Способ электрических проверок космического аппарата


 

G01R31/00 - Устройства для определения электрических свойств; устройства для определения местоположения электрических повреждений; устройства для электрических испытаний, характеризующихся объектом, подлежащим испытанию, не предусмотренным в других подклассах (измерительные провода, измерительные зонды G01R 1/06; индикация электрических режимов в распределительных устройствах или в защитной аппаратуре H01H 71/04,H01H 73/12, H02B 11/10,H02H 3/04; испытание или измерение полупроводниковых или твердотельных приборов в процессе их изготовления H01L 21/66; испытание линий передачи энергии H04B 3/46)

Владельцы патента RU 2513322:

Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решётнева" (RU)

Изобретение относится к наземным испытаниям электротехнических систем космических аппаратов (КА). Способ состоит в проведении включения и выключения КА, в т.ч. подключения к КА (10) или отключения от него имитаторов солнечных (8) и аккумуляторных (9) батарей. Имитаторы связаны с КА, соответственно, через соединители (2-1, 3-1) и (5-1) с коммутатором (5-3), а также - через стабилизированный преобразователь напряжения (4). Питание имитаторов (8, 9) осуществляется от промышленной сети через кабели (8-1) и (9-1). При этом солнечная батарея (1), как правило, отстыкована от КА (соединители 2 и 2-1, 3 и 3-1 разомкнуты). Аккумуляторная батарея (5) со стороны своего плюса отсоединена (соединители 5-2 и 5-1 разомкнуты) от зарядного (6) и разрядного (7) преобразователей. К КА (10) подключен автоматизированный испытательный комплекс (11) с заложенными в него циклограммами различных электрических проверок КА и его включения-выключения. В ходе проверок производят контроль поставленных на слежение параметров, в т.ч. выходного тока имитаторов (9). Величина данного тока служит дополнительным свидетельством о факте включения и выключения КА. Техническим результатом изобретения является повышение надежности и расширение функциональных возможностей процесса электрических проверок КА. 1 ил.

 

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при изготовлении космических аппаратов (КА).

При создании КА большое внимание уделяется обеспечению высокой степени надежности электрических проверок.

Эта задача может быть решена только при условии обеспечения многоуровневого контроля технологического процесса электрических проверок КА.

Известен способ электрических проверок КА, реализованный «Автоматизированной испытательной системой для отработки, электрических проверок и подготовки к пуску космических аппаратов», описанный в материалах патента №2245825.

Известный способ заключается в автоматизированной выдаче технологических команд и радиокоманд, допусковом контроле дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроле поставленных на слежение параметров бортовой вычислительной системы, контроле сопротивления изоляции бортовых шин относительно корпуса, формирования директив оператора в ручном режиме, формирования протокола испытаний, отображения текущего состояния процесса испытаний.

Недостатком известного способа электрических проверок КА является отсутствие защиты от возникновения нештатных ситуаций, связанных с неполным выключением КА при перерывах в работе с ним, в случае возникновения каких-либо неисправностей в бортовой или наземной аппаратуре на различных этапах электрических проверок КА.

Наиболее близким техническим решением является способ электрических проверок КА, описанный в материалах заявки №2010141494 от 8.10.2010 г. (положительное решение от 11.10.2011 г.), который выбран в качестве прототипа.

Известный способ заключается в проведении включения и выключения космического аппарата, включая подключение или отключение бортовых источников электропитания или их наземных имитаторов, автоматизированной выдачи команд управления, допускового контроля дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы, контроля сопротивления изоляции бортовых шин относительно корпуса, формирования директив автоматической программы и директив оператора в ручном режиме, формирования протокола испытаний, отображения текущего состояния процесса испытаний, отличающийся тем, что в процессе проведения включения космического аппарата перед подключением бортовых источников электропитания или их наземных имитаторов дополнительно контролируют электрическое сопротивление между шинами питания космического аппарата на предмет соответствия его наперед заданному значению, а при его несоответствии наперед заданному значению включение космического аппарата запрещают.

Известный способ позволяет своевременно выявить возникновение нештатного короткого замыкания на шинах выключенного КА, однако он не защищает от случаев, связанных с неполным выключением КА при перерывах в работе с ним. Следует отметить, что неполное выключение КА ведет к переразряду аккумуляторных батарей, попаданию бортовой аппаратуры КА под воздействие питающего напряжения ниже согласованной величины, что в свою очередь ведет к финансовым потерям.

Задачей заявляемого изобретения является повышение надежности и расширение функциональных возможностей процесса электрических проверок КА.

Поставленная задача решается тем, что при проведении электрических проверок космического аппарата, заключающихся в проведении включения и выключения космического аппарата, включая подключение или отключение имитаторов солнечных и аккумуляторных батарей к космическому аппарату, и контроля поставленных на слежение параметров, включая контроль выходного тока имитаторов аккумуляторных батарей, о факте включения и выключения космического аппарата дополнительно судят по величине выходного тока имитаторов аккумуляторных батарей.

Действительно, при проведении электрических проверок КА в настоящее время широко используются имитаторы аккумуляторных батарей, что позволяет обеспечить проверку работы автоматика КА во всем диапазоне напряжений аккумуляторных батарей и их сигнальных параметров. Кроме того, использование имитаторов аккумуляторных батарей не требует длительной предварительной подготовки (в отличие от аккумуляторных батарей), что сокращает время проведения электрических проверок КА в целом.

При этом использование имитаторов аккумуляторных батарей, находящихся вне КА, позволяет, в частности, контролировать их выходные токи в любой момент независимо от работы КА и собственными или другими наземными средствами. Более того, результаты контроля можно использовать для воздействия на другие аппаратные средства, обеспечивающие проведение электрических проверок КА. При этом дополнительный уровень контроля позволяет повысить надежность процесса электрических проверок КА.

Кроме того, предлагаемый способ позволяет непосредственно измерить величину выходных токов имитаторов аккумуляторных батарей при выключенном КА, которые по сути являются токами утечки бортовых аккумуляторных батарей в последующей штатной конфигурации КА.

На фиг.1 приведена функциональная схема автономной системы электропитания в составе КА (с наземными связями), поясняющая работу по предлагаемому способу электрических проверок КА.

Солнечная батарея 1, содержащая в своем составе блокирующие диоды 1-1, как правило, находится в процессе изготовления КА в отстыкованном состоянии от КА (соединители 2 и 2-1, 3 и 3-1 расстыкованы). На КА солнечная батарея 1 устанавливается (и стыкуется) на время проведения испытания КА на воздействие механических нагрузок, а также для контроля стыковки солнечных батарей с КА. В отдельных случаях, например при неориентированных солнечных батареях, солнечная батарея находится постоянно в составе КА и электрически с ним состыкована, а наземные имитаторы солнечной батареи стыкуют к специально предусмотренным технологическим соединителям (отводам) параллельно солнечной батарее. При этом блокирующие диоды 1-1 защищают солнечную батарею от протекания так называемого «темнового» тока.

В представленном примере солнечная батарея 1 электрически отстыкована от КА 10. Система электропитания выполнена с общей минусовой шиной. Стабилизированный преобразователь напряжения для согласования работы солнечной 1 и аккумуляторной 5 батарей и обеспечения стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки (вправо от выходных шин «+» и «-» - на чертеже не показано) состоит из зарядного преобразователя 6, разрядного преобразователя 7 и стабилизатора выходного напряжения 4. Аккумуляторная батарея (в рассматриваемом примере используется одна аккумуляторная батарея) 5 минусом связана с общей минусовой шиной, а плюсом через соединители 5-2 и 5-1 (на чертеже указанные соединители расстыкованы) с зарядным и разрядным преобразователями (информационные связи аккумуляторной батареи 5 не показаны). Вместо солнечных батарей на вход стабилизированного преобразователя напряжения через соединители 2-1 и 3-1 подключен имитатор солнечных батарей (ИБС) 8, а вместо аккумуляторной батареи 5 к зарядному 6 и разрядному 7 преобразователям подключен имитатор аккумуляторной батареи (ИАБ) 9 (информационные связи имитатора аккумуляторной батареи 9 не показаны). При этом в цепи подключения солнечных батарей имеется коммутатор 2-2, а в цепи подключения аккумуляторной батареи - коммутатор 5-3, которые разомкнуты в выключенном состоянии КА.

Питание имитатора солнечной батареи 8 и имитатора аккумуляторной батареи 9 осуществляется от промышленной сети 220/380 В через кабели 8-1 и 9-1 соответственно.

Основной объем электрических проверок КА проводят с применением имитаторов солнечных 8 и аккумуляторных 9 батарей. Это позволяет оперативно провести отработку КА в любых режимах, связанных с состоянием солнечных 1 и аккумуляторных 5 батарей по отношению к интерфейсу со стабилизированным преобразователем напряжения, что практически не всегда возможно реализовать при отработке КА в штатной конфигурации. Штатные аккумуляторные батареи 5 хранят электрически разобщенными (исключающими токи утечки) со стабилизированным преобразователем напряжения, в подзаряженном состоянии. К космическому аппарату КА 10 подключен автоматизированный испытательный комплекс (АИК) 11, имеющий информационную связь с ИАБ 9.

В АИК 11 закладываются циклограммы различных электрических проверок, в том числе и циклограммы включения и выключения КА 10. Оператор через блок формирования директив оператора в ручном режиме запускает требующуюся циклограмму. Далее процесс идет автоматически. Текущие данные работ запоминаются и отображаются на блоке отображения (мониторе ПЭВМ - на чертеже не показано).

Перед включением бортовых источников электропитания (или их имитаторов) контролируют и документируют величину выходного тока ИАБ.

В случае если измеренное значение выходного тока ИАБ 9 не соответствует наперед заданному значению, блокируется включение КА до устранения несоответствия.

В случае если в процессе проведения выключения космического аппарата, после отключения имитаторов аккумуляторных батарей от космического аппарата, величина выходного тока ИАБ не соответствует его наперед заданному значению, факт отключения КА считается не достигнутым.

Таким образом, предлагаемый способ электрических проверок КА повышает надежность и расширяет функциональные возможности процесса электрических проверок КА.

Способ электрических проверок космического аппарата, заключающийся в проведении включения и выключения космического аппарата, включая подключение или отключение имитаторов солнечных и аккумуляторных батарей к космическому аппарату, и контроля поставленных на слежение параметров, включая контроль выходного тока имитаторов аккумуляторных батарей, отличающийся тем, что о факте включения и выключения космического аппарата дополнительно судят по величине выходного тока имитаторов аккумуляторных батарей.



 

Похожие патенты:

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Изобретение относится к информационно-измерительным системам и предназначено для проведения автоматической проверки электрических параметров линий связи сложного изделия, например ракеты с аппаратурой носителя.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу.

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного электродвигателя в безаварийном состоянии.

Изобретение относится к электроизмерительной технике. .

Изобретение относится к электротехнике и, в частности, к электрифицированному инструменту, бытовым и промышленным электроприборам, приборам специального назначения.

Изобретение относится к испытательной технике и может быть использовано для проведения испытаний на безотказность и электротермотренировки корпусированных цифровых интегральных схем.

Изобретение относится к измерительной технике и может быть использовано для оценки технического состояния работающего длительное время силового высоковольтного энергетического оборудования.

Изобретение относится к космической технике, а именно к колонизации космических объектов (КО). Космический корабль (КК) содержит посадочный (модуль длительно действующей базы (ДДБ)) (ПМ) и взлётный модули (ВМ).

Изобретение относится к ракетно-космической отрасли, а именно к наземному вспомогательному оборудованию. .

Изобретение относится к космической промышленности. .

Изобретение относится к ракетно-космической технике (РКТ), именно к технике и технологии подготовки к пуску ракеты-носителя (РН) с космической головной частью (КГЧ), содержащей разгонный блок (РБ) и космический аппарат (КА), и может быть использовано для подготовки к пуску ракет-носителей легкого, среднего и тяжелого класса с космическими головным частями на технических комплексах космодромов.

Изобретение относится к ракетно-космической технике (РКТ) - именно, к технике и технологии подготовки ракеты-носителя (РН) и космической головной части (КГЧ) к пуску: доставке, сборке, тестированию на техническом комплексе (ТК) космодрома для пуска РН, выведения космического аппарата (КА) на орбиту и может быть использовано для подготовки к пуску экологически безопасных ракет-носителей легкого, среднего и тяжелого класса с космическими головным частями, на технических комплексах любых космодромов, в частности, например, на космическом ракетном комплексе (КРК) космодрома «Байтерек» (Казахстан)и на проектируемом космодроме «Восточный».

Изобретение относится к ракетной технике и предназначено для отвода коммуникаций с разъемными соединениями от борта ракеты. .

Изобретение относится к области транспортного машиностроения, в частности к транспортно-установочному оборудованию ракетного комплекса. .

Изобретение относится к ракетно-космической технике, а именно к наземному подъемно-установочному оборудованию, и может быть использовано при подготовке ракет-носителей к пуску на высокоавтоматизированном стартовом комплексе.

Изобретение относится к ракетно-космической технике, а именно к устройствам отвода коммуникаций с разъемным соединением от борта ракеты. .

Изобретение относится к наземным имитационным испытаниям космических аппаратов (КА), а именно многозвенных маложестких механических систем изделий космической техники. Устройство для обезвешивания многозвенной механической системы КА содержит закрепленные на КА поворотные секции, расположенные в плане над соответствующими звеньями механической системы и связанные с ними посредством регулируемых пружин обезвешивания, трансформируемую опорную конструкцию из горизонтальных несущих штанг с кронштейнами, поворотные секции. Наименее удаленная от КА несущая штанга закреплена на КА, а наиболее удаленная от КА несущая штанга посредством опорной стойки опирается на пол помещения. Трансформируемая опорная конструкция снабжена фиксаторами взаимного положения несущих штанг, несущие штанги снабжены Г-образными упорами, опирающимися на пол помещения, кронштейны размещены на несущих штангах с возможностью взаимодействия и фиксации с поворотными секциями в их наиболее удаленных от космического аппарата концах. КА с закрепленным на нем устройством для обезвешивания многозвенной механической системы устанавливают на место проведения испытаний, проводят установку и фиксацию необходимой конфигурации опорной трансформируемой конструкции в горизонтальной плоскости, последовательно фиксируют положения поворотных секций системы обезвешивания в горизонтальной плоскости. Изобретение позволяет повысить функциональные и эксплуатационные характеристики устройств для испытаний многозвенных маложестких механических систем изделий космической техники. 2 н. и 3 з.п. ф-лы, 8 ил.
Наверх