанных сушилках.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано в производстве фанеры с замкнутым паромеханическим циклом. .

Изобретение может быть использовано в области энергетики, газовой, угольной и химической отраслях промышленности. Способ сжигания твердого топлива включает подачу его в шлаковый расплав топки, барботирование расплава кислородсодержащим газом или газообразным кислородом, сжигание и вывод продуктов сгорания из топки.

Изобретение может быть использовано при подготовке и сжигании угля на электростанциях. Способ заключается в измельчении угля природной влажности, его активации путем сушки и последующем сжигании в факеле.

Изобретение относится к теплоснабжению и может быть использовано в конструкциях водогрейных котлов малой мощности. .

Изобретение относится к теплоэнергетике, а именно к устройствам для сжигания топлива, предпочтительно твердого, и может быть использовано при сжигании топлива в котлах.

Изобретение относится к области энергетики. .

Изобретение относится к области энергетики. .

Изобретение относится к топочной технике и предназначено для сжигания твердых топлив в пульсирующем потоке, наиболее эффективно может быть использовано для сжигания твердых отходов, в том числе и брикетированных бытовых отходов.

Изобретение относится к энергетике и может быть использовано в системах утилизации отходов деревообрабатывающих производств при одновременной выработке тепловой энергии и сокращении потребления газа и жидкого топлива.

Изобретение относится к теплоэнергетике, а именно к системам отопления на твердом топливе, и может быть использовано для создания твердотопливных отопительных приборов длительного горения с расширенными функциональными возможностями.

Изобретение может быть использовано для утилизации горючих отходов, биомассы или иных веществ, содержащих углерод и водород, с целью получения горючих газов. Способ включает подачу в реактор топлива воздуха, их смешивание, сгорание смеси и/или газификации содержащейся в ней твердой основы. В угловые пристенные зоны корпуса реактора на стыке торцов камеры и ее криволинейной боковой стенки дополнительно вводят не менее трех тангенциальных струй воздуха и/или водяного пара массовым расходом от 3 до 7% от объема используемого воздуха, а в среднее сечение вихря со стороны боковой стенки вихревой камеры вводят не менее двух тангенциальных струй воздуха или водяного пара массовым расходом от 10 до 30% от объема используемого воздуха в месте поворота вихря на 180 и 270-310 градусов от начала его формирования. Технический результат заключается в устранении заноса угловых, спиралевидных областей у швов стыковки торцов вихревой камеры и ее криволинейной боковой стенки, а также заноса или шлакования боковой стенки. 2 н.п. ф-лы, 4 ил.

Изобретение относится к теплоэнергетике. При использовании в топках котлоагрегатов водоугольного топлива (ВУТ) проблемой является падение температуры в модуле подготовки топливной смеси при подаче ВУТ, что отрицательно влияет на процесс газификации топлива, в результате чего образуется недостаточное количество газовой составляющей для надежного пуска котла из холодного состояния и поддержания стабильного горения на низких нагрузках. Для решения этой проблемы при розжиге котла или поддержании горения на низких нагрузках подачу водоугольного топлива производят в разные места модуля подготовки топливной смеси, а именно в зону возле факела, образуемого высокотемпературным источником тепла, и в зону соединения указанного модуля с топкой, при этом в зону возле факела подают от 10 до 50% пропускного объема топливной линии, а в зону соединения модуля с топкой - от 0 до 100% пропускного объема топливной линии. Благодаря подаче ВУТ в малом объеме в область факела плазмотрона обеспечивается надежная газификация подаваемого топлива, все подаваемое топливо переходит в газовое состояние и начинает легко воспламеняться. 1 ил.

Изобретение относится к устройствам для сжигания растительных отходов, в частности льняной мякины. Топка для сжигания льняной мякины содержит накопительный бункер с дозирующим шнеком, топочную камеру с колосниковой решеткой и механизм золоудаления. Колосниковая решетка состоит из двух частей - верхней, выполненной в виде решетчатого желоба, охватывающего снизу дозирующий шнек, и второй нижней части, выполненной в виде трехгранной призмы. Боковые грани призмы представляют собой горизонтально расположенные решетчатые ступеньки. Изобретение позволяет осуществить полное и интенсивное сжигание льняной мякины. 2 ил.

Изобретение может быть использовано в химической, металлургической и энергетической областях. Слоевой газификатор непрерывного действия представляет собой аппарат шахтного типа на обратном дутье и состоит из топки с охлаждаемой колосниковой решеткой (1), питателя (2) непрерывной подачи топлива в топку и узла (3) отгрузки кокса и золы, который расположен в нижней части. Питатель (2) непрерывной подачи топлива в топку и узел (3) отгрузки кокса и золы выполнены в виде шнекового транспортера с герметизацией соответственно узла подачи и узла отгрузки. Колосниковая решетка (1) выполнена из труб, по которым протекает холодная жидкость, и установлена наклонно под углом естественного осыпания твердого топлива, с изгибом в нижней части в обратную сторону. В топке со стороны подачи через узел (5) воздуха установлена защитная сетка (4). В боковой части слоевой газификатор оснащен узлом для удаления газов (6). Слоевой газификатор установлен на оси (8) с возможностью отклонения от вертикальной оси в две стороны в пределах изменения угла наклона колосниковой решетки (1), с помощью поворотного механизма. Изобретение позволяет упростить конструкцию газификатора и повысить эффективность процесса газификации твёрдого топлива. 1 з.п. ф-лы, 2 ил.

Котел // 2515568
Изобретение относится к промышленной теплоэнергетике и может быть использовано в бытовых и промышленных котлах. Предложен котел, содержащий вертикальную камеру газогенерирования, в стенах которой выполнены отверстия для ввода газов рециркуляции, опоясывающую с зазором стены камеры рубашку, потолочное окно загрузки топлива, подовое перекрытие, имеющее решетку для выпуска зольных частиц и генераторного газа, с размещенными над ней соплами для ввода первичного воздуха, вертикальным цилиндрическим патрубком с отверстиями для вывода влаги и летучих веществ, ось симметрии которого совмещена с вертикальной осью симметрии камеры газогенерирования, горизонтальную камеру сгорания с горизонтальной осью симметрии, опоясывающую с зазором для прохода воды рубашку, потолочное перекрытие, имеющее окна для ввода генераторного газа и выпуска продуктов сгорания, подовое перекрытие, вертикальный газоход с нагревателями воды и воздуха, подовым перекрытием, имеющим окно ввода продуктов сгорания, и потолочным перекрытием, имеющим окно вывода продуктов сгорания в дымовую трубу, причем решетка для выпуска зольных частиц и генераторного газа камеры газогенерирования размещена в окне для ввода генераторного газа камеры сжигания, а окно для вывода продуктов сгорания камеры сжигания совмещено с окном ввода продуктов сгорания газохода. Отверстия в стенах и вертикальном патрубке камеры газогенерирования размещены в горизонтальных рядах равномерно по периметру и высоте, вертикальный патрубок в центре камеры газогенерирования имеет потолочное газоплотное перекрытие и подовое перекрытие с окном, подключенным к решетке, причем расстояние между решеткой и осями отверстий стен и патрубка нижних рядов и расстояние между решеткой и осями отверстий стен и патрубка верхних рядов является заданной величиной. Такое выполнение позволит уменьшить недожог вводимых древесных отходов и количество выбросов вредных веществ в атмосферу. 3 ил.

Изобретение относится к энергетике. Горелочное устройство содержит корпус с камерой газогенерации, соплом, воздуховодами и парогенератором водяного пара, состоящим из бачка-испарителя, паропровода, соединенного с паровой форсункой и непосредственно соединенного с бачком-испарителем, нижняя поверхность которого служит верхней поверхностью камеры газогенерации. Технический результат - значительное сокращение времени запуска устройства и повышение надежности его работы за счет упрощения конструкции при сохранении параметров факела. 1 ил.

Изобретение относится к устройствам для сжигания древесных отходов переработки древесной биомассы и может найти применение в теплоэнергетике. Топка с наклонно-переталкивающей колосниковой решеткой содержит разделенную арочным сводом камеру сгорания, снабженную устройствами подачи топлива, устройства позонного ввода первичного воздуха под колосниковую решетку и вторичного воздуха в надслоевой объем через сопла, расположенные на боковых стенах в одной вертикальной плоскости, и камеру дожигания и охлаждения, соединенную с камерной сгорания выходным окном, расположенным над конечным участком первой зоны колосниковой решетки. Сопла подачи вторичного воздуха, расположенные на противоположной стене от коробов ввода первичного воздуха, наклонены вниз под углом φ, а сопла вторичного воздуха другой стены наклонены вверх под углом φ, выходное окно оборудовано буртиком, направленным вниз топки, под которым горизонтально встречно-смещенно установлены два дополнительных сопла для ввода вторичного воздуха. Изобретение позволяет повысить качество сжигания древесного топлива, снизить вредный выброс в атмосферу. 3 ил.

Изобретение относится к теплоэнергетике и может быть использовано в пылеугольных котлах. Способ сжигания топлива заключается в подаче топлива в топку, розжиге топлива, подаче воздуха в топку, дожигании топлива с дополнительной подачей воздуха с использованием накопителя тепловой энергии, отборе тепловой энергии; при этом направление газов от сгоревшего топлива осуществляют по восходящему лабиринтному газоходу, в наклонной части которого газы с не полностью сгоревшими частицами топлива пропускают вдоль керамических блоков накопителя тепловой энергии и дожигают, при этом подачу воздуха на дожигание топлива осуществляют при подходе потока газов с несгоревшим полностью топливом к накопителю тепловой энергии. Поток газов с частицами несгоревшего топлива в зоне накопителя тепловой энергии пропускают через зазоры вдоль и между установленными параллельно движению газового потока керамическими блоками накопителя тепловой энергии и поверхностями выступов, выполненными на задней стенке корпуса и Г-образного выступа на перегородке. При дожигании топлива предлагаемым способом коэффициент полезного действия котла увеличился до 7-10%, упрощена конструкция котла, снижен расход тепловой энергии на разогрев котла. 2 з.п. ф-лы, 5 ил.
Наверх