Ультразвуковой расходомер

Изобретение относится к системам выравнивания потока текучей среды в проточной части расходомеров или в трубопроводах на входе расходомеров, предназначенных для измерений объемного расхода текучих сред. Ультразвуковой расходомер, содержащий прямолинейную проточную часть - трубопровод, первый и второй электроакустические датчики, размещенные в соответствующих корпусах, установленных внутри проточной части на расстоянии друг от друга, каждый датчик связан с измерительным блоком. При этом между датчиками в проточной части установлена трубка-вкладыш, внутреннее сечение которой выполнено в виде равностороннего многоугольника с закругленными углами. При этом сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся, с каждой торцевой стороны трубки-вкладыша в ее нижней части выполнены полки, обращенные наружу к близлежащему датчику, внутренняя полость трубки-вкладыша образует зону измерения. Корпус каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения. Датчики установлены симметрично по отношению к трубке-вкладышу. Технический результат - расширение арсенала средств для выпрямления потока в ультразвуковых расходомерах, а также упрощение конструкции устройства и повышение степени выравнивания потока. 7 з.п. ф-лы, 8 ил.

 

Изобретение относится к системам выравнивания потока текучей среды в проточной части расходомеров или в трубопроводах на входе расходомеров, предназначенных для измерений объемного расхода текучих сред.

При измерении объемного расхода неустановившихся потоков текучих сред, характеризующихся неравномерностью скорости потока в разных точках, возникает проблема, связанная с точностью измерения расхода таких потоков. Для повышения точности измерения необходимо обеспечить одинаковую скорость потока в разных точках, т.е. необходимо выровнять эпюру скоростей потока. Для этого в проточной части расходомеров или в трубопроводах на входе в расходомеры используют средства, позволяющие выровнять скорость потока или снизить пульсации потока.

Известен ультразвуковой расходомер (патент РФ №2331851 на изобретение), состоящий из прямолинейного пролетного трубопровода диаметром D и длиной L, входной и выходной камер, соединенных с трубопроводом посредством соответственно конфузора и диффузора, первого и второго электроакустических преобразователей, размещенных в камерах и связанных с измерительным блоком. В пролетном трубопроводе коаксиально размещен измерительный канал диаметром d=(0,4-0,6)D, при этом упомянутый канал со стороны, обращенной к входной камере, имеет участок с уклоном 15° и протяженностью 10,05L, а расстояние h между измерительным каналом и вторым по ходу потока электроакустическим преобразователем выбирается из условия h=(0,4-0,6)D.. Угол наклона образующей диффузора к оси измерительного канала выбирается в диапазоне 40-50°.

Недостатком известной системы является ее сложность, обусловленная наличием в проточной части измерительного канала. Данный канал необходимо определенным образом закрепить внутри проточной части расходомера. Такое крепление осуществляется посредством специальных крепежных элементов, крепящих канал к стенкам проточной части. Недостатком известного расходомера является его недостаточная точность, т.к. крепежные элементы, крепящие канал к стенкам проточной части расходомера будут создавать сопротивление потоку и вызывать местные возмущения потока.

Техническим результатом, достигаемым предлагаемым изобретением, является расширение арсенала средств для выпрямления потока в ультразвуковых расходомерах, а также упрощение конструкции устройства и повышение степени выравнивания потока.

Заявляемый технический результат достигается за счет того, что в ультразвуковом расходомере, содержащем прямолинейную проточную часть - трубопровод, первый и второй электроакустические датчики, размещенные в соответствующих корпусах, установленных внутри проточной части на расстоянии друг от друга, каждый датчик связан с измерительным блоком, согласно изобретению между датчиками в проточной части установлена трубка-вкладыш, внутреннее сечение которой выполнено в виде равностороннего многоугольника с закругленными углами, сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся, с каждой торцевой стороны трубки - вкладыша в ее нижней части выполнены полки, обращенные наружу к близлежащему датчику, внутренняя полость трубки-вкладыша образует зону измерения, корпус каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения, датчики установлены симметрично по отношению к трубке-вкладышу.

Целесообразно, чтобы корпус каждого датчика был выполнен в форме купола. Целесообразно, чтобы поверхность каждой полки, обращенная к зоне измерения, была выполнена с наклоном, обращенным в сторону близлежащего датчика.

Целесообразно, чтобы корпус каждого датчика был выполнен из материала, пропускающего звуковое излучение.

Корпус каждого датчика целесообразно выполнять из стеклонаполненного пластика. Излучающим элементом каждого датчика может являться пьезоэлемент. Корпус каждого датчика своей верхней частью связан с корпусом проточной части. Заявляемое устройство осуществляет формирование потока текучей среды с требуемыми характеристиками, позволяющими обеспечить в дальнейшем требуемую метрологическую точность ультразвукового расходомера

В проточной части расходомера устанавливаются на расстоянии друг от друга обращенные навстречу друг другу датчики акустического излучения. Между датчиками в проточной части расходомера устанавливается трубка - вкладыш, во внутрь которой направляется поток, расход которого необходимо измерить. Внутренняя полость трубки -вкладыша образует зону измерения. Зона измерения - зона между двумя датчиками.

Трубка - вкладыш, обеспечивает формирование потока с требуемыми параметрами. Для этого сечение трубки-вкладыша имеет форму равностороннего многоугольника с закругленным углами (например, ромба или квадрата) - это позволяет распределить неоднородности потока по углам, а также выровнять эпюру скоростей и сделать ее более симметричной и однородной (фиг.1). Турбулентные зоны рассеиваются по углам равностороннего многоугольника, оставляя в зоне зондирования (в центре) поток с выровненной эпюрой скоростей.

Кроме того, сечение трубки вкладыша по направлению от датчика, установленного на входе в зону измерения, к датчику, установленному на выходе зоны измерения, уменьшается, т.е. имеет место сужение, необходимое для поддержания скорости потока по сечению трубки - вкладыша. За счет такой формы трубки-вкладыша поток поступает в зону измерения по каналу с равномерно сужающимся сечением - тем самым выравнивается эпюра скоростей, а также увеличивается скорость потока в проточной части, что в свою очередь повышает точность измерений.

Параметры сужения определяются расчетным путем и будут зависеть от геометрии проточной части расходомера и геометрии внутренней полости трубки-вкладыша. Соотношение сечений на входе и выходе из трубки-вкладыша составляет - S1/S2=1.1, где S1 - площадь трубки-вкладыша на входе, а S2 - площадь на выходе.

Корпус каждого датчика, предназначенный для размещения излучающего элемента, например, пьезоэлемента, имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения (форма купола), тем самым обеспечивается равномерное обтекание датчика слева, справа и снизу, при этом предотвращаются разрывы потока. При обтекании датчика происходит перераспределение скоростей и в зону измерения поступает уже более однородный поток. Датчики установлены симметрично (достигается цель унификации применяемых элементов, а также обеспечивается возможность работы в режиме реверса - в обратном направлении). Корпус датчика, установленного на входе в зону измерения, выполняет также функцию элемента, предназначенного для сужения потока на входе в зону измерения (т.к. корпус датчика установлен в проточной части расходомера непосредственно на входе в зону измерения и занимает в проточной части определенный объем).

Сужение потока на входе в зону измерения позволяет повысить скорость потока на входе в зону измерения и, тем самым, повысить точность измерения. Симметричное расположение второго датчика позволяет обеспечить работу расходомера на реверсе (в обратном направлении).

Вышеописанная форма корпуса каждого датчика позволяет обеспечить требуемую точность измерения и в том случае, если расходомер установлен непосредственно после колена (изгиба трубы на 90°). В этом случае поток «прижимается» к боковой стенке трубы (фиг.2). После того, как такой поток обтекает корпус датчика на входе в зону измерения, происходит распределение скоростей потока вокруг корпуса датчика и в зону измерения уже поступает более однородный поток (фиг.2).

На противоположных торцах трубки-вкладыша в ее нижней части выполнены полки, обращенные к датчикам и выходящие за пределы зоны измерения. Полки, являющиеся частью трубки-вкладыша, способствуют равноускоренному обтеканию датчика и равномерному распределению скорости на входе в зону измерения, уменьшается тень - зона маленьких скоростей после обтекания корпуса датчика за счет того что после полок поток направляется вверх и ускоряется (фиг.3). Для этого внутренняя поверхность каждой полки выполнена с наклоном, обращенным в сторону датчика. Это позволит обеспечить более плавный переход потока из более широкой проточной части в более узкую зону измерения, избежав образования участков, в которых могут образовываться возмущения потока.

Корпус датчика выполнен из материала, пропускающего излучение (звук), например, из стеклонаполненного пластика.

Внутри корпуса датчика установлен излучающий элемент, например, пьезоэлемент, который наиболее распространен в ультразвуковых расходомерах.

Заявляемое устройство обеспечивает допустимое падение давления от входа в зону измерения к выходу из зоны измерения. По стандарту EN1434 -АР должен быть не более 0,25 атм на номинальном расходе.

Заявляемое устройство обеспечивает точность в пределах ±1%, что выше, чем в существующих конструкциях ультразвуковых расходомеров, измеряющих расход потока в трубопроводах.

Заявляемый ультразвуковой расходомер измеряет расход на основе измерения времени распространения импульсов ультразвукового колебания через двигающуюся жидкость. Разность между временами распространения ультразвуковых импульсов в прямом и обратном направлениях относительно движения жидкости пропорциональна скорости ее потока.

Возбуждение ультразвуковых колебаний осуществляется пьезоэлектрическими преобразователями, располагаемых внутри корпуса датчика.

Движение жидкости вызывает изменение разницы во времени полного распространения ультразвуковых сигналов по потоку и против него. Скорость распространения ультразвукового импульса в жидкости, заполняющей трубопровод, представляет собой сумму скоростей ультразвука неподвижной жидкости и скорости потока жидкости V в проекции на рассматриваемое направление распространения ультразвука.

В заявляемом ультразвуковом расходомере обеспечивается высокая точность измерений за счет того, что эпюра скоростей потока в каждом сечении трубки-вкладыша максимально выровнена. Максимально сглажены все возмущения, которые могут возникнуть в потоке, в том числе после изгибов трубопровода.

На фиг.1 изображено распределение неоднородностей потока в трубке вкладыше по углам ее сечения.

На фиг.2 изображено распределение скоростей потока внутри расходомера в случае, когда расходомер установлен после изгиба трубопровода.

На фиг.3 изображено распределение скоростей потока внутри расходомера в случае прямолинейного трубопровода.

На фиг.4 изображено продольное сечение заявляемого расходомера - вид сверху.

На фиг.5 изображено продольное сечение заявляемого расходомера - вид сбоку.

На фиг.6 изображено продольное сечение трубки-вкладыша.

На фиг.7 изображено поперечное сечение трубки-вкладыша.

На фиг.8 изображен общий вид трубки-вкладыша.

Заявляемый ультразвуковой расходомер содержит прямолинейную проточную часть 1- трубопровод, первый и второй электроакустические датчики (на чертежах не показаны), размещенные в соответствующих корпусах 2 и 3, установленных внутри проточной части 1на расстоянии друг от друга. Датчики выполнены электроакустическими, рабочим элементом датчиков является пьезоэлемент. Между датчиками в проточной части установлена трубка-вкладыш 4, внутреннее сечение которой выполнено в виде квадрата с закругленными углами. Сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся. С каждой торцевой стороны трубки - вкладыша в ее нижней части выполнены полки 5, обращенные наружу к близлежащему датчику.

Внутренняя полость трубки-вкладыша 4 образует зону измерения 6. Корпус 2, 3 каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения, а именно: каждый корпус 2,3 выполнен в виде купола. Датчики установлены симметрично по отношению к трубке-вкладышу 4. Поверхность каждой полки 5, обращенная к зоне измерения 6, выполнена с наклоном, обращенным в сторону близлежащего датчика для того, чтобы поток плавно поступал из более широкой зоны в более узкую - зону измерения для снижения возмущений потока. Корпус 2, 3 каждого датчика выполнен из материала, пропускающего звуковое излучение, а именно: из стеклонаполненного пластика - полиэфирсульфон (PES) Ultrason® E G6. Корпус 2,3 каждого датчика своей верхней частью связан с корпусом проточной части.

Заявляемый ультразвуковой расходомер, измеряет расход на основе измерения времени распространения импульсов ультразвукового колебания через двигающуюся жидкость от первого датчика ко второму. Разность между временами распространения ультразвуковых импульсов в прямом и обратном направлениях относительно движения жидкости пропорциональна скорости ее потока. Возбуждение ультразвуковых колебаний осуществляется пьезоэлектрическими преобразователями, располагаемых внутри корпуса датчика.

1. Ультразвуковой расходомер, содержащий прямолинейную проточную часть - трубопровод, первый и второй электроакустические датчики, размещенные в соответствующих корпусах, установленных внутри проточной части на расстоянии друг от друга, каждый датчик связан с измерительным блоком, отличающийся тем, что между датчиками в проточной части установлена трубка-вкладыш, внутреннее сечение которой выполнено в виде равностороннего многоугольника с закругленными углами, сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся, с каждой торцевой стороны трубки-вкладыша в ее нижней части выполнены полки, обращенные наружу к близлежащему датчику, внутренняя полость трубки-вкладыша образует зону измерения, корпус каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения, датчики установлены симметрично по отношению к трубке-вкладышу.

2. Ультразвуковой расходомер по п.1, отличающийся тем, что корпус каждого датчика выполнен в форме купола.

3. Ультразвуковой расходомер по п.1, отличающийся тем, что поверхность каждой полки, обращенная к зоне измерения, выполнена с наклоном, обращенным в сторону близлежащего датчика.

4. Ультразвуковой расходомер по п.1, отличающийся тем, что корпус каждого датчика выполнен из материала, пропускающего звуковое излучение.

5. Ультразвуковой расходомер по п.4, отличающийся тем, что корпус каждого датчика выполнен из стеклонаполненного пластика.

6. Ультразвуковой расходомер по п.1, отличающийся тем, что излучающим элементом каждого датчика является пьезоэлемент.

7. Ультразвуковой расходомер по п.1, отличающийся тем, что корпус каждого датчика своей верхней частью связан с корпусом проточной части.

8. Ультразвуковой расходомер по п.1, отличающийся тем, что соотношение сечений на входе и выходе из трубки-вкладыша составляет -Sl/S2=1.1, где S1 - площадь трубки-вкладыша на входе, a S2 - площадь на выходе.



 

Похожие патенты:

Изобретение относится к бытовым ультразвуковым счетчикам для измерения расхода газа. Техническим результатом является повышение точности, а также увеличение динамического диапазона измеряемого расхода газа.

Изобретение относится к жидкостным и газовым ультрозвуковым расходомерам. Пьезоэлектрический узел для ультразвукового расходомера содержит пьезоэлектрический элемент, содержащий первую поверхность и вторую поверхность, пьезоэлектрический первый электрод, взаимодействующий с первой поверхностью, и второй электрод, взаимодействующий со второй поверхностью.

Изобретение относится к способу и устройству для определения расхода протекающей жидкости. .

Изобретение относится к ультразвуковому расходомеру, содержащему проточную для измеряемой среды измерительную трубу, имеющую, глядя в поперечном сечении, две половины, и две пары ультразвуковых преобразователей, с каждой из которых соотнесен ультразвуковой отражатель, причем ультразвуковые преобразователи каждой пары расположены на общей для них половине измерительной трубы со смещением относительно друг друга в продольном направлении измерительной трубы, а ультразвуковой отражатель, соотнесенный с соответствующей парой ультразвуковых преобразователей, расположен на другой половине и помещен, глядя в продольном направлении измерительной трубы, между обоими ультразвуковыми преобразователями таким образом, чтобы ультразвуковой сигнал, посланный одним ультразвуковым преобразователем пары ультразвуковых преобразователей, достигал другого ультразвукового преобразователя по V-образному пути распространения сигнала через ультразвуковой отражатель, соотнесенный с этой парой ультразвуковых преобразователей.

Изобретение относится к сельскому хозяйству, к области водоизмерения и водоучета в гидромелиоративных системах, в частности к устройствам ультразвукового типа для измерения расхода жидкости (воды) с переменным уровнем в открытых каналах, и может быть использовано на гидромелиоративных и водохозяйственных системах.

Изобретение относится к области расходомеров. .

Изобретение относится к измерительной технике по ультразвуковым расходомерам, а именно к способам и устройствам измерения расхода массы и объема жидких сред в безнапорных трубопроводах.
Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси, включающий зондирование восходящего потока несепарированной газожидкостной смеси непрерывным ультразвуковым сигналом, прием отраженного от неоднородностей сигнала, комплексное детектирование, выделяющее синфазную с зондирующим сигналом и квадратурную составляющие, проведение спектрального анализа с определением знака преобладающей частоты, определение частоты сигнала и доли времени, когда преобладающая частота принимает отрицательное значение. При этом определяют мощность принятого сигнала, сравнивают мощность с пороговой величиной и исключают из определения частоты сигнала и доли времени, когда преобладающая частота принимает отрицательное значение, т.е. участки сигнала, где мощность менее пороговой. Во время калибровки определяют зависимости частоты и доли времени, когда преобладающая частота принимает отрицательное значение, от расходов жидкой и газообразной фаз. По полученным во время калибровки зависимостям частоты и доли времени, когда преобладающая частота принимает отрицательное значение, определяют расходы жидкой и газовой фаз. Технический результат - упрощение способа определения расхода жидкой и газовой фаз потока газожидкостной смеси при одновременном повышение точности измерения и расширении диапазона измеряемых величин.

Ультразвуковой преобразователь ультразвукового расходомера снабжен корпусом, содержащим ближний к месту крепления конец, дальний к месту крепления конец и внутренний объем. При этом ультразвуковой преобразователь ультразвукового расходомера выполнен с возможностью соединения с трубным узлом ультразвукового расходомера, пластмассовым согласующим слоем и преобразовательным элементом, соединенным с внутренней поверхностью пластмассового согласующего слоя. При этом пластмассовый согласующий слой имеет наружную поверхность и внутреннюю поверхность и герметично соединен с дальним концом корпуса и расположен закрывающим его. Также пластмассовый согласующий слой имеет коэффициент теплового расширения, больший коэффициента теплового расширения корпуса. Технический результат - повышение долговечности расходомера и его компонентов. 4 н. и 17 з.п. ф-лы, 12 ил.

Группа изобретений относится к измерительной технике и, в частности, к способу и системе обнаружения и отслеживания отложений. Система обнаружения нароста отложений в ультразвуковом расходомере включает ультразвуковой расходомер, муфту, пару преобразователей, закрепленных на муфте. Причём каждая пара преобразователей содержит преобразователь, установленный ниже по потоку, и связанный с ним преобразователь, расположенный выше по потоку, и задает хорду, проходящую между ними. Также система содержит группу электронных устройств, электрически связанных с парами преобразователей и выполненных с возможностью получения диагностических данных посредством акустических сигналов, передаваемых каждой парой преобразователей. При этом диагностические данные включают расчетную скорость распространения звука через текучую среду для каждой пары преобразователей, а электронные устройства выполнены с возможностью обнаружения нароста отложений на внутренней поверхности муфты на основании разницы длин хорд и изменения скорости распространения звука через текучую среду во времени для пар преобразователей. Способ обнаружения нароста отложений предполагает определение диагностических данных посредством акустических сигналов, которые передаются между каждой из пар преобразователей ультразвукового расходомера. При этом диагностические данные включают расчетную скорость распространения звука через текучую среду, проходящую через ультразвуковой расходомер для каждой пары преобразователей, изменение во времени скорости распространения звука через текучую среду для каждой из пар преобразователей, разницу длин хорд пар преобразователей, изменение скорости распространения звука через текучую среду. Технический результат изобретения - повышение точности измерений. 3 н. и 17 з.п. ф-лы, 7 ил.

Датчик ультразвукового расходомера может быть использован для определения расхода газов и жидкостей. Он состоит из пролетного канала, в торцах которого установлены акустические преобразователи, и двух патрубков, соединяющих пролетный канал с контролируемым трубопроводом. Акустическая ось преобразователей смещена относительно оси симметрии пролетного канала. Контролируемая среда из патрубков вводится в пролетный канал через его боковую поверхность, соединенную с боковой поверхностью патрубков, и таким же образом выводится из него. Технический результат - конструктивное упрощение устройства, уменьшение габаритов без ухудшения функциональных характеристик. 1 з.п. ф-лы, 1 ил.

Предложен ультразвуковой расходомер для измерения потока текучей среды в трубопроводе. В одном из примеров реализации настоящего изобретения ультразвуковой расходомер содержит патрубок, имеющий сквозное отверстие и канал преобразователя, проходящий к сквозному отверстию. Кроме того, ультразвуковой расходомер содержит пьезоэлектрический модуль с пьезоэлементом. Кроме того, преобразовательный блок содержит трансформаторный модуль с трансформатором. Трансформаторный модуль присоединен к пьезоэлектрическому модулю. Кроме того, преобразовательный блок содержит приемный модуль, присоединенный к трансформаторному модулю. Приемный модуль содержит корпус приемника и приемник, расположенный в корпусе приемника соосно с ним. Приемник электрически присоединен к трансформатору. Кроме того, приемник выполнен с возможностью его поворота относительно корпуса приемника между первым и вторым положениями. Технический результат - улучшение эксплуатационной надежности и технического обслуживания, а также качества ультразвукового сигнала. 3 н. и 30 з.п. ф-лы, 18 ил.

В одном из примеров реализации ультразвуковой расходомер содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя, проходящее от внешней поверхности патрубка к сквозному отверстию. Кроме того, ультразвуковой расходомер содержит блок преобразователя, расположенный в посадочном гнезде преобразователя. Блок преобразователя имеет центральную ось и содержит держатель трансформатора, имеющий первый конец, расположенный ближе к сквозному отверстию патрубка, и второй конец, удаленный от сквозного отверстия патрубка. Кроме того, блок преобразователя содержит пьезоэлектрический модуль с пьезоэлементом. Пьезоэлектрический модуль соединен с блоком преобразователя и проходит в целом в осевом направлении от первого конца держателя преобразователя. Кроме того, блок преобразователя содержит трансформаторный модуль с трансформатором. Трансформаторный модуль соединен с блоком преобразователя и расположен в осевом направлении на расстоянии от пьезоэлектрического модуля. Технический результат - улучшение эксплуатационной надежности и технического обслуживания, а также качества ультразвукового сигнала, передаваемого в текучую среду, что способствует повышению точности измерения. 3 н. и 27 з.п. ф-лы, 20 ил.

Ультразвуковой расходомер для измерения потока текучей среды в трубопроводе. В некоторых примерах реализации ультразвуковой расходомер содержит патрубок, блок преобразователя и блок заглушки посадочного гнезда. Патрубок имеет сквозное отверстие и посадочное гнездо преобразователя, проходящее между сквозным отверстием и внешней поверхностью патрубка. Блок преобразователя расположен в посадочном гнезде преобразователя и содержит трансформатор, пьезоэлемент и расположенное между ними электрическое соединение. Блок заглушки посадочного гнезда присоединен к блоку преобразователя. Блок заглушки посадочного гнезда принимает кабель, присоединенный к блоку преобразователя, и подпружинен для перемещения блока заглушки посадочного гнезда по направлению к блоку преобразователя для противодействия электрическому отсоединению кабеля от блока преобразователя. Технический результат - улучшение качества ультразвуковых сигналов, а следовательно, повышение измерительной точности. 3 н. и 30 з.п. ф-лы, 27 ил.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и измерения расхода двухфазного потока сыпучих диэлектрических материалов, перемещаемых воздухом по металлическому трубопроводу. В способе измерения расхода двухфазного потока сыпучего диэлектрического материала, перемещаемого воздухом по металлическому трубопроводу, включающем пропускание потока через электрическое поле и преобразование измерительных сигналов в цифровую форму, электрическое поле направляют перпендикулярно потоку через диэлектрические окна в трубопроводе, амплитудно модулируют токами поляризации диэлектрического материала световую волну, проходящую через амплитудный оптический модулятор света, регистрируют ее интенсивность, после преобразования измеренных сигналов в цифровую форму определяют элементарную массу материала в измерительном объеме, массу материала за время транспортирования путем циклического сложения элементарных масс, затем определяют массовый и объемный расходы материала за время транспортирования. Технический результат - упрощение способа и повышение точности измерения. 1 ил.

Ультразвуковой расходомер для измерения потока текучей среды в трубопроводе содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя. Посадочное гнездо преобразователя проходит вдоль центральной оси от открытого конца в сквозном отверстии к закрытому концу, являющемуся удаленным по отношению к сквозному отверстию. Кроме того, расходомер содержит акустический преобразователь, расположенный в посадочном гнезде преобразователя. Преобразователь содержит пьезоэлектрический элемент. Кроме того, расходомер содержит дренажное отверстие, сообщающееся посредством текучей среды с посадочным гнездом преобразователя. Дренажное отверстие расположено в осевом направлении между открытым концом и закрытым концом посадочного гнезда преобразователя. Кроме того, расходомер содержит дренажную трубку, имеющий впускной конец, присоединенный к дренажному отверстию, и выпускной конец, противоположный впускному концу. Дренажное отверстие выполнено с возможностью отведения жидкости из посадочного гнезда преобразователя во впускной конец дренажной трубки. Технический результат - возможность установления ультразвукового расходомера в большем количестве разнообразных положений и ориентаций с одновременной минимизацией накапливания жидкости, по меньшей мере, в одном посадочном гнезде преобразователя. 3 н. и 17 з.п. ф-лы, 8 ил.

Способ измерения расхода жидкости, протекающей через канал заключается в то, что в сечении канала выбирают сложную виртуальную измерительную поверхность, перекрывающую полностью все сечение канала, затем, в ее геометрическом центре или центрах устанавливают ультразвуковой источник или источники, формирующие группу узконаправленных лучей, пронизывающих виртуальную измерительную произвольную поверхность с заданным шагом по широте и долготе так, что она покрывается сеткой точек пересечения каждого луча с виртуальной измерительной поверхностью, причем каждый луч перпендикулярен поверхности в точке пересечения. Затем для каждого луча проводят измерение скорости потока вдоль луча в точке пересечения с виртуальной измерительной поверхностью в направлении нормали к упомянутой поверхности по доплеровскому смещению частоты эхосигнала от точки пространства на виртуальной измерительной поверхности, после чего проводят интегрирование по всем точкам сетки. Технический результат - повышение точности измерения расхода, обеспечение обслуживания без осушения канала и даже без остановки гидроэнергетических установок. 1 з.п. ф-лы, 2 ил.
Наверх