Способ определения места повреждения на линиях электропередачи по спектру переходного процесса



Способ определения места повреждения на линиях электропередачи по спектру переходного процесса
Способ определения места повреждения на линиях электропередачи по спектру переходного процесса
Способ определения места повреждения на линиях электропередачи по спектру переходного процесса

 

G01R31/00 - Устройства для определения электрических свойств; устройства для определения местоположения электрических повреждений; устройства для электрических испытаний, характеризующихся объектом, подлежащим испытанию, не предусмотренным в других подклассах (измерительные провода, измерительные зонды G01R 1/06; индикация электрических режимов в распределительных устройствах или в защитной аппаратуре H01H 71/04,H01H 73/12, H02B 11/10,H02H 3/04; испытание или измерение полупроводниковых или твердотельных приборов в процессе их изготовления H01L 21/66; испытание линий передачи энергии H04B 3/46)

Владельцы патента RU 2503965:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью. Технический результат: повышение точности определения места повреждения. Сущность: измеряют напряжения и токи доаварийного и аварийного режимов. Из спектра сигналов аварийного режима выделяют сигналы переходного процесса, которые вызваны возникновением повреждения. Выделяют характерные частоты стоячей волны переходного процесса. Определяют расстояние L от начала линии до места повреждения по формуле L=C/4*F, где С - скорость распространения электромагнитной волны по линии электропередачи, F - частота стоячей волны переходного процесса для участка от начала линии до места повреждения. Для однофазных замыканий на землю дополнительно определяют расстояние L1 от конца линии до места повреждения по формуле L1=C/2*F1, где F1 - частота стоячей волны переходного процесса для участка от конца линии до места повреждения. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Известен способ определения места и характера повреждения линии электропередачи с использованием ее моделей, который заключается в том, что выделяют напряжения и токи основных гармоник, подают напряжения основных гармоник на входы моделей, измеряют токи на указанных входах и сравнивают их с выделенными токами, подключают к каждой модели комплексную нагрузку в месте предполагаемого повреждения, устанавливают активные и реактивные проводимости комплексных нагрузок такими, чтобы токи основных гармоник на входах моделей и выделенных токов линии совпали, определяют углы комплексных нагрузок, выбирают нагрузку с нулевым углом и принимают, что место и характер повреждения соответствуют месту подключения указанной нагрузки и величинам ее активных проводимостей (Патент РФ №RU 2033622, МПК G01R 31/11, Н02Н 3/28, 20.04.1995).

Известен способ определения места повреждения на воздушных линиях электропередачи», взятый за прототип, который заключается в том, что по измеренным фазным токам и напряжениям в момент короткого замыкания и току нагрузки в предаварийном режиме при помощи телеграфных уравнений получают приближенное расстояние до места повреждения. Далее посредством итерационного процесса, меняя переходное сопротивление в месте повреждения, учитывая поперечные емкости линии, волновые процессы и критерий того. что мнимая часть расстояния до места повреждения стремится к нулю. уточняют расстояние до места повреждения (Патент РФ №RU 2426998, МПК G01R 31/08, 20.11.2009).

Недостатки обоих способов связаны с тем, что для определения места повреждения используются напряжения и токи, связанные с промышленной частотой 50 Гц. Рабочие частоты данного метода малы, что приводит к малой точности данного метода. Кроме того, основными характеристиками модели являются сопротивления линии электропередачи, и переходное сопротивление места повреждения. При этом величина переходного сопротивления места повреждения не известна, и она является источником погрешностей. Кроме того, измерительные трансформаторы промышленной частоты 50 Гц имеют большие угловые погрешности (угловые погрешности порядка 60° для ТТНП типа ТЗЛМ и ТЗРЛ), что также является источником погрешности.

Задачей изобретения является повышение точности определения места повреждения на коротких линиях электропередачи в сетях среднего напряжения.

Технический результат достигается тем, что в способе определения места повреждения на коротких линиях электропередачи в сетях среднего напряжения по спектру переходного процесса путем одностороннего измерения в начале линии напряжений и токов доаварийного и аварийного режимов, согласно заявляемому изобретению, из спектра сигналов аварийного режима выделяют сигналы переходного процесса, которые вызваны возникновением повреждения, выделяют характерные частоты стоячей волны переходного процесса, при этом для однофазных замыканий на землю, двухфазных, трехфазных коротких замыканий определяют расстояние L от начала линии до места повреждения по формуле L=C/4*F, где С - скорость распространения электромагнитной волны по линии электропередачи, F - частота стоячей волны переходного процесса, причем данная стоячая волна располагается на участке от начала линии до места повреждения.

При этом для однофазных замыканий на землю дополнительно определяют расстояние L1 от конца линии до места повреждения по формуле L1=C/2*F1, где F1 - частота стоячей волны переходного процесса, при этом данная стоячая волна располагается на участке от конца линии до места повреждения.

Таким образом, в качестве исходных сигналов в предлагаемом способе используют сигналы переходного процесса, которые возникают при повреждении, при пробое изоляции на линии электропередачи.

При повреждении линии электропередачи, скорость возникновения дугового высоковольтного разряда в месте повреждения весьма высока, обычно указывают величину времени возникновения τ<100 нс. Благодаря весьма крутому фронту изменения напряжения в месте повреждения, генерируются высокие частоты переходных процессов F<(1/τ)~10 МГц. Частоты переходных процессов значительно больше промышленной частоты 50 Гц. Это, во-первых, повышает точность определения места повреждения в предлагаемом способе. Во-вторых, большая разность частот переходных процессов F<10 МГц и промышленной частоты 50 Гц позволяет достаточно легко выделить сигналы переходных процессов на фоне промышленной частоты 50 Гц. В третьих, крутой фронт изменения напряжения в месте повреждения приводит к генерации широкого непрерывного спектра частот переходного процесса, начиная с частот F~10 МГц и ниже.

При возникновении повреждения, однофазного замыкания на землю (ОЗЗ), двух-, трех- фазных коротких замыканий, в точке повреждения образуется провал, резкое изменение напряжения 1 (фиг.1) вдоль линии электропередачи с дальностью 2, и от места (точки) повреждения 3 в обе стороны распространяется фронт волны 4 измененного напряжения 4.

На коротких линиях, на которых затухание волны 4 переходного процесса мало, происходят многократные отражения от концов линии 5 (фиг.2) и места (точки) повреждения 3, благодаря чему образуется стоячая волна. При этом возможны два варианта стоячей волны: четвертьволновая 6 стоячая волна (когда на длине L отрезка 3-5 укладывается четверть длины волны λ стоячей волны) и полуволновая 7 стоячая волна (когда на длине L отрезка 3-5 укладывается половина длины волны λ стоячей волны).

В начале линии 8 проводятся измерения напряжений и токов до аварийного и аварийного режимов, и выделяют из спектра сигналов аварийного режима сигналы переходного процесса.

Для примера на фиг.3 показана форма переходного процесса при ОЗЗ и измерении напряжения нулевой последовательности 3 Uo в начале линии (ось Y, по оси Х - время), для отрезков линий (четвертьволновая 6 стоячая волна) длиной 2 км и отрезка (полуволновая 7 стоячая волна) длиной 16 км (моделирование в программе MatLab, используя библиотеку Simulink, компоненты SimPowerSystems). На фиг.3 амплитуда сигнала 3Uo образована суммой двух затухающих синусоид: с большей амплитудой и большей частотой - сигнал стоячей волны, которая располагается от начала линии до повреждения (четвертьволновая 6 стоячая волна на фиг.2), с меньшей амплитудой и значительно меньшей частотой - сигнал стоячей волны от конца линии до места повреждения, которая накладывается (суммируется) на большую частоту и синусоидально смещает ее по вертикали (полуволновая 7 стоячая волна на фиг.2).

Для дальности L до места повреждения в пределах (0,1-10) км частота стоячей волны 6 для четвертьволновых колебаний будет равна: F=C/4*L, где F - частота, L - длина отрезка от начала линии до места повреждения, С - скорость света (цифра 4 как раз связана с четвертьволновой стоячей волной). Соответственно получим рабочий диапазон частот F=(750-7,5) кГц. С учетом коэффициента укорочения частоты будут несколько меньше. Для полуволновых колебаний 7 формула для частоты стоячей волны изменится: F=C/2*L, где L - длина отрезка от места повреждения до конца линии (цифра 2 как раз связана с полуволновой стоячей волной).

Порядок определения места повреждения в предлагаемом способе выглядит следующим образом:

- В начале линии проводятся измерения напряжений и токов до аварийного и аварийного режимов.

- Определяется спектр переходных процессов.

- Определяются один (для двухфазных, трехфазных коротких замыканий) или два (для ОЗЗ) максимума на спектре переходных процессов, определяется частота F максимума спектра (и еще один максимум F1 при ОЗЗ).

- Из частоты F определяется расстояние до места повреждения L=C/4*F. Для ОЗЗ дополнительно определяется длина L1 для полуволнового отрезка L1=C/2*F1, L+L1=Lл где: Lл - общая длина линии.

Перечислим основные свойства предлагаемого способа:

1. В сетях среднего напряжения, для коротких линий, на которых затухание волны переходного процесса мало, возможно определение места повреждения предлагаемым способом.

2. Возможно определение места повреждения для всех типов повреждений: ОЗЗ, двухфазных, трехфазных коротких замыканий.

3. При ОЗЗ в спектре сигналов переходного процесса наблюдаются сигналы с отрезка до повреждения, и сигналы с отрезка после повреждения, что позволяет дополнительно повысить точность определения места повреждения (поскольку определяются длины двух отрезков). При этом амплитуды сигналов отрезка до повреждения больше, чем амплитуды сигналов отрезка после повреждения, поскольку место повреждения пропускает только часть сигнала.

4. Для двухфазных, трехфазных коротких замыканий наблюдаются частоты стоячей волны только отрезка от начала линии до места повреждения.

5. Амплитуды сигналов переходных процессов достаточно велики, поскольку переходный процесс образуется при замыкании высокого (6/10/35 кВ) напряжения.

6. При обнаружении повреждений в кабельных линиях применяют прожиг кабеля высоким напряжением (пробой поврежденного участка, имеющего высокое переходное сопротивление), при этом также возможно определение дальности до места повреждения предлагаемым способом.

1. Способ определения места повреждения на коротких линиях электропередачи в сетях среднего напряжения по спектру переходного процесса путем одностороннего измерения в начале линии напряжений и токов доаварийного и аварийного режимов, отличающийся тем, что из спектра сигналов аварийного режима выделяют сигналы переходного процесса, которые вызваны возникновением повреждения, выделяют характерные частоты стоячей волны переходного процесса, при этом для однофазных, двухфазных, трехфазных коротких замыканий определяют расстояние L от начала линии до места повреждения по формуле L=C/4·F, где С - скорость распространения электромагнитной волны по линии электропередачи; F - частота стоячей волны переходного процесса, причем данная стоячая волна располагается на участке от начала линии до места повреждения.

2. Способ определения места повреждения на коротких линиях электропередачи в сетях среднего напряжения по спектру переходного процесса по п.1, отличающийся тем, что для однофазных замыканий на землю дополнительно определяют расстояние L1 от конца линии до места повреждения по формуле L1=C/2·F1, где F1 - частота стоячей волны переходного процесса, при этом данная стоячая волна располагается на участке от конца линии до места повреждения.



 

Похожие патенты:

Изобретение относится к информационно-измерительным системам и предназначено для проведения автоматической проверки электрических параметров линий связи сложного изделия, например ракеты с аппаратурой носителя.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу.

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного электродвигателя в безаварийном состоянии.

Изобретение относится к электроизмерительной технике. .

Изобретение относится к электротехнике и, в частности, к электрифицированному инструменту, бытовым и промышленным электроприборам, приборам специального назначения.

Изобретение относится к испытательной технике и может быть использовано для проведения испытаний на безотказность и электротермотренировки корпусированных цифровых интегральных схем.

Изобретение относится к измерительной технике и может быть использовано для оценки технического состояния работающего длительное время силового высоковольтного энергетического оборудования.

Изобретение относится к способам шумовой диагностики электроэнергетического оборудования (ЭЭО) и предназначено для построения промышленных информационно-измерительных комплексов контроля технического состояния такого оборудования.

Изобретение относится к измерительной технике и предназначено для экспресс-диагностики магнитопроводов трансформаторов, автотрансформаторов или дросселей преимущественно для блоков питания мощностью до 100 Вт, их подбора, замены, ремонта, в том числе вне заводских условий.

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов. Техническим результатом является повышение чувствительности к изменению параметров диагностирования, что достигается путем использования в качестве параметров диагностирования амплитудно-частотных и фазово-частотных характеристик, обладающих высокой чувствительностью к изменению параметров электрической цепи. Технический результат достигается благодаря тому, что способ диагностирования заключается в том, что в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд. Анализируя и сравнивая между собой значения измеряемых диагностируемых параметров с номинальными значениями диагностируемых параметров, можно судить о наличии дефектов. 3 ил., 1 табл.

Изобретение относится к наземным испытаниям электротехнических систем космических аппаратов (КА). Способ состоит в проведении включения и выключения КА, в т.ч. подключения к КА (10) или отключения от него имитаторов солнечных (8) и аккумуляторных (9) батарей. Имитаторы связаны с КА, соответственно, через соединители (2-1, 3-1) и (5-1) с коммутатором (5-3), а также - через стабилизированный преобразователь напряжения (4). Питание имитаторов (8, 9) осуществляется от промышленной сети через кабели (8-1) и (9-1). При этом солнечная батарея (1), как правило, отстыкована от КА (соединители 2 и 2-1, 3 и 3-1 разомкнуты). Аккумуляторная батарея (5) со стороны своего плюса отсоединена (соединители 5-2 и 5-1 разомкнуты) от зарядного (6) и разрядного (7) преобразователей. К КА (10) подключен автоматизированный испытательный комплекс (11) с заложенными в него циклограммами различных электрических проверок КА и его включения-выключения. В ходе проверок производят контроль поставленных на слежение параметров, в т.ч. выходного тока имитаторов (9). Величина данного тока служит дополнительным свидетельством о факте включения и выключения КА. Техническим результатом изобретения является повышение надежности и расширение функциональных возможностей процесса электрических проверок КА. 1 ил.

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного определения допустимой величины и длительности перегрузки силового маслонаполненного трансформатора. Сущность: с помощью датчиков температуры различных частей трансформатора определяют тепловой поток, охлаждающий трансформатор. По величине тока, протекающего по обмоткам трансформатора, определяют мощность нагрева трансформатора. По данным параметрам определяют допустимое время перегрузки трансформатора в зависимости от требуемого уровня перегрузки и текущего теплового состояния трансформатора. 3 ил.

Изобретение относится к области электромашиностроения и может быть использовано при создании систем контроля технологических процессов, связанных с эксплуатацией контактных соединений электрических цепей в промышленности и на транспорте. Способ заключается в том, что на обесточенное контактное соединение подается импульс тока, имеющий постоянную составляющую, затем снимаются сигналы тока и падение напряжения от этого тока на зажимах контактного соединения, кривые тока и напряжения раскладываются в ряд Фурье, определяются активное и реактивные сопротивления контактного соединения для каждой гармоники тока и напряжения. Из спектра падения напряжения вычитаются гармоники связанные с источником тока. По оставшимся гармоникам части спектра напряжения оценивается состояние контактного соединения путем сопоставления этих гармоник с характерными неисправностями контактного соединения, сравниваются активное и реактивное сопротивления гармоник с эталонными для данного типа контактного соединения. Технический результат заключается в возможности контроля динамики развития процесса разрушения контактного соединения.

Изобретение относится к области испытаний радиоэлектронной аппаратуры и изделий электронной техники. Технический результат: сокращение времени испытаний на гамма-процентный ресурс. Сущность: продолжительность испытания принимают равной уменьшенному в m раз (где m - целое положительное число, большее единицы) заданному значению гамма-процентного ресурса за счет увеличения в m раз числа испытуемых радиоэлектронных устройств и разделения их на одинаковые группы по m радиоэлектронных устройств. Из отказавших во время испытаний радиоэлектронных устройств отбирают по одному из каждой группы, имеющей отказавшие радиоэлектронные устройства. Если общее число отобранных таким образом радиоэлектронных устройств меньше приемочного числа отказов или равно ему, то результаты испытаний считают положительными, в противном случае - отрицательными.

Изобретение относится к техническим средствам диагностирования и контроля технического состояния электрических цепей переменного тока. Устройство для диагностики и контроля электрических цепей переменного тока содержит бесконтактный емкостный датчик (1), дифференциальный усилитель сигнала (2) и устройство обработки и отображения информации (4), вход которого подключен к выходу усилителя (2). При этом емкостный датчик (1) выполнен в виде многослойной пластины (6), содержащей два токопроводящих рабочих слоя (7) и (13), подключенных ко входам усилителя (2), расположенный между ними токопроводящий экранирующий слой (9), снабженный заземлением (10), и два слоя диэлектрика (11) и (12), отделяющие рабочие слои (7) и (13) от экранирующего слоя (9). Выполнение датчика устройства в виде дифференциального емкостного датчика (1) с двумя чувствительными элементами (18) и (22), разделенными заземленным экранирующим слоем (9), позволяет защитить устройство от воздействия внешних электромагнитных полей-помех и за счет этого исключить влияние последних на форму и уровень сигналов, формируемых на выходе усилителя (2). Изобретение обеспечивает повышение достоверности оценки технического состояния диагностируемых объектов, расширение функциональных возможностей устройства для диагностики и контроля электрических цепей переменного тока, снижение трудоемкости и повышение оперативности процесса диагностирования объектов, а также снижение требований к квалификации оператора, выполняющего диагностику. 11 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике, в частности к релейной защите, и предназначено для реализации в устройствах определения места повреждения разветвленных линий электропередачи. Задача изобретения - повышение точности способа определения места повреждения разветвленной линии электропередачи. Предложен способ определения места повреждения разветвленной линии электропередачи, заключающийся в том, что в начале ЛЭП и в конце каждого ответвления устанавливают устройство контроля напряжения, число которых на единицу больше числа контролируемых ответвлений, фиксируют время прихода переднего фронта импульса, в качестве импульсов используют скачок фазного напряжения, одновременно всеми устройствами регистрируют время прохождения скачка фазного напряжения в единой шкале времени, синхронизированной от спутниковых сигналов глобальной системы позиционирования, передают зарегистрированные времена в диспетчерский центр для их автоматической обработки, где для зафиксированных времен от каждой пары устройств контроля напряжения разностно-дальномерным способом определяют поврежденное ответвление, для зафиксированных времен от каждой пары устройств, одно из которых находится на поврежденном ответвлении, разностно-дальномерным способом определяют оценки расстояния до места повреждения на поврежденном ответвлении, а оценки расстояния уточняют на основе системы уравнений для определения места повреждения. 1 ил.
Изобретение относится к области контроля технического состояния высоковольтного оборудования. Технический результат - упрощение процесса диагностирования. Сущность: в стационарном режиме сети в едином времени измеряют электрические величины, например напряжение, на зажимах вторичных низковольтных обмоток двух однофазных высоковольтных трансформаторов напряжения, подключенных к проводу одной фазы. Сравнивают частные от деления данных с выхода вторичной обмотки одного трансформатора на однотипные данные с выхода вторичной обмотки другого трансформатора в одинаковые моменты времени, например, кратные периоду колебаний напряжения в сети. Выявляют нарушения технического состояния одного из однофазных трансформаторов, если частное от деления в один из моментов времени у сравниваемых трансформаторов достигнет заданного порогового значения. Выбор из двух конкретного трансформатора с нарушением технического состояния осуществляют на основе сравнения частных от деления данных с выхода вторичной обмотки одного трансформатора на однотипные данные с выхода вторичной обмотки того же трансформатора в последовательные моменты времени, соответствующие моментам проведенных измерений, кратных периоду колебаний напряжения в сети. В качестве трансформатора с нарушением технического состояния принимают тот, у которого наблюдается большая производная в частных от деления измеряемых величин в последовательные моменты времени.

Изобретение относится к устройствам контроля и может использоваться для определения оптимальных значений параметров надежности изделий и вычисления соответствующих значений времени безотказной работы и продолжительности процесса обслуживания изделия. Техническим результатом является расширение функциональных и информативных возможностей устройства за счет вычисления и предоставления в качестве выходных данных значений времени работоспособного состояния и времени технического обслуживания на интервале одного цикла обслуживания изделия. Устройство содержит генератор ступенчатого напряжения 1 и две совокупности функциональных блоков, обеспечивающих решение задачи. Первая совокупность блоков включает первый блок нелинейности 2, первый интегратор 3, первый делитель 4, первый усилитель 5, первый 6 и второй 7 сумматоры и первый блок умножения 8. Вторая совокупность блоков включает второй усилитель 9, третий 10 и четвертый 11 сумматоры, второй блок умножения 12, второй блок нелинейности 13, второй интегратор 14 и второй делитель 15. Устройство также содержит пятый 23 и шестой 24 сумматоры, блок сравнения 16, семь элементов задержки (17, 18, 19, 25, 26, 27, 28) и семь ключей (20, 21, 22, 29, 30, 31, 32). 1 ил.

Изобретение относится к измерительной технике, в частности к технике измерения тепловых параметров полупроводниковых приборов после изготовления, а также для неразрушающего входного контроля при производстве радиоэлектронной аппаратуры. Технический результат - повышение точности и быстродействия измерения теплового сопротивления переход-корпус полупроводникового прибора. Технический результат в способе для измерения теплового сопротивления переход-корпус полупроводникового прибора достигается воздействием на контролируемый полупроводниковый прибор нагретой жидкостью посредством струи. При этом определяют n значений выходного напряжения контролируемого полупроводникового прибора через равные промежутки времени. Полученные данные сохраняются в виде массива напряжений. По полученным данным вычисляют температурный коэффициент напряжения контролируемого полупроводникового прибора. Массив напряжений преобразуют в массив температур путем деления членов массива напряжений на температурный коэффициент напряжения. Определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора осуществляет n раз с использованием данных массива температур, теплоемкости, величины временных промежутков с последующим определением среднего значения теплового сопротивления. Технический результат в устройстве для измерения теплового сопротивления переход-корпус полупроводникового прибора, содержащем контактную колодку с клеммами для подключения контролируемого полупроводникового прибора, температурный датчик, источник питания, источник тока, выход которого подключен к контактной колодке с клеммами, достигается тем, что в него введены последовательно соединенные микроконтроллер и компьютер, форсунка со схемой включения, оптический излучатель и оптически связанный с ним оптический приемник, выход которого подключен к первому входу микроконтроллера, второй выход которого подключен к форсунке со схемой включения, второй вход микроконтроллера соединен с выходом источника тока, третий вход микроконтроллера соединен с датчиком температуры, а выход источника питания соединен с оптическим излучателем. 2 н.п. ф-лы, 6 ил.
Наверх