Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность



Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность
Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность
Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность

 

G01R31/00 - Устройства для определения электрических свойств; устройства для определения местоположения электрических повреждений; устройства для электрических испытаний, характеризующихся объектом, подлежащим испытанию, не предусмотренным в других подклассах (измерительные провода, измерительные зонды G01R 1/06; индикация электрических режимов в распределительных устройствах или в защитной аппаратуре H01H 71/04,H01H 73/12, H02B 11/10,H02H 3/04; испытание или измерение полупроводниковых или твердотельных приборов в процессе их изготовления H01L 21/66; испытание линий передачи энергии H04B 3/46)

Владельцы патента RU 2511599:

Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов. Техническим результатом является повышение чувствительности к изменению параметров диагностирования, что достигается путем использования в качестве параметров диагностирования амплитудно-частотных и фазово-частотных характеристик, обладающих высокой чувствительностью к изменению параметров электрической цепи. Технический результат достигается благодаря тому, что способ диагностирования заключается в том, что в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд. Анализируя и сравнивая между собой значения измеряемых диагностируемых параметров с номинальными значениями диагностируемых параметров, можно судить о наличии дефектов. 3 ил., 1 табл.

 

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Известным является способ диагностирования электрических цепей, в частности, автомобильного электрооборудования по наличию тока в электрической цепи при подключении к источнику напряжения [Ютт В.Е. Электрооборудование автомобилей. - М.: Транспорт, 2001. - 287 с., ил.].

Недостатком такого способа является невозможность диагностировать дефекты электрической цепи, в частности, автомобильного электрооборудования, не влекущие за собой разрыв электрической цепи.

Известен способ диагностирования, выбранный за прототип, использующий в качестве параметра диагностирования постоянную времени тока переходного процесса в диагностируемой электрической цепи [RU 2314432 C2]. При этом измеряют мгновенные значения тока в течение переходного процесса при подаче постоянного напряжения на автомобильное электрооборудование и рассчитывают постоянную времени.

Недостатком указанного способа является погрешности определения постоянной времени по экспоненте, которая является плавной кривой, что приводит к существенным ошибкам. К примеру на фиг.1 показан переходный процесс кривая 1 для принятых значений Тфакт.=1 с и Uyст.факт.=1, где Тфакт. - фактическое значение постоянной времени, Uуст.факт. - установившееся значение выходной величины в относительных единицах; установившееся значение выходной величины показано прямой 2. Прямой 3 показано значение 0,95Uуст. факт. Из чертежа и проведенных расчетов следует, что значение 0,95 достигается при t=3Тфакт.=3 с, где Тфакт.=1 с.

Если установившееся значение измеряется с погрешностью -2%, т.е. измеренное значение составляет Uуст.изм.1=0,98, тогда 0,95Uуст.изм.1=0,931, это значение показано прямой 4. Из чертежа и проведенных расчетов следует, что значение 0,931 будет достигаться за время tизм.1=3Tизм.1=2,66 с, тогда значение постоянной времени будет равно Тизм.1=0,887, следовательно, погрешность измерения составит Δ%=11,3%.

Если установившееся значение измеряется с погрешностью +2%, т.е. измеренное значение составляет Uуст.изм.2=1,02, тогда значение 0.95Uуст.изм.1=0,969, это значение показано прямой 5. Из чертежа и проведенных расчетов следует, что это значение будет достигаться за время tизм.2=3Тизм.2=3,47 с, тогда значение постоянной времени Тизм.2=1,157, а погрешность оценки составит Δ%=15,7%.

Техническим результатом является повышение информативности параметров диагностирования.

Технический результат достигается тем, что в способе диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд, причем значение емкости конденсатора выбирается из условия С 2 ξ 2 L R 2 , где L - индуктивность цепи, R - активное сопротивление цепи, ξ - коэффициент демпфирования (выбирается из диапазона от 0,05 до 0,1).

На фиг.3 представлена функциональная схема возможного варианта технической реализации способа диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, где в качестве диагностируемого электрооборудования взята фазовая обмотка статора автомобильного генератора 94.3701 с параметрами L=0,001447 Гн, R=0,0373 Ом, а к одной из фаз статора дополнительно последовательно подключена емкость С=2000 мкФ, величина которой выбрана из условия С 2 ξ 2 L R 2 , где ξ =0,05. На фиг.2 представлены амплитудные частотные и фазовые частотные характеристики диагностируемых электрических цепей: 1 - амплитудные частотные и фазовые частотные характеристики диагностируемой электрической цепи с номинальными параметрами, 2 - амплитудные частотные и фазовые частотные характеристики диагностируемой цепи с дефектом, индексом «н» обозначены номинальные значения параметров диагностируемой электрической цепи, индексом «д» - значения параметров диагностируемой электрической цепи, содержащей дефект.

Схема измерения фиг.3 состоит из последовательно соединенных источника гармонического напряжения фиксированных частот 1 (генератор гармонических колебаний), коммутирующего устройства 2, диагностируемой электрической цепи 3, дополненной последовательно включенным конденсатором, измерительного устройства 4, вход которого соединен с выходом коммутирующего устройства 2, и регистрирующего устройства 5 на базе ЭВМ.

Измерения производятся следующим образом: с помощью коммутирующего устройства 2 диагностируемую электрическую цепь 3 подключают к источнику гармонического напряжения фиксированных частот 1, при этом измерительный модуль 4 в режиме установившихся гармонических колебаний производит измерения мгновенных значений напряжения на конденсаторе, которые передаются на регистрирующее устройство 5, где обрабатываются и хранятся. Результаты измерений амплитудных частотных и фазовых частотных характеристик диагностируемых электрических цепей представлены на фиг.2.

В регистрирующем устройстве 5 обрабатываются мгновенные значения напряжения и вычисляются указанные параметры диагностирования. В таблице 1 приведены численные значения параметров диагностирования для диагностируемой электрической цепи с номинальными значениями параметров и для диагностируемой электрической цепи с дефектом (межвитковое замыкание витков фазы статора). Как показали вычисления, значения указанных параметров диагностирования существенно изменяются при наличии дефекта в диагностируемой электрической цепи. Так, например, отношение максимального значения относительной амплитуды напряжения в диагностируемой электрической цепи с дефектом к максимальному значению относительной амплитуды напряжения в диагностируемой электрической цепи с номинальными значениями параметров A * = A М Д А М Н равно 0,93 (или 93%), а фазовый сдвиг напряжения в электрической цепи, содержащей дефект, соответствующий частоте, при которой достигает максимума относительная амплитуда напряжения в диагностируемой электрической цепи с номинальными значениями параметров φДН), составил -162 градуса.

Таким образом, указанные параметры диагностирования существенно зависят от параметров диагностируемой электрической цепи, что доказывает целесообразность их использования.

Таблица 1
№ пп Параметр диагностирования Значение параметра диагностирования
1. АВХ - амплитудное значение входного гармонического напряжения, В 220
2. АМН - максимальное значение относительной амплитуды напряжения в диагностируемой электрической цепи с номинальными значениями параметров 18,8
3. АМД - максимальное значение относительной амплитуды напряжения в диагностируемой электрической цепи с дефектом 17,5
4. A * = A М Д А М Н - отношение максимального значения относительной амплитуды напряжения в диагностируемой электрической цепи с дефектом к максимальному значению относительной амплитуды напряжения в диагностируемой электрической цепи с номинальными значениями параметров 0,93
5. φНД) - фазовый сдвиг напряжения в электрической цепи с номинальными значениями параметров, соответствующий частоте, при которой достигает максимума относительная амплитуда напряжения в диагностируемой электрической цепи с номинальными значениями параметров, град. -90
6. φДН) - фазовый сдвиг напряжения в электрической цепи с дефектом, соответствующий частоте, при которой достигает максимума относительная амплитуда напряжения в диагностируемой электрической цепи с номинальными значениями параметров, град. -162

Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, путем подачи на электрическую цепь напряжения и сравнения значений измеряемых диагностируемых параметров с номинальными значениями диагностируемых параметров, отличающийся тем, что в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот, в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд, причем значение емкости конденсатора выбирается из условия С 2 ξ 2 L R 2 , где L - индуктивность цепи, R - активное сопротивление цепи, ξ - коэффициент демпфирования (выбирается из диапазона от 0,05 до 0,1).



 

Похожие патенты:

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Изобретение относится к информационно-измерительным системам и предназначено для проведения автоматической проверки электрических параметров линий связи сложного изделия, например ракеты с аппаратурой носителя.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу.

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного электродвигателя в безаварийном состоянии.

Изобретение относится к электроизмерительной технике. .

Изобретение относится к электротехнике и, в частности, к электрифицированному инструменту, бытовым и промышленным электроприборам, приборам специального назначения.

Изобретение относится к испытательной технике и может быть использовано для проведения испытаний на безотказность и электротермотренировки корпусированных цифровых интегральных схем.

Изобретение относится к измерительной технике и может быть использовано для оценки технического состояния работающего длительное время силового высоковольтного энергетического оборудования.

Изобретение относится к способам шумовой диагностики электроэнергетического оборудования (ЭЭО) и предназначено для построения промышленных информационно-измерительных комплексов контроля технического состояния такого оборудования.

Изобретение относится к наземным испытаниям электротехнических систем космических аппаратов (КА). Способ состоит в проведении включения и выключения КА, в т.ч. подключения к КА (10) или отключения от него имитаторов солнечных (8) и аккумуляторных (9) батарей. Имитаторы связаны с КА, соответственно, через соединители (2-1, 3-1) и (5-1) с коммутатором (5-3), а также - через стабилизированный преобразователь напряжения (4). Питание имитаторов (8, 9) осуществляется от промышленной сети через кабели (8-1) и (9-1). При этом солнечная батарея (1), как правило, отстыкована от КА (соединители 2 и 2-1, 3 и 3-1 разомкнуты). Аккумуляторная батарея (5) со стороны своего плюса отсоединена (соединители 5-2 и 5-1 разомкнуты) от зарядного (6) и разрядного (7) преобразователей. К КА (10) подключен автоматизированный испытательный комплекс (11) с заложенными в него циклограммами различных электрических проверок КА и его включения-выключения. В ходе проверок производят контроль поставленных на слежение параметров, в т.ч. выходного тока имитаторов (9). Величина данного тока служит дополнительным свидетельством о факте включения и выключения КА. Техническим результатом изобретения является повышение надежности и расширение функциональных возможностей процесса электрических проверок КА. 1 ил.

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного определения допустимой величины и длительности перегрузки силового маслонаполненного трансформатора. Сущность: с помощью датчиков температуры различных частей трансформатора определяют тепловой поток, охлаждающий трансформатор. По величине тока, протекающего по обмоткам трансформатора, определяют мощность нагрева трансформатора. По данным параметрам определяют допустимое время перегрузки трансформатора в зависимости от требуемого уровня перегрузки и текущего теплового состояния трансформатора. 3 ил.

Изобретение относится к области электромашиностроения и может быть использовано при создании систем контроля технологических процессов, связанных с эксплуатацией контактных соединений электрических цепей в промышленности и на транспорте. Способ заключается в том, что на обесточенное контактное соединение подается импульс тока, имеющий постоянную составляющую, затем снимаются сигналы тока и падение напряжения от этого тока на зажимах контактного соединения, кривые тока и напряжения раскладываются в ряд Фурье, определяются активное и реактивные сопротивления контактного соединения для каждой гармоники тока и напряжения. Из спектра падения напряжения вычитаются гармоники связанные с источником тока. По оставшимся гармоникам части спектра напряжения оценивается состояние контактного соединения путем сопоставления этих гармоник с характерными неисправностями контактного соединения, сравниваются активное и реактивное сопротивления гармоник с эталонными для данного типа контактного соединения. Технический результат заключается в возможности контроля динамики развития процесса разрушения контактного соединения.

Изобретение относится к области испытаний радиоэлектронной аппаратуры и изделий электронной техники. Технический результат: сокращение времени испытаний на гамма-процентный ресурс. Сущность: продолжительность испытания принимают равной уменьшенному в m раз (где m - целое положительное число, большее единицы) заданному значению гамма-процентного ресурса за счет увеличения в m раз числа испытуемых радиоэлектронных устройств и разделения их на одинаковые группы по m радиоэлектронных устройств. Из отказавших во время испытаний радиоэлектронных устройств отбирают по одному из каждой группы, имеющей отказавшие радиоэлектронные устройства. Если общее число отобранных таким образом радиоэлектронных устройств меньше приемочного числа отказов или равно ему, то результаты испытаний считают положительными, в противном случае - отрицательными.

Изобретение относится к техническим средствам диагностирования и контроля технического состояния электрических цепей переменного тока. Устройство для диагностики и контроля электрических цепей переменного тока содержит бесконтактный емкостный датчик (1), дифференциальный усилитель сигнала (2) и устройство обработки и отображения информации (4), вход которого подключен к выходу усилителя (2). При этом емкостный датчик (1) выполнен в виде многослойной пластины (6), содержащей два токопроводящих рабочих слоя (7) и (13), подключенных ко входам усилителя (2), расположенный между ними токопроводящий экранирующий слой (9), снабженный заземлением (10), и два слоя диэлектрика (11) и (12), отделяющие рабочие слои (7) и (13) от экранирующего слоя (9). Выполнение датчика устройства в виде дифференциального емкостного датчика (1) с двумя чувствительными элементами (18) и (22), разделенными заземленным экранирующим слоем (9), позволяет защитить устройство от воздействия внешних электромагнитных полей-помех и за счет этого исключить влияние последних на форму и уровень сигналов, формируемых на выходе усилителя (2). Изобретение обеспечивает повышение достоверности оценки технического состояния диагностируемых объектов, расширение функциональных возможностей устройства для диагностики и контроля электрических цепей переменного тока, снижение трудоемкости и повышение оперативности процесса диагностирования объектов, а также снижение требований к квалификации оператора, выполняющего диагностику. 11 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике, в частности к релейной защите, и предназначено для реализации в устройствах определения места повреждения разветвленных линий электропередачи. Задача изобретения - повышение точности способа определения места повреждения разветвленной линии электропередачи. Предложен способ определения места повреждения разветвленной линии электропередачи, заключающийся в том, что в начале ЛЭП и в конце каждого ответвления устанавливают устройство контроля напряжения, число которых на единицу больше числа контролируемых ответвлений, фиксируют время прихода переднего фронта импульса, в качестве импульсов используют скачок фазного напряжения, одновременно всеми устройствами регистрируют время прохождения скачка фазного напряжения в единой шкале времени, синхронизированной от спутниковых сигналов глобальной системы позиционирования, передают зарегистрированные времена в диспетчерский центр для их автоматической обработки, где для зафиксированных времен от каждой пары устройств контроля напряжения разностно-дальномерным способом определяют поврежденное ответвление, для зафиксированных времен от каждой пары устройств, одно из которых находится на поврежденном ответвлении, разностно-дальномерным способом определяют оценки расстояния до места повреждения на поврежденном ответвлении, а оценки расстояния уточняют на основе системы уравнений для определения места повреждения. 1 ил.
Изобретение относится к области контроля технического состояния высоковольтного оборудования. Технический результат - упрощение процесса диагностирования. Сущность: в стационарном режиме сети в едином времени измеряют электрические величины, например напряжение, на зажимах вторичных низковольтных обмоток двух однофазных высоковольтных трансформаторов напряжения, подключенных к проводу одной фазы. Сравнивают частные от деления данных с выхода вторичной обмотки одного трансформатора на однотипные данные с выхода вторичной обмотки другого трансформатора в одинаковые моменты времени, например, кратные периоду колебаний напряжения в сети. Выявляют нарушения технического состояния одного из однофазных трансформаторов, если частное от деления в один из моментов времени у сравниваемых трансформаторов достигнет заданного порогового значения. Выбор из двух конкретного трансформатора с нарушением технического состояния осуществляют на основе сравнения частных от деления данных с выхода вторичной обмотки одного трансформатора на однотипные данные с выхода вторичной обмотки того же трансформатора в последовательные моменты времени, соответствующие моментам проведенных измерений, кратных периоду колебаний напряжения в сети. В качестве трансформатора с нарушением технического состояния принимают тот, у которого наблюдается большая производная в частных от деления измеряемых величин в последовательные моменты времени.

Изобретение относится к устройствам контроля и может использоваться для определения оптимальных значений параметров надежности изделий и вычисления соответствующих значений времени безотказной работы и продолжительности процесса обслуживания изделия. Техническим результатом является расширение функциональных и информативных возможностей устройства за счет вычисления и предоставления в качестве выходных данных значений времени работоспособного состояния и времени технического обслуживания на интервале одного цикла обслуживания изделия. Устройство содержит генератор ступенчатого напряжения 1 и две совокупности функциональных блоков, обеспечивающих решение задачи. Первая совокупность блоков включает первый блок нелинейности 2, первый интегратор 3, первый делитель 4, первый усилитель 5, первый 6 и второй 7 сумматоры и первый блок умножения 8. Вторая совокупность блоков включает второй усилитель 9, третий 10 и четвертый 11 сумматоры, второй блок умножения 12, второй блок нелинейности 13, второй интегратор 14 и второй делитель 15. Устройство также содержит пятый 23 и шестой 24 сумматоры, блок сравнения 16, семь элементов задержки (17, 18, 19, 25, 26, 27, 28) и семь ключей (20, 21, 22, 29, 30, 31, 32). 1 ил.

Изобретение относится к измерительной технике, в частности к технике измерения тепловых параметров полупроводниковых приборов после изготовления, а также для неразрушающего входного контроля при производстве радиоэлектронной аппаратуры. Технический результат - повышение точности и быстродействия измерения теплового сопротивления переход-корпус полупроводникового прибора. Технический результат в способе для измерения теплового сопротивления переход-корпус полупроводникового прибора достигается воздействием на контролируемый полупроводниковый прибор нагретой жидкостью посредством струи. При этом определяют n значений выходного напряжения контролируемого полупроводникового прибора через равные промежутки времени. Полученные данные сохраняются в виде массива напряжений. По полученным данным вычисляют температурный коэффициент напряжения контролируемого полупроводникового прибора. Массив напряжений преобразуют в массив температур путем деления членов массива напряжений на температурный коэффициент напряжения. Определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора осуществляет n раз с использованием данных массива температур, теплоемкости, величины временных промежутков с последующим определением среднего значения теплового сопротивления. Технический результат в устройстве для измерения теплового сопротивления переход-корпус полупроводникового прибора, содержащем контактную колодку с клеммами для подключения контролируемого полупроводникового прибора, температурный датчик, источник питания, источник тока, выход которого подключен к контактной колодке с клеммами, достигается тем, что в него введены последовательно соединенные микроконтроллер и компьютер, форсунка со схемой включения, оптический излучатель и оптически связанный с ним оптический приемник, выход которого подключен к первому входу микроконтроллера, второй выход которого подключен к форсунке со схемой включения, второй вход микроконтроллера соединен с выходом источника тока, третий вход микроконтроллера соединен с датчиком температуры, а выход источника питания соединен с оптическим излучателем. 2 н.п. ф-лы, 6 ил.

Заявленная группа изобретений относится к измерительной технике, в частности к средствам измерения энергетического КПД. Способ контроля показателей энергоэффективности устройства предусматривает подключение контролируемого устройства, получение данных об энергии на входе и энергии на выходе контролируемого устройства за определенный период времени, расчет энергетического КПД контролируемого устройства, определение отклонения энергетического КПД от стандартного энергетического КПД контролируемого устройства и определение состояния контролируемого устройства исходя из отклонения энергетического КПД. При этом подмодуль контроля энергии на входе и подмодуль контроля энергии на выходе получают данные об энергии за один или несколько полных циклов, выбранных исходя из циклических изменений энергетического КПД устройства. Устройство для контроля показателей энергоэффективности устройства содержит модуль контроля энергии и модуль определения энергетического КПД. Модуль контроля энергии предназначен для получения данных об энергии на входе и энергии на выходе контролируемого устройства и передачи этих данных в модуль определения энергетического КПД. Модуль определения энергетического КПД предназначен для расчета энергетического КПД . Технический результат - повышение точности измерений, обеспечение простого и надежного механизма контроля энергетического КПД устройств. 2 н. и 6 з.п. ф-лы, 2 ил.
Наверх