Способ получения нанодисперсной шихты для изготовления нитридной керамики


 


Владельцы патента RU 2500653:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия. При увеличении зарядного напряжения емкостного накопителя энергии от 15 до 25 кВ снижается средний объёмно-поверхностный размер наночастиц от 94 до 75 нм, но при этом также снижается содержание нитрида алюминия от 19,0 до 12,3 мас. %. Технический результат: упрощение технологического процесса. 1 табл.

 

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики.

Известен способ получения шихты [RU 2433108 С1, МПК С04В 35/581 (2006/01), опубл. 10.11.2011 г.] на основе нитрида алюминия со средним размером частиц менее одного микрометра, содержащих не менее 10% кубической фазы нитрида алюминия с частицами менее 100 нм. Приготовление литейного шликера включает последовательно: перемешивание компонентов шихты, в которую добавляют не более 65 об.% органической составляющей, полуфабрикат в виде заготовки спекают под давлением 0,1-1,0 МПа в атмосфере азотсодержащего газа при температуре 1650-1820°С в течение 1-3 часов.

Недостатком способа являются высокие энергозатраты, связанные с нагреванием заготовки выше 1650°С в течение 1-3 часов, а также с многостадийностью приготовления заготовок для спекания.

Известен способ получения шихты для изготовления нитридной керамики [RU 2428376 С1, МПК С01В 21/072 (2006.01), В82В 3/00 (2006.01), опубл. 10.09.2011 г.), взятый нами за прототип, включающий приготовление порошка алюминия, его помещение в проточный реактор с газообразным азотом, нагрев и последующее извлечение целевого продукта, при этом в качестве азотируемого порошка используют напопорошок алюминия, процесс азотирования проводят в одну стадию при 530-620°С.

Недостатком этого способа является его сложность, связанная с необходимостью нагрева нанопорошка до высоких температур в течение одного часа, что приводит к значительным энергозатратам.

Задачей изобретения является упрощение способа получения нанодисперсной шихты для изготовления нитридной керамики.

Поставленная задача решена за счет того, что способ получения нанодисперсной шихты для изготовления нитридной керамики, также как в прототипе, осуществляют в реакторе с газообразным азотом.

Согласно изобретению в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.

При осуществлении заявляемого способа достигается упрощение технологии по сравнению с прототипом: синтез нанодисперсной шихты производят из алюминиевой проволоки с покрытием, содержащим оксид иттрия в одну стадию, при этом затрачивается гораздо меньшая энергия, так как азот не надо нагревать до высоких температур в несколько сот градусов Цельсия.

В таблице 1 представлены результаты анализа полученных образцов шихты.

Для получения шихты была взята алюминиевая проволока с содержанием алюминия 99.6%, диаметром 0.20 мм с нанесенным на нее равномерным покрытием, содержащим высохший бакелитовый лак и оксид иттрия. Массовое содержание оксида иттрия в системе взрываемый проводник - непроводящее покрытие составляло 2.6% (содержание иттрия составляло ~0,6 ат.%, учитывая только металлические элементы). Отрезок проволоки с покрытием намотали на катушку механизма подачи установки УДП-4Г и зафиксировали ее в рабочем положении механизма подачи проводника. После вакуумирования рабочего объема установки УДП-4Г до давления 2·10-3 Па и последующего заполнения его газообразным азотом до давления 3-105 Па провели серию электрических взрывов путем непрерывной подачи проволоки с покрытием в межэлектродный промежуток реактора, где и происходили электрические взрывы проводника в атмосфере азота и таким образом получили нанодисперсную шихту для изготовления нитридной керамики. Параметры разрядного контура генератора импульсного тока использовали следующие: зарядная емкость составила 1.21 мкФ, индуктивность - 0.61 мкГн, активное сопротивление - 0.12 Ом. Зарядное напряжение емкостного накопителя энергии было 15 кВ, межэлектродное расстояние - 40 мм.

Аналогично были получены еще два образца нанодисперсной шихты с использованием зарядных напряжений емкостного накопителя 20 кВ и 25 кВ.

После осаждения конечных продуктов электровзрыва и их выгрузки, образцы подвергали рентгенофазовому анализу, рентгеновской фотоэлектронной спектроскопии, определению среднего объемно-поверхностного размера частиц с использованием метода низкотемпературной десорбции азота (метод БЭТ) и определению связанного азота по методу Кьельдаля. Результаты анализа приведены в таблице 1.

В результате электрических взрывов в газообразном азоте алюминиевого проводника с покрытием, содержащим оксид иттрия, сформирована нанодисперсная шихта, содержащая нитрид алюминия и оксид иттрия. Результаты анализов показывают, что при увеличении зарядного напряжения емкостного накопителя энергии от 15 до 25 кВ снижается средний объемно-поверхностный размер наночастиц от 94 до 75 нм, но при этом также снижается и содержание нитрида алюминия от 19,0 до 12.3 мас.%.

Таблица 1
Способ получения нанодисперсной шихты для изготовления нитридной керамики
№пп Зарядное напряжение емкостного накопителя энергии, кВ Содержание нитрида алюминия в нанодисперсной шихте, мас.% Содержание иттрия в поверхностных и приповерхностных слоях наночастиц шихты, ат.% Средний объемноповерхностный размер частиц, определенный по
методу БЭТ, нм
1 25 12,3 1,18 75
2 20 12,6 0,90 83
3 15 19,0 0,74 94

Способ получения нанодисперсной шихты для изготовления нитридной керамики в реакторе с газообразным азотом, отличающийся тем, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.



 

Похожие патенты:
Изобретение относится к получению керамических и композиционных материалов, используемых в высокотемпературном газотурбостроении. .
Изобретение относится к изготовлению теплопроводной керамики на основе нитрида алюминия, которая может быть использована в электронике и электротехнике, в частности, в качестве материала подложек мощных силовых и СВЧ полупроводниковых приборов, а также других устройств, где требуются высокие диэлектрические характеристики, прочность и теплопроводность материала.
Изобретение относится к области получения тугоплавких керамических материалов, в частности к способам получения нитрида алюминия в режиме горения. .

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих кубический нитрид алюминия, и может найти применение при изготовлении керамических, металлокерамических и металлических дисперсно-упрочненных изделий.

Изобретение относится к технологии получения технической керамики, в частности, устойчивой при высоких температурах, обладающей высокой теплопроводностью, и может быть использовано в производстве шихты для керамических изделий, в том числе, многослойных керамических подложек, керамических нагревателей, излучателей и огнеупорных конструкционных материалов.
Изобретение относится к области получения высокоогнеупорных керамических материалов, в частности к получению оксинитрида алюминия, который может быть использован в качестве компонента керамики и металлокерамики для изготовления режущего инструмента, термостойких и теплопроводных элементов конструкций, а также в окислительных средах вместо нитрида алюминия и в сочетании с ним.

Изобретение относится к области получения тугоплавких керамических материалов, в частности к способам получения оксинитрида алюминия, который может быть использован в качестве компонента керамики и металлокерамики для изготовления режущего инструмента, термостойких и теплопроводных элементов конструкций.

Изобретение относится к области порошковой металлургии, в частности к способу получения керамики на основе нитрида алюминия, и позволяет повысить его теплопроводность до величины не менее 200 Вт/мК.

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитрид алюминия, и может найти применение при изготовлении керамических изделий.

Изобретение относится к технологии материалов, используемых для изготовления конструкций, работающих в условиях механических нагрузок при повышенных температурах.
Изобретение относится к области порошковых технологий, цветной металлургии. Способ получения наноразмерных порошков нитрида алюминия с размерами частиц 10-150 нм и удельной поверхностью 30-170 м2/г, включающий подачу порошка глинозема потоком плазмообразующего газа азота в реактор газоразрядной плазмы при температуре в реакторе 4000-7000°C, охлаждение продуктов термического разложения охлаждающим инертным газом и конденсацию полученного порошка нитрида алюминия в водоохлаждаемой приемной камере, в котором порошок глинозема - пыль, уловленная в электрофильтрах печей кальцинации гидроксида алюминия при производстве глинозема.
Изобретение относится к области порошковых технологий, в частности к получению порошка нитрида алюминия в нанодисперсном состоянии, который может быть использован в электронной промышленности для изготовления керамики.
Изобретение относится к технологии получения нитрида алюминия и предназначено для использования в технологии тугоплавких керамических изделий. .
Изобретение относится к области получения тугоплавких керамических материалов, в частности к способам получения нитрида алюминия в режиме горения. .

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих кубический нитрид алюминия, и может найти применение при изготовлении керамических, металлокерамических и металлических дисперсно-упрочненных изделий.

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения нитевидного нитрида алюминия AlN в виде нитевидных кристаллов, пригодных для изготовления сенсорных зондов на кантилеверах атомно-силовых микроскопов, применяемых при исследовании морфологии и топографии поверхности, адгезионных и механических свойств элементов микроэлектроники, объектов нанобиотехнологий и особо при высокотемпературных измерениях в нанометаллургии.
Изобретение относится к химической технологии получения неорганических веществ, в частности соединений алюминия. .

Изобретение относится к технологии получения технической керамики, в частности, устойчивой при высоких температурах, обладающей высокой теплопроводностью, и может быть использовано в производстве шихты для керамических изделий, в том числе, многослойных керамических подложек, керамических нагревателей, излучателей и огнеупорных конструкционных материалов.
Изобретение относится к области получения высокоогнеупорных керамических материалов, в частности к получению оксинитрида алюминия, который может быть использован в качестве компонента керамики и металлокерамики для изготовления режущего инструмента, термостойких и теплопроводных элементов конструкций, а также в окислительных средах вместо нитрида алюминия и в сочетании с ним.

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитрид алюминия, и может найти применение при изготовлении керамических изделий.
Изобретение относится к строительству и промышленности строительных материалов, в частности к способам изготовления комплексных нанодисперсных добавок в бетонные смеси.
Наверх