Турбина высокого давления с усовершенствованной камерой регулирования радиального зазора подвижных лопаток и турбомашина, использующая такую турбину

Турбина высокого давления содержит наружный корпус, распределитель, лопастное колесо, узел, образующий кольцо и размещенный по окружности вращающихся лопастей, устройство для регулирования радиального зазора между законцовками вращающихся лопастей и кольцом, а также кольцевую опору и кольцевой амортизирующий элемент. Распределитель образован рядом направляющих лопаток, а лопастное колесо установлено на его выходной стороне. Устройство для регулирования радиального зазора включает камеру регулирования с кольцевыми камерами, прикрепленную к наружному корпусу, по меньшей мере, в двух местах на расстоянии друг от друга. Кольцевая опора поддерживает кольцо и прикреплена к наружному корпусу турбины. Кольцевой амортизирующий элемент выполнен с заданной упругостью, одним концом закреплен на кольцевой опоре, а другим концом опирается в осевом направлении на входную сторону камеры регулирования, для обеспечения амортизации, по меньшей мере, некоторой части вибраций камеры, возникающих при эксплуатации турбомашины. Другое изобретение группы относится к турбомашине, содержащей указанную выше турбину. Изобретения позволяют повысить срок службы камеры регулирования радиального зазора. 2 н. и 10 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение, и уровень техники

Настоящее изобретение относится к турбине высокого давления в турбомашине, например в турбореактивном двигателе или турбовинтовом двигателе.

Турбина высокого давления в турбомашине содержит, по меньшей мере, одну ступень, содержащую распределитель, образованный из кольцевого ряда нерегулируемых направляющих лопаток, и лопастное колесо, свободно установленное для вращения на выходной стороне распределителя в цилиндрической или конусной укороченной сборке кольцевых секторов, расположенных по окружности друг за другом. Эти кольцевые секторы содержат средства крепления к кольцевой опоре у их переднего и заднего концов, и кольцевая опора крепится к наружному корпусу турбины.

Радиальные зазоры между подвижными лопатками колеса и кольцевыми секторами должны быть сведены к минимуму для улучшения коэффициента полезного действия турбомашины при одновременном исключении трения между концами лопаток на кольцевых секторах, что могло бы привести к износу этих концов и уменьшить коэффициент полезного действия турбомашины при всех рабочих условиях.

Использование кольцевых вершин, окружающих закрепленное кольцо, за счет чего воздух отводится от других частей турбомашина, так чтобы свести к минимуму радиальные зазоры, уже были описаны. Отводимый воздух инжектируется на наружную поверхность неподвижного кольца и вызывает тепловое расширение или сжатие неподвижного кольца, тем самым варьируя его диаметр. Тепловое расширение и сжатие регулируются клапаном в зависимости от рабочей частоты вращения турбины, и клапан может регулироваться для контроля расхода и температуры воздуха, входящего в воздухопроводы. Узел, состоящий из воздуховодов и клапана, обычно носит название «камера регулирования зазора на законцовках лопаток».

Заявитель подавал на рассмотрение патентную заявку FR 2865237, описывающую, в частности, высокоэффективную камеру регулирования, поскольку инжектируемый воздух обеспечивает эффективное и равномерное охлаждение.

Фиг. 1 и 1А показывают пример камеры регулирования в сборе на наружном корпусе турбины высокого давления турбомашины. Эти фигуры показывают стенку 400 камеры 40 регулирования, прикрепленной к наружному корпусу 22 турбины 10 в двух диаметрально противоположных местах с помощью резьбового кольца 45.

Авторы изобретения показали, что при эксплуатации турбомашины, оборудованной турбиной высокого давления, в камере регулирования возникают вибрации, которые могут вызвать повреждения в местах ее крепления. Существует риск образования трещин в местах крепления.

Цель изобретения состоит в том, чтобы предложить решение для предотвращения возникновения пагубных нагрузок в местах крепления камеры регулирования к наружному корпусу при эксплуатации турбины высокого давления турбомашины.

Сущность изобретения

Для решения указанной задачи по изобретению предлагается турбина высокого давления для турбомашины, содержащая:

- наружный корпус,

- по меньшей мере, один распределитель, образованный из кольцевого ряда нерегулируемых направляющих лопаток,

- лопастное колесо, свободно установленное для вращения на выходной стороне распределителя,

- узел, образующий кольцо, размещенное по окружности вращающихся лопастей,

- устройство для регулирования радиального зазора между законцовками вращающихся лопастей и кольцом, содержащее камеру регулирования, окружающую кольцевые камеры и прикрепленную к наружному корпусу, по меньшей мере, в двух местах на расстоянии друг от друга,

- кольцевую опору, поддерживающую кольцо и прикрепленную к наружному корпусу, отличающуюся тем, что она также содержит кольцевой элемент с заданной гибкостью с одним концом, прикрепленным к кольцевой опоре, и с другим концом, который поддерживается за счет того, что он опирается в осевом направлении с заданным усилием на входную сторону камеры регулирования; кольцевой элемент с заданной гибкостью, опирающийся на опору с заданным усилием, таким образом, образует амортизатор, по меньшей мере, некоторой части вибраций камеры, возникающих при эксплуатации турбомашины.

Преимущественный пример камеры регулирования, которая может быть использована в изобретении, описан в патентной заявке FR 2865237. Таким образом, все содержание этой предшествующей заявки включено в эту заявку.

По изобретению энергия вибраций камеры, возникающих за счет динамического нагружения турбомашины, рассеивается в результате использования сочетания трения в осевой опоре и торможения камеры регулирования из-за изгибания дополнительного кольцевого элемента.

Это исключает риск образования трещин в местах крепления, делая некоторую часть вибрационных нагрузок некритичной.

Другими словами, амортизационный элемент по изобретению препятствует развитию пагубных режимов вибраций.

Соответственно, увеличивается срок службу камеры регулирования.

По варианту выполнения кольцевой амортизирующий элемент является металлической секцией, изготовленной с помощью механической обработки или штамповки листового материала.

Преимущественно геометрическая форма кольцевого амортизирующего элемента состоит из сплошного обода, прикрепленного к кольцевой опоре и продолжающегося множеством идентичных, расположенных через равные интервалы лопастей, наклоненных по отношению к ободу, криволинейный конец которых опирается с усилием на входную часть камеры.

Предпочтительно количество лопастей в кольцевом амортизирующем элементе кратно восемнадцати. Исследования показали, что этот выбор, например, использование семидесяти двух лопастей, равномерно распределенных по окружности диаметром 0,680 м, был вполне удовлетворительным.

По предпочтительному варианту выполнения камера регулирования и кольцевой амортизирующий элемент изготавливаются из одного материала.

По другому варианту выполнения износостойкий материал вставляется в опорную зону между амортизирующим элементом и входной стороной камеры, так чтобы уменьшить износ амортизатора или камеры из-за трения. Слой износостойкого материала предпочтительно наносится на входную сторону камеры в опорной зоне амортизирующего элемента.

По варианту выполнения кольцевой амортизирующий элемент состоит, по меньшей мере, из двух угловых секторов, прикрепленных один за другим и образующих готовую кольцевую форму амортизатора. Таким образом, амортизирующий элемент предпочтительно состоит из двух, шести или восемнадцати угловых секторов, прикрепленных один за другим и образующих готовую кольцевую форму амортизатора.

Предпочтительно, кольцевой амортизирующий элемент крепится к кольцевой опоре с помощью винтов, которые также крепят осевые ограничители. Эти части обычно называются стопорными пластинами.

Амортизирующий элемент может содержать, по меньшей мере, один угловой сектор, состоящий из сплошного обода, продолжающегося множеством идентичных, расположенных через равные интервалы лопастей, наклоненных по отношению к ободу, конец которых является криволинейным.

И, наконец, изобретение также относится к турбомашине, содержащей турбину высокого давления, подобную турбине, описанной выше.

Краткое описание чертежей

Другие преимущества и отличительные характеристики изобретения станут понятными после изучения подробного описания, приведенного в качестве примера со ссылкой на следующие фигуры, на которых:

фиг. 1 - схематичный разрез турбины высокого давления турбореактивного двигателя в местах крепления камеры регулирования к наружному корпусу,

фиг. 1А - детальный вид по фиг. 1, показывающий зону крепления камеры регулирования к наружному корпусу,

фиг. 2 - частичный схематичный вид в продольном разрезе турбины высокого давления турбореактивного двигателя по изобретению,

фиг. 3 - детальный вид в перспективе амортизирующего элемента по изобретению,

фиг. 4 - частичный вид в перспективе в разрезе турбины высокого давления по изобретению в местах крепления камеры регулирования к наружному корпусу.

Подробное описание конкретных вариантов выполнения

Фиг. 1 схематично показывает часть турбомашины, например турбореактивного двигателя и турбовинтового двигателя самолета, содержащей турбину 10 высокого давления, расположенную на стороне выхода камеры 12 сгорания и на стороне входа турбины 14 низкого давления турбомашины.

Камера 12 сгорания содержит наружную стенку 50 вращения, соединенную у стороны ее выхода с радиально внутренним концом конусной укороченной стенки 58, которая содержит радиально наружный кольцеобразный фланец 60 у своего радиально наружного конца для крепления к соответствующему кольцеобразному фланцу 62 на наружном корпусе 64 камеры.

Турбина 10 высокого давления содержит одну ступень турбины, в которой предусмотрен распределитель 16, образованный из кольцеобразного ряда нерегулируемых направляющих лопаток, и лопаточное колесо 18, свободно установленное для вращения на стороне выхода распределителя 16.

Турбина 14 низкого давления содержит несколько ступеней турбины, причем каждая из этих ступеней также содержит распределитель и лопаточное колесо; на фиг. 1 показан только распределитель 47 на входе ступени низкого давления.

Колесо 18 турбины высокого давления вращается внутри приблизительно цилиндрического узла из кольцевых секторов 20, расположенных один за другим по окружности и подвешенных в наружном корпусе 22 турбины с помощью кольцеобразной опоры 24. Эта кольцеобразная опора 24 содержит средство 26 крепления кольцевых секторов 20 у ее внутренней периферии и содержит стенку 28, которая продолжается наружу и в направлении входа и которая соединена с радиально наружным фланцем 30 для крепления наружного корпуса турбины 22 у ее радиально наружного конца. Фланец 60 вставлен в осевом направлении между фланцем 30 и фланцем 62 корпуса 22 турбины и зажат в осевом направлении между этими фланцами соответствующими средствами 7 типа винт/гайка.

Кольцеобразная опора 24 содержит у своей внутренней периферии две радиальных кольцевых стенки 34, 36 на входе и выходе, соответственно, которые соединены друг с другом цилиндрической стенкой 38. Радиальные стенки 34, 36 содержат цилиндрические края 90, обращенные к стороне выхода у их радиально внутренних концов, и эти края взаимодействуют с периферийными ловителями 92, 94, установленными у выходного и входного концов кольцевых секторов 20. Кольцевое стопорное устройство 96 с С-образным сечением присоединено в осевом направлении у выходного конца на выходном цилиндрическом краю 90 опоры и на выходных ловителях 94 кольцевых секторов для стопорения сборки.

Стенка 28 кольцевой опоры 24 и конусная укороченная стенка 58 камеры образуют кольцевую полость 80, которая вентилируется и в которую подается охлаждающий воздух через отверстия 82, образованные в конусной укороченной стенке 58. Непоказанные отверстия образованы во входной радиальной стенке 34 кольцевой опоры 24 для создания канала для движения среды между полостью 80 и кольцевой полостью 86 для охлаждения кольцевых секторов 28, ограниченных снаружи цилиндрической стенкой 38 кольцевой опоры.

Наружная стенка 66 распределителя содержит кольцевую канавку 74 как у входного конца, так и у выходного конца, открывающуюся в радиальном направлении наружу. В эти канавки помещено кольцевое герметичное уплотнение 76, которое взаимодействует с цилиндрическими ребрами 78, образованными на конусной укороченной стенке 58 и на входной радиальной стенке 34 кольцевой опоры 24, соответственно, во избежание прохождения газа радиально наружу из потока турбины через наружную стенку 66 и, наоборот, во избежание прохождения воздуха радиально внутрь из полости 80 в поток турбины.

Радиальный зазор между законцовками подвижных лопастей 18 и кольцом 20 также должен быть сведен к минимуму для увеличения коэффициента полезного действия турбины.

Для регулирования зазора предусмотрено дополнительное устройство D. Это устройство D содержит кольцевую камеру 40 регулирования, окружающую неподвижное кольцо 20, и, конкретнее, кольцевую опору 24.

В зависимости от рабочей частоты вращения турбомашины камера 40 регулирования либо охлаждает, либо нагревает входное кольцо 240 и выходное ребро 242 кольцевой опоры 24 за счет продувки воздуха через эти лопатки. Кольцевая опора 24 сжимается или расширяется, когда этот воздух контактирует с этой опорой, что уменьшает или увеличивает диаметр сегментов 20 неподвижного кольца турбины, так чтобы изменять зазор у законцовок лопаток 18.

Камера 40 регулирования поддерживает, по меньшей мере, три кольцевых камеры 41, 42 и 43 циркуляции воздуха, которые окружают кольцевую опору 24 неподвижного кольца в сборе. Эти камеры расположены на расстоянии друг от друга в осевом направлении и приблизительно параллельны друг другу. Они расположены с каждой стороны боковых поверхностей каждого из ребер 240, 242 и они приблизительно соответствуют форме этих ребер.

Камера 40 регулирования также содержит непоказанную сборную трубу для подачи воздуха в камеры 41, 42 и 43 циркуляции воздуха. Эта труба сбора воздуха окружает камеры 41, 42 и 43 и подает к ним воздух через воздушные каналы 44.

В показанном варианте выполнения такая камера 40 регулирования состоит из двух сжатых полукожухов и крепится к наружному кожуху 22 с помощью резьбовых колец 45 в двух диаметрально противоположных местах (фиг. 1).

Авторы изобретения определили, что во время эксплуатации турбомашины, содержащей турбину 10 высокого давления, показанную выше, существует риск образования трещин в местах 45 крепления. Они показали, что это связано с тем, что камера 40 регулирования подвергается пагубной вибрации, которая может привести к повреждению в местах 45 крепления.

Фиг. 1 и 1А схематично показывают эллиптические контуры, представляющие определенные зоны Z, в которых существует риск образования трещин вблизи крепежных отверстий 46.

Изобретение уменьшает этот риск образования трещин за счет внедрения кольцевого элемента 5 с заданной гибкостью внутрь полости, ограниченной кольцевой опорой 24 и наружным корпусом 22 на стороне входа в камеру 40 регулирования (фиг. 2 и 4).

Этот элемент внедряется так, что один из его концов 51 неподвижно крепится к кольцевой опоре 24 с помощью соединения 29 винт/гайка, а другой конец 52 просто опирается и контактирует в осевом направлении с заданным усилием с входной частью 401 камеры 40 регулирования.

Этот кольцевой элемент 5 с заданной гибкостью опирается на опору с заданным усилием и образует амортизатор, по меньшей мере, некоторой части вибраций камеры 40 регулирования, возникающих при эксплуатации турбины.

Таким образом, амортизация колебаний, предусматриваемая по изобретению, является средством рассеивания энергии вибраций камеры 40, возникающих при эксплуатации турбомашины, за счет сочетания трения в осевой и торможения камеры 40 регулирования из-за изгибания кольцевого элемента между его концами 51, 52 при эксплуатации турбомашины. Другими словами, амортизирующий элемент 5 улучшает рассеивание энергии и динамическое демпфирование камер 41, 42 и 43, регулируя радиальный зазор вращающихся лопаток 18.

Таким образом, амортизирующий элемент 5 позволяет устранить нагрузки от механической вибрации камеры 40 регулирования без необходимости изменения способа, с помощью которого она крепится к наружному кожуху (фиг. 4).

В показанном варианте выполнения каждый кольцевой сектор, образующий амортизирующий элемент 5, является металлической секцией, полученной листовой штамповкой.

Как показано на фиг. 3, геометрическая форма амортизирующего элемента 5 состоит из сплошного обода 51, прикрепленного к кольцевой опоре и продолжающегося с помощью множества идентичных, расположенных через равные интервалы лопастей 510, наклоненных по отношению к ободу 51, криволинейный конец 52 которых опирается с усилием на входную часть 401 камеры. Эти лопасти 510, которые упираются с усилием на входную часть камеры, могут быть изготовлены, например, из сплошной металлической секции посредством механической обработки типа «распиливания», которая схематично показана в виде пространства 53 между двумя смежными лопастями 510. По необходимости, в частности, в качестве функции заданного опорного давления, которое должно быть получено на камере, количество лопастей 510 по всей окружности может варьироваться посредством модификации ширины выполняемого распила. Количество лопастей в амортизирующем элементе 5 кратно восемнадцати. Например, было бы желательным количество лопастей, равное семидесяти двум. Также можно использовать тридцать шесть или сто сорок четыре лопасти. Камера 40 регулирования и амортизирующий элемент 5 предпочтительно изготавливаются из одного материала, например из сплава Hastelloy® X.

Предпочтительно вставить износоустойчивый материал в опорную зону 52 между амортизирующим элементом 5 и входной частью 401 камеры 40 во избежание преждевременного износа камеры 40 регулирования или амортизирующего элемента 5 из-за взаимного трения и для улучшения рассеивания энергии за счет трения. Может быть использован сплав Tribaloy® 800 или сплав Tribaloy® 800 с CoCrAlYSi. Вставляемый материал преимущественно может быть слоем износоустойчивого материала, нанесенного на входную часть 401 камеры 40 в опорной зоне 52 амортизирующего элемента 5. Нанесение грубого слоя с помощью такого способа изменяет коэффициент трения и улучшает рассеивание энергии.

Амортизирующий элемент 5 состоит, по меньшей мере, из двух угловых секторов, прикрепленных один за другим и образующих готовую кольцевую форму амортизатора. Как минимум два угловых сектора удовлетворяют требованиям к сборке и различным ограничениям расширения, встречающимся в зоне крепления кольцевой опоры 24 турбины высокого давления. Количество угловых секторов при желании может быть увеличено. Например, для получения готовой кольцевой формы амортизатора может быть использовано два, шесть или восемнадцать угловых секторов, прикрепленных один за другим. Восемнадцать является наиболее предпочтительным числом идентичных угловых секторов, поскольку это обеспечивает крепление каждого сектора к кольцевой опоре с помощью гаек/винтов 29, которые также используются для крепления осевых ограничителей 88. Эти части обычно называются стопорными пластинами.

Таким образом, по изобретению количество угловых секторов и количество лопаток должно быть кратно количеству крепежных винтов, так чтобы секторы были идентичными.

Следовательно, любое средство для получении угловых секторов, с помощью которого они могут быть прикреплены за счет использования существующих систем 29 винт/гайка, чтобы установить осевые ограничители, является преимущественным, поскольку изобретение не требует каких-либо дополнительных средств крепления амортизатора.

Описанное выше изобретение является преимущественным, поскольку оно устраняет проблему возникновения пагубных механических нагрузок, прикладываемых к камере регулирования при эксплуатации турбомашины с установленным амортизатором, который:

- можно легко изготовить (легко собираемая металлическая секция 5),

- можно адаптировать к существующей турбине высокого давления без изменения окружающих условий (секция крепится в существующую конструкционную полость между наружным корпусом 22 и кольцевой опорой с помощью винтов/болтов, которые уже использовались для крепления других частей; не требуется никаких изменений в способе крепления камеры регулирования).

1. Турбина (10) высокого давления турбомашины, содержащая
- наружный корпус,
- по меньшей мере, один распределитель (10), образованный из кольцевого ряда нерегулируемых направляющих лопаток,
- лопастное колесо (18), свободно установленное для вращения на выходной стороне распределителя,
- узел, образующий кольцо (20), размещенное по окружности вращающихся лопастей,
- устройство для регулирования радиального зазора (D) между законцовками вращающихся лопастей и кольцом, содержащее камеру (40) регулирования с кольцевыми камерами (41, 42, 43), прикрепленную к наружному корпусу (22), по меньшей мере, в двух местах на расстоянии друг от друга,
- кольцевую опору (14), поддерживающую кольцо (20) и прикрепленную к наружному корпусу (22),
отличающаяся тем, что
она содержит кольцевой амортизирующий элемент (5) с заданной упругостью, который одним концом (51) закреплен на кольцевой опоре (24), а другим концом (52) опирается в осевом направлении на входную сторону (401) камеры (40) регулирования, для обеспечения амортизации, по меньшей мере, некоторой части вибраций камеры, возникающих при эксплуатации турбомашины.

2. Турбина (10) высокого давления по п.1, отличающаяся тем, что кольцевой амортизирующий элемент (5) выполнен из металла путем механической обработки или штамповки листового материала.

3. Турбина (10) высокого давления по любому из пп.1 или 2, отличающаяся тем, что геометрическая форма кольцевого амортизирующего элемента (5) образована сплошным ободом (51), присоединенным к кольцевой опоре (24) и продолжающимся множеством идентичных, расположенных через равные интервалы лопастей (510), наклоненных по отношению к ободу, криволинейный конец (52) которых опирается с усилием на входную часть (401) камеры (40).

4. Турбина (10) высокого давления по п.3, отличающаяся тем, что количество лопастей (510) в кольцевом амортизирующем элементе (5) кратно восемнадцати.

5. Турбина (10) высокого давления по любому из пп.1, 2, отличающаяся тем, что камера (40) регулирования и кольцевой амортизирующий элемент (5) изготовлены из одного материала.

6. Турбина (10) высокого давления по любому из пп.1, 2, отличающаяся тем, что в опорную зону между кольцевым амортизирующим элементом и входной стороной камеры вставлен износостойкий материал для обеспечения уменьшения износа амортизатора или камеры из-за трения.

7. Турбина (10) высокого давления по п.6, отличающаяся тем, что слой износостойкого материала нанесен на входную сторону камеры (40) в опорной зоне (401) амортизирующего элемента (5).

8. Турбина (10) высокого давления по любому из пп.1, 2, отличающаяся тем, что кольцевой амортизирующий элемент состоит, по меньшей мере, из двух угловых секторов, закрепленных один за другим, образуя кольцевую форму амортизатора.

9. Турбина (10) высокого давления по п.8, отличающаяся тем, что кольцевой амортизирующий элемент состоит из шести или восемнадцати угловых секторов, закрепленных один за другим и образующих кольцевую форму амортизатора.

10. Турбина (10) высокого давления по любому из пп.1, 2, отличающаяся тем, что кольцевой амортизирующий элемент крепится к кольцевой опоре с помощью винтов, которые также крепят осевые ограничители (88).

11. Турбина (10) высокого давления по п.2, отличающаяся тем, что кольцевой амортизирующий элемент (5) выполнен из сплошного обода (51), продолжающегося множеством идентичных, расположенных через равные интервалы лопастей (510), наклоненных по отношению к ободу (51), конец (52) которых является криволинейным.

12. Турбомашина, содержащая турбину высокого давления по одному из пп.1-11.



 

Похожие патенты:

Двухконтурный газотурбинный двигатель (ГТД) содержит компрессор, камеру сгорания, турбину, содержащую охлаждаемую ступень с сопловым аппаратом с полостями над и пол ним, и ротор турбины с охлаждаемым рабочим колесом и аппаратом закрутки перед ним.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпусы, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины, в том числе корпусов.

Двухконтурный газотурбинный двигатель содержит компрессор, имеющий по меньшей мере одну ступень, камеру сгорания, содержащую жаровую трубу, турбину, содержащую по меньшей мере одну охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины, в том числе корпуса.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины и корпуса.

Турбина двухконтурного газотурбинного двигателя содержит, по меньшей мере, одну охлаждаемую ступень с сопловым аппаратом, ротор и статор турбины. Сопловой аппарат выполнен с полостями над ним и под ним.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины и корпуса, а также средство регулирования радиальных зазоров.

Газотурбинный двигатель содержит компрессор и турбину, а также средство регулирования радиальных зазоров по меньшей мере одной ступени компрессора и/или турбины.

Турбина двухконтурного газотурбинного двигателя содержит охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним и ротор турбины с охлаждаемым рабочим колесом и аппаратом закрутки перед ним, а также статор турбины.

Газотурбинный двигатель содержит компрессор, имеющий несколько осевых ступеней, содержащих корпус, направляющие аппараты и рабочие лопатки, и турбину, содержащую корпус и как минимум одну ступень с сопловым аппаратом и рабочим колесом, а также средство регулирования радиальных зазоров по меньшей мере одной ступени компрессора и/или турбины. Средство регулирования радиального зазора выполнено в виде перфорированной кольцевой вставки из материала «с памятью формы» в корпусе компрессора и/или турбины, с образованием зазора, установленной над соответствующими рабочими лопатками как минимум одной ступени и магистрали подачи охлаждающего воздуха в полость зазора. В магистрали подачи охлаждающего воздуха установлен клапан. Кольцевая вставка выполнена пористой. На внутренней поверхности кольцевой вставки может быть нанесено мягкое покрытие, например графитовое, или закреплены панели «сотового уплотнения». Достигается эффективное регулирование радиальных зазоров, повышение тяги на взлетном и форсажном режиме, повышение КПД и надежности двигателя. 2 з.п. ф-лы, 9 ил.

Газотурбинный двигатель содержит компрессор, имеющий несколько осевых ступеней, содержащих корпус, направляющие аппараты и рабочие лопатки, и турбину, содержащую корпус и как минимум одну ступень с сопловым аппаратом и рабочим колесом, а также средство регулирования радиальных зазоров по меньшей мере одной ступени компрессора и/или турбины. Средство регулирования радиального зазора выполнено в виде кольцевой вставки из материала «с памятью формы» в корпусе компрессора и/или турбины, установленной над соответствующими рабочими лопатками как минимум одной ступени. Средство регулирования выполнено пористым. На внутренней поверхности кольцевой вставки нанесено мягкое покрытие, например графитовое, или могут быть закреплены панели «сотового уплотнения». Достигается эффективное регулирование радиальных зазоров, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности двигателя. 2 з. п. ф-лы, 7 ил.

Газотурбинный двигатель содержит компрессор, камеру сгорания, ротор и статор турбины. Турбина содержит охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним. Ротор турбины выполнен с охлаждаемым рабочим колесом и аппаратом закрутки перед ним. Статор турбины содержит по меньшей мере два корпуса турбины с полостями между ними и систему регулирования радиального зазора, содержащую кольцевую вставку над рабочим колесом турбины. Полость над сопловым аппаратом соединена трубопроводом отбора воздуха, содержащим регулятор расхода с выходом из компрессора. Одна из полостей между корпусами турбины соединена трубопроводом, содержащим второй регулятор расхода с промежуточной ступенью компрессора. Система регулирования радиального зазора содержит бортовой компьютер и датчики измерения радиального зазора, регулятор расхода. Приводы клапанов и датчики измерения радиального зазора соединены электрическими связями. Способ регулирования радиального зазора в турбине включает охлаждение ротора и статора. Измеряют радиальный зазор и в зависимости от его величины производят изменение расхода воздуха для охлаждения статора турбины. Расход воздуха для охлаждения ротора турбины дискретно изменяют в зависимости от режима работы ГТД. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги, повышение КПД и надежности двигателя. 2 н.п. ф-лы, 14 ил.

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой ступени включает множество радиально расположенных лопаток, закрепленных на диске. Устройство содержит кожух, закрепленный на валу и размещенный под дисками, по меньшей мере, трех последних ступеней компрессора, и систему из уплотнений и щелей между этими дисками и кожухом, отверстий в указанных дисках и выпускных отверстий кожуха. Вход в устройство связан с областью конца компрессора, где циклические нагрузки на авиадвигатель определяют максимальный нагрев воздуха. Уплотнения, щели и отверстия размещены так, что создают петлеобразное течение указанного воздуха в кожухе от входа вдоль полотен дисков к выпускным отверстиям, через которые воздух попадает в кожух, в общем направлении, противоположном направлению воздушного потока в проточной части. Достигается снижение тепловых напряжений дисков ротора, минимизация внутренних утечек сжатого воздуха оптимизацией изменения радиального зазора адекватно циклическим нагрузкам авиационного двигателя за счёт соответствующего изменения температуры дисков. 5 з.п. ф-лы, 5 ил.

Способ регулирования радиального зазора в турбине двухконтурного газотурбинного двигателя включает охлаждение ротора воздухом высокого давления, отбираемым из-за компрессора, и статора воздухом второго контура. Для охлаждения статора турбины используют часть расхода воздуха второго контура, который отбирают, используя воздухозаборник, и увеличивают скорость охлаждающего воздуха в тракте охлаждения статора турбины. Измеряют радиальный зазор и в зависимости от его величины производят изменение расхода охлаждающего воздуха для охлаждения статора турбины. Использованный воздух сбрасывают во второй контур или после турбины. Двухконтурный газотурбинный двигатель содержит компрессор, камеру сгорания, охлаждаемую турбину. Статор турбины выполнен охлаждаемым воздухом второго контура. Система подачи охлаждающего статор воздуха выполнена в виде воздухозаборника, установленного во втором контуре, и регулятора расхода с приводом, и также содержит бортовой компьютер и датчики измерения радиального зазора. Привод регулятора расхода и датчики измерения радиального зазора соединены электрическими связями с бортовым компьютером. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности турбины. 2 н. и 2 з.п. ф-лы, 15 ил.

Турбина двухконтурного газотурбинного двигателя содержит охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним и ротор турбины с охлаждаемым рабочим колесом. Статор турбины содержит по меньшей мере два корпуса турбины с полостями между ними и систему регулирования радиального зазора, содержащую кольцевую вставку над рабочим колесом турбины. Полость над сопловым аппаратом соединена трубопроводом отбора воздуха, содержащим регулятор расхода с выходом из компрессора. Система регулирования радиального зазора содержит бортовой компьютер, датчики измерения радиального зазора и источники СВЧ-излучения, установленные над вставкой. Датчики измерения радиального зазора и источники СВЧ-излучения соединены электрическими связями с бортовым компьютером. Источники СВЧ-излучения выполнены с возможностью прогревать кольцевую вставку. Измеряют радиальный зазор и в зависимости от его величины производят включение источников СВЧ-излучения. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режимах, повышение КПД и надежности турбины. 3 н. и 1 з.п. ф-лы, 7 ил.

Газотурбинный двигатель содержит, по меньшей мере, одну охлаждаемую ступень турбины с сопловым аппаратом с полостями над ним и под ним, системы охлаждения ротора и обдува статора турбины, корпус турбины и систему регулирования радиального зазора. Корпус турбины выполнен состоящим из внешнего корпуса и внутренней оболочки с по меньшей мере одной кольцевой вставкой, установленной между ними. Системы охлаждения ротора и обдува статора каждой ступени турбины выполнены независимыми, содержащими магистрали отбора воздуха и регуляторы расхода, но все магистрали отбора охлаждающего воздуха соединены с полостью за компрессором. В системах обдува статора установлены электрические подогреватели воздуха. Газотурбинный двигатель может содержать бортовой компьютер и датчики измерения радиального зазора над каждым рабочим колесом всех охлаждаемых ступеней турбины, соединенные электрическими связями с бортовым компьютером. Каждая кольцевая вставка может быть выполнена пустотелой и заполнена теплоаккумулирующим веществом. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности турбины. 3 з.п. ф-лы, 6 ил.

Группа изобретений относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД. Турбина газотурбинного двигателя содержит по меньшей мере одну охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним и ротор турбины с охлаждаемым рабочим колесом, а также статор турбины. Статор содержит по меньшей мере два корпуса турбины с полостями между ними. Система регулирования радиального зазора содержит кольцевую вставку над рабочим колесом турбины. Полость над сопловым аппаратом соединена трубопроводом отбора воздуха, содержащим регулятор расхода с выходом из компрессора. Система регулирования радиального зазора содержит бортовой компьютер, датчики измерения радиального зазора, установленные над вставкой. Датчики измерения радиального зазора соединены электрическими связями с бортовым компьютером. Кольцевая вставка выполнена из материала с высоким удельным сопротивлением и соединена силовыми кабелями через коммутатор с источником энергии. Радиальный зазор измеряют и в зависимости от его величины производят включение электрического тока, проходящего через кольцевую вставку. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности турбины. 2 н. и 4 з.п. ф-лы, 9 ил.

Турбомашина содержит средства регулирования зазоров между вершинами подвижных лопаток (16) турбины высокого давления и наружным корпусом (12), расположенным вокруг этих лопаток (16), средства (48, 46) охлаждения наружного корпуса посредством воздействия воздуха, отбираемого из компрессора высокого давления турбомашины, первые средства (60) электрического нагрева верхней части наружного корпуса (12) и вторые средства электрического нагрева нижней части наружного корпуса (12), импульсные средства управления (63) средствами (48, 61, 46) охлаждения посредством воздействия воздуха и автономные средства управления средствами электрического нагрева (60). Автономное функционирование средств электрического нагрева верхней части и нижней части корпуса позволяет решить проблему повторного запуска в горячем состоянии турбомашины, управляя при этом конкретно только нагреванием нижней части наружного корпуса, исключить линию отбора горячего воздуха, также достигается упрощение конструктивного исполнения. 2 н. и 10 з.п. ф-лы, 5 ил.

Устройство крепления кольца газовой турбины, охватывающего подвижные лопатки, приводимые в движение газовым потоком, содержит входной и выходной зацепы. Входной зацеп обращен к входу турбины и размещен во входной канавке кольца, открытой к выходу. Выходной зацеп обращен к выходу и размещен в выходной канавке кольца, открытой к входу. Между входным и выходным зацепами сформирована полость повышенного давления, запитываемая охлаждающим газом. На входе входного зацепа расположены средства подачи охлаждающего газа для охлаждения входного зацепа, а на выходе выходного зацепа - средства подачи охлаждающего газа для охлаждения выходного зацепа. Средства подачи охлаждающего газа выполнены с возможностью подачи охлаждающего газа без прохождения через указанную полость повышенного давления. Еще одно изобретение группы относится к узлу, состоящему из указанного выше устройства и кольца турбины, содержащего входную канавку, открытую к выходу, и выходную канавку, открытую к входу. Входная и/или выходная канавки имеют контактную поверхность искривленной формы для контакта с соответствующим зацепом. Другие изобретения группы относятся к турбине, содержащей указанное выше устройство крепления или упомянутый узел, а также к турбинному двигателю, содержащему такую турбину. Группа изобретений позволяет обеспечить постоянство формы зацепов независимо от режима работы турбины, а также повысить их надежность. 4 н. и 4 з.п. ф-лы, 6 ил.
Наверх