Устройство для подачи реагента в скважину


 


Владельцы патента RU 2502860:

Закрытое акционерное общество "Новомет-Пермь" (RU)

Изобретение относится к нефтепромысловому оборудованию, в частности к устройствам для подачи химических реагентов в скважину. Устройство содержит цилиндрический корпус с заглушкой и отверстиями в верхней части, заполненный ниже уровня отверстий реагентом с образованием свободной полости. В заглушке выполнено сквозное отверстие, снаружи перекрытое дозатором, а со стороны свободной полости - рукавным фильтром из полимерного материала. На корпусе установлена муфта с отверстиями для выноса разбавленного реагента, поступающего из свободной полости через дозатор. Изобретение обеспечивает продолжительное равномерное поступление реагента в пластовую жидкость. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к нефтепромысловому оборудованию, в частности к устройствам для подачи химических реагентов в скважину для предотвращения, например, отложения солей на рабочих органах электроцентробежных насосов.

Известно устройство для обработки скважинной жидкости, содержащее патрубок с радиальными каналами в верхней части, соединенный с башмаком лифтовых труб, и твердый реагент с открытой пористостью, размещенный ниже радиальных каналов с возможностью прохода через него и верхний конец патрубка потока скважинной жидкости (патент РФ №2165009, E21B 37/06, 1999).

Недостатком данной конструкции является неравномерная скорость дозирования вследствие постоянно уменьшающейся площади поверхности твердого реагента при смывании скважинной жидкостью и заиливания перового пространства реагента механическими частицами, находящимися в жидкости.

Известно устройство для подачи реагента в скважину в виде многокамерного контейнера, состоящего из отдельных камер для размещения в них реагента в виде полых цилиндров с отверстиями, гидравлически связанными со скважиной и выполняющими роль вторичных дозирующих устройств, фильтров в каждой камере, выполняющих роль первичных дозирующих устройств, при этом отверстия расположены только в емкости предварительного смешивания, которая образована между фильтром и глухой заглушкой камеры (Патент РФ №2342519, E21B 37/06, 2008).

Недостатком устройства для подачи реагента является сложность настройки первичных и вторичных дозирующих устройств под конкретные осложняющие факторы в скважине.

Наиболее близким по технической сущности к заявляемому является устройство для подачи ингибитора, содержащее цилиндрический корпус с заглушкой, имеющий в верхней части отверстия, расположенные в верхнем и нижнем рядах, и ингибитор, размещенный в корпусе ниже отверстий, причем оси отверстий рядов направлены под углом и сходятся внутри корпуса (Патент РФ №2382177, E21B 37/06, 2010).

Устройство характеризуется невысокой точностью дозирования реагента и низкой адаптационной способностью к внутрискважинным условиям и ресурсом работы.

Настоящее изобретение решает задачу повышения точности и продолжительности дозирования реагента различного агрегатного состояния в скважинную жидкость с учетом ее химико-технологических характеристик.

Указанный технический результат достигается тем, что в устройстве для подачи реагента в скважину в виде цилиндрического корпуса с расположенными в верхней части заглушкой и отверстиями, заполненного реагентом ниже уровня отверстий с образованием свободной полости, согласно изобретению, в заглушке выполнено сквозное отверстие, перекрытое снаружи дозатором, а со стороны свободной полости - рукавным фильтром, на корпусе установлена муфта с отверстиями для выноса разбавленного реагента, поступившего из свободной полости через дозатор.

Наличие рукавного фильтра, перекрывающее отверстие в заглушке со стороны свободной полости, предотвращает попадание механических примесей внутрь дозатора и обеспечивает стационарный режим дозирования реагента.

Отверстия в цилиндрическом корпусе направлены под острым углом к его оси в сторону, противоположную движению жидкости в скважине. Над отверстиями могут быть установлены козырьки для увеличения площади забора жидкости и ее направленного движения внутрь корпуса.

Дозатор может быть выполнен из профилированной проволоки или из пористого спеченного материала или из металлической или полимерной сетки. Через дозатор осуществляется гидравлическая связь свободной полости со скважиной.

Дозатор может иметь, например, цилиндрическую или дискообразную форму, минимизирующую попадание механических примесей из пластовой жидкости на проницаемую поверхность, через которую осуществляется дозирование реагента. Точность подачи реагента определяется размером характерного отверстия дозатора; в зависимости от конструктивного исполнения дозатора, таким размером является щель, пора или ячейка. Габариты дозатора задают удельное количество проходящего сквозь него реагента.

Дозатор выполнен из материала с высокой химической и коррозионной стойкостью по отношению к реагенту и скважинной жидкости, например, из нержавеющей стали или стеклопластика.

Цилиндрические корпуса присоединяются друг к другу или к основанию погружного электродвигателя с помощью гибкого или жесткого элемента, не нарушающего гидравлическую связь полости корпуса со скважиной. Примером жесткого элемента является соединительная муфта с отверстиями на боковой поверхности, направленными под острым углом к оси в сторону движения жидкости в скважине, причем площади сечения отверстий на муфте и цилиндрическом корпусе равны.

Реагент может иметь различный химический состав и агрегатное состояние, которые подбираются с учетом внутрискважинных условий.

На фиг. схематично изображено заявляемое устройство для подачи реагента, общий вид, разрез.

Устройство содержит цилиндрический корпус 1 с заглушкой 2 и отверстиями 3 в верхней части, оси которых направлены под острым углом к его оси вниз. Корпус 1 заполнен ниже уровня отверстий 3 твердым или жидким реагентом 4 так, что вверху остается свободная полость 5. Состав и агрегатное состояние реагента подбираются с учетом температуры, обводненности и химического состава добываемой жидкости. Над отверстиями 3 размещены козырьки 8. В заглушке 2 выполнено сквозное отверстие 6, которое снаружи перекрыто дозатором 7, а изнутри - рукавным фильтром 9, например, из полимерного материала. Размеры характерных отверстий и габариты дозатора определяются дебитом скважины. На цилиндрическом корпусе 1 установлена муфта 10, на боковой поверхности которой выполнены отверстиями 11, оси которых направлены под острым углом вверх. Площади сечения отверстий 11 на муфте 10 и отверстий 3 на корпусе 1 равны, при этом диаметр, количество и угол наклона оси подбираются в зависимости от подачи жидкости и необходимого содержания в ней реагента.

Устройство для подачи реагента работает следующим образом.

Заполненные реагентом 4 цилиндрические корпуса 1 с транспортировочными пробками в отверстиях 3 и 6 доставляют на месторождение. При спуске корпусов 1 в скважину пробки из отверстий 3 удаляют, а пробки из отверстий 6 в заглушках 2 заменяют дозаторами 7. Параметры дозаторов 7 выбираются с учетом химико-технологических характеристик скважинной жидкости и требуемой точности и продолжительности дозирования реагента. Корпуса 1 соединяют друг с другом, например, соединительными муфтами 10. Количество одновременно спускаемых корпусов задается дебитом скважины. Устройство для подачи реагента размещается в скважине выше интервала перфораций.

При включении погружного насоса добываемая жидкость движется вдоль корпусов вверх. Небольшой поток жидкости поступает через отверстия 3 в свободную полость 5 цилиндрического корпуса 1 и растворяет по диффузионному механизму или смешивается с находящимся в нем твердым или жидким реагентом 4. Благодаря козырьковым элементам 8 и ориентации отверстий 3 интенсифицируется забор и вихревое течение жидкости в свободной полости 5, способствующее растворению, перемешиванию и образованию раствора реагента повышенной концентрации. Скважинная жидкость, поступающая в свободную полость 5, продавливает концентрированный раствор реагента через рукавный фильтр 9 и отверстие 6 в заглушке 2 во внутреннюю полость дозатора 7, при этом раствор очищается от механических примесей. Далее раствор реагента по каналам дозатора 7 - щелям, порам или ячейкам дозируется в скважинную жидкость, заполняющую внутреннюю полость муфты 10, где происходит их смешивание. Разбавленный раствор выносится через отверстия 11 из полости муфты 10 в затрубное пространство за счет вихревых течений, смешивается с основным потоком добываемой жидкости и попадает на прием погружного насоса. Благодаря наличию реагента предотвращается отложение солей на рабочих органах насоса.

1. Устройство для подачи реагента в скважину в виде цилиндрического корпуса с заглушкой и отверстиями в верхней части, заполненного реагентом ниже уровня отверстий с образованием свободной полости, отличающееся тем, что в заглушке выполнено сквозное отверстие, перекрытое снаружи дозатором, а со стороны свободной полости - рукавным фильтром, на корпусе установлена муфта с отверстиями для выноса разбавленного реагента, поступающего из свободной полости через дозатор.

2. Устройство для подачи реагента в скважину по п.1, отличающееся тем, что отверстия в цилиндрическом корпусе направлены под острым углом к его оси в сторону, противоположную движению жидкости в скважине.

3. Устройство для подачи реагента в скважину по п.1, отличающееся тем, что над отверстиями установлены козырьки.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности, а именно к способам борьбы с асфальтено-смоло-парафиновыми отложениями при добыче парафинистой нефти. Способ депарафинизации нефтедобывающей скважины включает создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов, вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб.

Изобретение относится к нефтяной и газовой промышленности и может использоваться при защите от внутренней коррозии трубопроводов системы сбора нефти с высокой обводненностью на поздней стадии разработки нефтяного месторождения.

Изобретение относится к нефтяной промышленности. .

Изобретение относится к автономным устройствам для доставки реагента в скважину и его дозирования в добываемую жидкость. .

Изобретение относится к нефтяной промышленности и может быть использовано для предупреждения образования отложений неорганических соединений солей в процессе добычи нефти в скважинах с исправным состоянием обсадных колонн и оборудованных УЭЦН.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для дозированной подачи жидких реагентов в нефте- или газопроводы при обработке призабойной скважины.

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. .

Изобретение относится к нефтегазодобывающей отрасли и может найти применение для очистки нефтяных и газовых скважин от отложений. .

Изобретение относится к нефтегазодобывающей отрасли, а именно к устройствам для подачи химических реагентов в скважинную жидкость для предотвращения отложения солей на рабочих органах электроцентробежных насосов.

Изобретение относится к нефтедобывающей промышленности, в частности к способам удаления неорганических солей, отложившихся в скважинах и на поверхности нефтепромыслового оборудования.

Изобретение относится к способам ингибирования образования гидратов углеводородов в прискважинной зоне или в участках трубопровода при добыче и транспорте природных и попутных газов и может быть использовано в процессах добычи, транспорта и хранения нефти. В способе ингибирования образования гидратов углеводородов, включающем закачку в прискважинную зону или в участок трубопровода водной композиции полимера, указанная композиция содержит водный раствор полимера из группы, включающей: сополимер пирролидона или капролактама, терполимер на основе N-винил-2-пирролидона, диметиламиноэтилметакрилат, гидроксиэтилцеллюлозу, поливинилпирролидон, поливинилкарбоксилат, полиакрилат, поливинилкапролактам, акриламидометилпропансульфонат полиакриламид, гипан, полиоксипро в масле полимера из группы, включающей: полиакриламид, карбоксиметилцеллюлозу, эфир оксиэтилцеллюлозы, полиметакрилат, поливинилацетат или поливиниловый спирт или их сополимеры, и дополнительно - карбамидоформальдегидный концентрат КФК и гидрофобизирующую добавку при следующем соотношении компонентов, масс.%: указанные водный раствор или эмульсия 0,05-5,0, КФК 0,1-5,0, гидрофобизирующая добавка 0,1-5,0, вода - остальное, а перед закачкой указанной композиции дополнительно закачивают оторочку КФК в количестве 0,1-5,0 мас.% от массы указанной композиции и осуществляют выдержку не менее 3-5 часов. Изобретение развито в зависимом пункте формулы. Технический результат - повышение ингибирующей способности. 1 з.п. ф-лы, 19 пр., 2 табл., 1 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента предложено использовать горячую нефть по технологии динамического воздействия. С этой целью выше и ниже глубинного насоса предварительно устанавливают камеры одинакового объема с электронагревательным элементом и датчиками температуры. Скважинную нефть после остановки ЭЦН нагревают до необходимой температуры в нижней камере и перемещают через полость насоса самим же насосом в верхнюю камеру нагрева. Для снижения скорости движения горячей нефти через полость насоса производительность последнего снижают с помощью частотного регулятора тока. При наличии клапана обратного трехпозиционного (КОТ) над верхней камерой нагрева горячую нефть возвращают обратно в нижнюю камеру с устья скважины с помощью передвижного насосного агрегата типа ЦА-320. При отсутствии выше насоса и верхней камеры нагрева обратного клапана типа КОТ горячая нефть самотеком под действием сил гравитации спускается в нижнюю камеру. Общее время циклического воздействия горячей нефти на отложения в полости глубинного электроцентробежного насоса должно быть равным времени, необходимому для полного растворения АСПО. Это время предварительно определяется в лабораторных условиях с моделированием скважинных условий. Периодическое применение способа на осложненных скважинах позволит повысить сроки их безаварийной эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для подачи химических реагентов в скважинную жидкость.Устройство содержит соединенные по торцам с помощью муфт цилиндрические контейнеры с реагентом, камеры смешения и фильтры-дозаторы, расположенные в муфтах, имеющих, по крайней мере, по одному ряду входных и выходных отверстий. Верхние торцы цилиндрических контейнеров перекрыты фильтрами-дозаторами, а нижние торцы - заглушками. Муфты снаружи оснащены уплотнительными манжетами. Фильтры-дозаторы помещены в цилиндрический корпус, оснащенный сверху калиброванным отверстием. Выше фильтра-дозатора в муфте установлен струйный насос, а ниже струйного насоса в муфте установлен эжектор, сообщенный с рядом входных отверстий муфт патрубками. Камера смешения расположена в муфте на выходе струйного насоса. Выше струйного насоса в муфте размещены диафрагмы с центральными щелевыми отверстиями. Каждое отверстие последующей диафрагмы смещено на угол 25-30° по направлению часовой или против часовой стрелки. Проходные сечения отверстий диафрагм выполнены уменьшающимися снизу вверх. Повышается эффективность работы устройства за счет повышения качества смешивания реагента и точности дозирования. 3 ил.

Изобретение относится к горнодобывающей промышленности. Технический результат - повышение добычи углеводородов и обеспечение бесперебойной работы скважин без остановок добычи на время ремонтов. В способе в скважины закачивают рабочие жидкости для обработки призабойных зон и вытеснения нефтей из пластов, производят ремонт скважин и антикоррозийную обработку труб и оборудования в них, очищают трубы в верхних частях добывающих скважин от асфальтеновых и смолопарафиновых отложений АСПО. В качестве рабочей жидкости используют комплексный органический растворитель, состоящий из производных ароматических углеводородов, сложных эфиров карбоновых и органических кислот, у которого изменяют плотность и вязкость в зависимости от изменяющихся условий конкретных месторождений. Процесс обработки пластов указанным растворителем из всех добывающих скважин на месторождениях повторяют многократно через заданные промежутки времени и поддерживают требуемый уровень добычи нефтей и газов на месторождениях. Для очистки от АСПО многократно прокачивают указанный растворитель с введенными в него антикоррозийными добавками в виде фосфатов по трубам из забоев скважин на поверхность и обратно по замкнутому циклу. Для добычи газа из месторождений с высокой обводненностью пластов и низким пластовым давлением плотность комплексного органического растворителя изменяют для вытеснения пластовых вод вглубь пластов. Для увеличения объемов добычи нефтей одновременно с обработкой комплексным органическим растворителем призабойных зон всех добывающих скважин осуществляют глушение им всех нагнетательных скважин и вытесняют нефти в сторону добывающих скважин, при этом чередуют объемы закачки в нагнетательные скважины комплексного органического растворителя с объемами закачиваемых вслед за ним пластовых вод в соотношениях от 1:1 в начале закачки в пласты и до не менее 1:20 в конце по мере увеличения общего объема закачки в пласты этого состава. 2 ил.

В настоящем изобретении предложены способы обработки углеводородных текучих сред с целью уменьшения кажущейся вязкости углеводородных текучих сред, встречающихся в операциях с нефтью, уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе. Способ уменьшения кажущейся вязкости углеводородной текучей среды, встречающейся в операциях с нефтью, включает: приведение в контакт углеводородной текучей среды с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Способ уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе включает: приведение в контакт углеводородной текучей среды, встречающейся в операциях с нефтью, внутри затрубного пространства или трубопровода с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение производительности и эффективности выделения нефти после транспортировки. 2 н. и 1 3 з.п. ф-лы, 4 табл., 7 пр., 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для предотвращения коррозии и отложений на оборудовании. Устройство содержит установку дозировочную электронасосную, линию нагнетания в виде жесткого шланга, соединенную с помощью устройства ввода, выполненного в устьевой арматуре с капиллярным трубопроводом, проходящим по наружной поверхности колонны насосно-компрессорных труб и насосного агрегата, на нижнем конце которого размещены подвесное устройство, распылитель и центратор. Устройство ввода капиллярного трубопровода смонтировано в боковом отводе устьевой арматуры в виде патрубка с заглушкой, оснащенной центральным каналом. Снаружи канал заглушки сообщен с линией нагнетания, а изнутри - с верхним концом капиллярного трубопровода, имеющим возможность герметизации в заглушке. Между боковым отводом и заглушкой патрубок оснащен отводом с угловым вентилем. Капиллярный трубопровод выполнен в виде полимерного армированного кабеля и в подвесном устройстве соединен с полой штангой, жестко присоединенной сверху к подвесному устройству. На нижнем конце полой штанги установлен распылитель, оснащенный регулируемым обратным клапаном. Повышается надежность, эффективность, снижается металлоемкость. 2 ил.

Изобретение относится к нефтедобывающей промышленности и может применяться для очистки скважин от асфальтосмолопарафиновых отложений. Колонну труб спускают в скважину на глубину от 1 до 10 м от забоя, к первой затрубной задвижке монтируют нагнетательную линию и обвязывают ее с насосным агрегатом и автоцистернами с реагентом и технологической жидкостью.Насосным агрегатом по нагнетательной линии закачивают в затрубное пространство растворитель, одновременно вытесняя скважинную жидкость через колонну труб в нефтепровод и не превышая при этом давления, допустимого на эксплуатационную колонну. Отсоединяют от насосного агрегата автоцистерну с реагентом и подсоединяют к нему автоцистерну с технологической жидкостью, насосным агрегатом подают технологическую жидкость в нагнетательную линию в объеме 1,0 м3 и прокачивают реагент из нагнетательной линии в затрубное пространство скважины. Оставляют скважину на технологическую выдержку в течение 6 ч, закрывают задвижку на нефтепроводе и обвязывают первую затрубную задвижку с автоцистерной с растворителем. Промывают ствол скважины по замкнутому кругу в три цикла. Открывают вторую трубную задвижку, открывают задвижку на нефтепроводе и отсоединяют от насосного агрегата автоцистерну с реагентом и подсоединяют к нему автоцистерну с технологической жидкостью, промывают ствол скважины от растворителя технологической жидкостью, вытесняя его в нефтепровод и не превышая при этом давления, допустимого на эксплуатационную колонну и нефтепровод. Повышается эффективность очистки, сокращается длительность процесса, повышается культура производства. 2 ил.

Предложение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением. Устройство содержит колонну лифтовых труб с глубинным насосом, станцию управления на устье скважины, устьевую арматуру, оснащенную выкидной линией с трубной задвижкой, установленную на верхнем конце лифтовой колонны труб. Глубинный насос снизу оснащен хвостовиком, спущенным ниже интервала перфорации. Устьевая арматура оснащена двумя нагнетательными линиями, сообщенными с межколонным пространством скважины. Первая линия оснащена штуцером, задвижкой и обвязана с насосным агрегатом на устье скважины. Устройство оснащено манифольдной линией с задвижкой, гидравлически связывающей выкидную линию скважины со второй линией, оснащенной задвижной за манифольдной линией. В первом положении двухпозиционный переключатель потока жидкости обеспечивает подачу химического реагента от первой нагнетательной линии в межколонное пространство скважины. Во втором положении переключатель соединяет выкидную линию с отбираемой из скважины жидкостью через манифольдную линию со второй нагнетательной линией. Повышается надежность, упрощается конструкция. 2 ил.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для очистки скважин. На устье монтируют нагнетательную линию, проходящую через теплообменное устройство, которое обвязывают с паропередвижной установкой и автоцистернами с растворителем и технологической жидкостью, обвязанными с насосным агрегатом. Одновременно запускают в работу паропередвижную установку и насосный агрегат, заполняют эксплуатационную колонну и спущенную в нее колонну насосно-компрессорных труб растворителем, подогретым в теплообменном устройстве до температуры 75-80°C. Температуру растворителя на выходе из теплообменного устройства поддерживают путем изменения расхода насосного агрегата, подающего растворитель из автоцистерны, при постоянных значениях температуры и расхода пара, создаваемых паропередвижной установкой на ее выходе. Процесс заполнения растворителем производят с одновременным вытеснением в нефтепровод скважинной жидкости. По окончании заполнения растворителем прекращают подачу пара в теплообменное устройство, насосным агрегатом подают технологическую жидкость в нагнетательную линию в объеме 1,0 м3 и прокачивают растворитель в скважину. Оставляют скважину на технологическую выдержку в течение 4 ч, после чего запускают в работу глубинный насос в режиме циркуляции, запускают скважину в эксплуатацию и откачивают отработанный растворитель в нефтепровод. Повышается эффективность и надежность обработки, сокращается продолжительность, повышается культура производства. 1 ил.

Изобретение относится к газодобывающей промышленности и может быть применено для разработки трудноизвлекаемых залежей газа. Способ включает бурение основного ствола, спуск эксплуатационной колонны, проведение геофизических исследований, бурение горизонтального участка в продуктивном пласте. При этом основной ствол бурят с заданным зенитным углом, обсаживают его эксплуатационной колонной, в которой предварительно вырезано окно в алюминиевой оболочке для бурения и заканчивания бокового ствола меньшего диаметра. Продуктивные участки стволов бурят пологими и оснащают фильтрами соответствующих диаметров. Производят одновременный спуск сдвоенной лифтовой колонны насосно-компрессорных труб на основной и боковой горизонты, изолируя их между собой пакером выше кровли нижнего продуктивного горизонта, и осуществляют раздельную эксплуатацию горизонтов по отдельным колоннам насосно-компрессорных труб. При эксплуатации скважины осуществляют подачу метанола в автоматическом режиме с установленным расходом в трубное пространство основного ствола и затрубное пространство бокового ствола. Технический результат заключается в повышении эффективности разработки многопластовых месторождений, залежи которых гидродинамически не связаны между собой. 2 ил.
Наверх