Устройство для регенерации отработанного трансформаторного масла



Устройство для регенерации отработанного трансформаторного масла
Устройство для регенерации отработанного трансформаторного масла
Устройство для регенерации отработанного трансформаторного масла
Устройство для регенерации отработанного трансформаторного масла
Устройство для регенерации отработанного трансформаторного масла
Устройство для регенерации отработанного трансформаторного масла
Устройство для регенерации отработанного трансформаторного масла

 


Владельцы патента RU 2504576:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) (RU)

Настоящее изобретение относится к устройству для регенерации отработанного трансформаторного масла, характеризующемуся тем, что оно включает волновод, на торцах которого размещены упорные кольца и полый конус с отверстием в вершине с возможностью перемещения его между упорными кольцами стержнем, соединенным с основанием полого конуса через скользящее кольцо. Техническим результатом настоящего изобретения является эффективная регенерация трансформаторного масла путем коагуляции молекул воды и продуктов старения вращающимся электромагнитным полем. 1 табл., 7 ил.

 

Изобретение относится к электротехнической промышленности, в частности к области регенерации трансформаторного масла.

Известно устройство для регенерации трансформаторного масла, где очистка достигается в электроочистителе с совмещенной камерой; осадительные электроды покрыты пористым материалом, а ионизационные электроды выполнены в виде дисков, на которых укреплено большое число игл. Такая конструкция электродов обеспечивает неоднородность поля и высокую напряженность на остриях игл, а также способствует удержанию осевших частиц в пористом покрытии осадительных электродов [Hall H., Brown R.F.,«Lubrication Engineering», 1966, v.22, №12, р.488-495].

Недостаток устройства заключается в том, что для очистки требуется сложная аппаратура и значительные мощности, а также не используется энергия заряженных частиц трансформаторного масла.

Наиболее близким по технической сущности является устройство преобразования потенциальной энергии газового потока в электрическую, которое состоит из направляющего канала, включающего конфузор (полый усеченный конус), канал (волновод), диффозор и спираль с остриями для генерации ионов [Доценко Б.Н. Способ преобразования потенциальной энергии газового потока в электрическую энергию / Б.Н.Доценко // Патент 2093703].

Недостатками данного устройства являются:

1. Для работы устройства необходима компрессорная установка или начальная скорость потока газа.

2. Для создания вращающегося ионизированного потока газа используется дополнительный элемент - спираль с остриями.

3. Для создания эффекта отекания со спирали с острия необходим дополнительный источник энергии, если спираль с остриями выполнена из металла, либо применение спирали из материала диэлектрика.

Технической задачей изобретения является эффективная регенерация трансформаторного масла путем коагуляции молекул воды и продуктов старения вращающимся электромагнитным полем.

Технический результат достигается тем, что устройство для регенерации отработанного трансформаторного масла, характеризующееся тем, что оно включает волновод, на торцах которого размещены упорные кольца и полый конус с отверстием в вершине с возможностью перемещения его между упорными кольцами стержнем, соединенным с основанием полого конуса через скользящее кольцо.

Сопоставительный анализ с прототипом показывает, что в заявленном устройстве используется устройство, состоящее из волновода, внутри которого размещается полый конус с отверстием в вершине, создающий вращающееся электромагнитное поле, сформированное потоком отрицательных ионов из пространства, стекающих с острия, то есть с вершины полого конуса.

Таким образом, предлагаемое устройство соответствует критерию «Новизна». Сравнение заявленного решения с другими решениями показывает, что известное устройство, содержащее конфузор (полый усеченный конус), канал (волновод), диффузор и спираль с острия служащего для генерации ионов [Доценко Б.Н. Способ преобразования потенциальной энергии газового потока в электрическую энергию / Б.Н.Доценко // Патент 2093703]. Однако неизвестно, что отрицательные ионы, которые находятся в пространстве, можно использовать для создания вращающегося электромагнитного поля с разной диаграммой направленности путем перемещения полого конуса с отверстием в вершине внутри волновода «Изобретательский уровень».

Основные положения, лежащие в основе предложенного устройства.

1. Наличие в пространстве (в воздухе) свободных отрицательных ионов.

При нормальных условиях в воздухе в 1 см3 содержится 2,687×1019 беспорядочно движущихся молекул [Седов Л.И. Механика сплошной среды. Том 1./ Л. И.Седов. - М.: Изд-во Наука, 1970. - С.16].

В зависимости от чистоты воздуха численная концентрация ионов (легких, средних и тяжелых) достигает N=5×1010 в 1 м3 [Бурцев С.И. Влажный воздух. Состав и свойства: учеб пособие для вузов / С.И.Бурцев, Ю.Н.Цветков. - СПб.: Изд-во СПбГАХПТ, 1998. - С.90]. Влажный воздух увеличивает концентрацию ионов.

При +20°С в воздухе возможное содержание молекул воды в 1 см3 составляет 57,8×1016 молекул или 15 г/м3 [Макишев Г.Я. Физика, 10 класс / Г.Я.Макишев, Б.Б.Буховцев, Сотский Н.Н. 17-е изд., перераб. и доп. - М.: Просвещение, 2008. - С.150].

2. Распределение зарядов на поверхности тела (устройства) из окружающего пространства.

При размещении твердого тела в воздухе происходит вытеснение объема зарядов из пространства на поверхность данного тела, количество которых можно определить по формуле Гаусса-Остроградского

где σ - замкнутая поверхность, ограничивающая трехмерную область V, n - к поверхности σ, направленная вне области V (внешняя нормаль), а функции P(x,y,z), Q(x,y,z), R(x,y,z) и их частные производные первого порядка непрерывны в области V, включая ее границу (Краткий физико-технический справочник. Под общ. ред. К.П.Яковлева. T.1. Математика, Физика. Государственное изд-во физико-математической литературы. - М.: 1960. - С.140-141).

3. Плотность молекул (вместе с отрицательными ионами) на поверхности тела (устройства).

Концентрация отрицательных ионов в воздухе определяет объемную плотность зарядов:

где ρVq - объемная плотность заряда, e - заряд электрона, k - коэффициент соответствия заряду иона количества элементарных зарядов электрона, N - концентрация ионов в 1 см3.

Из выражения (2) определяется заряд на поверхности устройства:

где Q - заряды на поверхности устройства.

4. Напряженность электрического поля на поверхности тела (устройства).

Из выражения (3) определяется напряженность поля тела (устройства):

где Е - напряженность электрического поля.

5. Стекание зарядов с острия тела (устройства).

Известно, что у сферических, плоских и цилиндрических проводников плотность заряда во всех точках поверхности постоянна. Однако, если кривизна поверхности в разных точках разная, то заряды скапливаются на тех участках, где больше кривизна.

Чрезвычайно большой может стать плотность заряда у острия конуса (например, у острия конуса иголки). Если бы конус заканчивался точкой, то плотность зарядов на острие была бы бесконечно велика [Матвеев А.Н. Электричество и магнетизм / А.Н.Матвеев. - М.: Высшая школа, 1983. - 463 с.]. Таким образом, вытесненные заряды из объема пространства, занятым телом (устройством), распределяются максимально на вершине конуса, т.е. в вершине конуса создается большая плотность заряда, увеличение заряда на вершине конуса возможно увеличением размеров поверхности конуса, а также изменением угла при вершине конуса.

Большая напряженность поля Е на острие создает утечку зарядов и ионизацию воздуха (явление отекания зарядов с острия) [Иванов И.М. Электротехника: учеб. пособие / И.М.Иванов, Я.Д.Мац, М.М.Могилевский, Ю.Б.Россов; под общ. ред. И.М.Ивановым, М.М.Могилевским. - М.: Изд-во военное м-во обороны СССР, 1966. - С.54].

6. Плотность тока (отрицательных ионов).

Скорость направленного движения (тока) d пропорциональна напряженности поля Е:

где b - подвижность ионов, отнесенная к 760 мм рт.ст. и 0°С [см2/ сек].

Зная скорость движения ионов, концентрацию и заряд можно определить плотность тока отрицательных ионов:

где j - плотность тока [Кл см/сек]

[Гершензон Е.М. Молекулярная физика: учеб. пособие для студ. высш. пед. учеб. Заведений / Е.М.Гершензон, Н.Н.Малов, А.Н.Мансуров. - М.: Изд-во Академия, 2000 - С.97-98].

7. Магнитная индукция и напряженность созданного потоком отрицательных ионов.

Магнитная индукция В определяется согласно формуле

где µ - магнитная постоянная, H - напряженность.

Напряженность Н, созданная потоком отрицательных ионов

где r/2 - расстояние от потока отрицательных ионов до точки

[Эберт Г. Краткий справочник по физике / Г.Эберт. - перевод со 2-е изд. Под ред. К.П.Яковлева - М.: Физматгиз, 1963. - С.434].

8. Проникновение потока отрицательных ионов в молекулярную структуру трансформаторного масла.

В трансформаторном масле всегда находится: растворенный воздух, пузырьки ионизируемого газа, молекулярная вода [Липштейн Р.А. Трансформаторное масло / Р.А.Липштейн, М.И.Шахнович. 3-е изд., перераб. и доп. М.: Энергоиздат, 1983. - С.121-122].

В процессе проникновения потока отрицательных ионов в молекулярную структуру трансформаторного масла у свободных радикалов и диполей инициируется вращающий момент с силой:

где B - магнитная индукция поля, υ2 - скорость частицы.

9. Коалесценция продуктов старения трансформаторного масла магнитным вращающимся полем.

Как известно, полное удаление свободных радикалов и частиц загрязнения из масла способствует восстановлению свойств отработанного масла до базового уровня [Каменчук Я.А. Отработанные нефтяные масла и их регенерация (на примере трансформаторных и индустриальных масел): автореф. дис.… канд. хим. наук (31.01.2007) / Каменчук Я.А.: Институт химии нефти СО РАН - Томск, 2007. - С.11].

Частицы загрязнения отработанного масла - вода, кислые продукты и мыло обладают большой полярностью, при воздействии внешним полем у полярных молекул инициируется дипольный момент они поляризуются и объединяются в кластеры (ассоциации), которые затем оседают или всплывают в масле.

Коалесценция частиц обусловливается в основном влиянием дипольного момента молекул. Роль внешнего поля заключается в поляризации молекул продуктов старения [Мартыненко А.Г. Очистка нефтепродуктов в электрическом поле постоянного тока / А.Г.Мартыненко, В.П.Коноплев, Г.П.Ширяева. - М.: Изд-во Химия, 1974. - С.12].

Полное удаление свободных радикалов и продуктов старения способствует восстановлению свойств отработанного масла до уровня базового.

Устройство содержит:

На фиг.1 изображена сборочная конструкция устройства для формирования узкой диаграммы направленности вращающегося электромагнитного поля, для емкости с узкой площадью горла. Основание полого конуса с отверстием в вершине размещается у торца волновода.

На фиг.2 изображена сборочная конструкция устройства для формирования широкой диаграммы направленности вращающегося электромагнитного поля для емкости с широкой площадью горла. Вершина полого конуса с отверстием в вершине выдвинута из волновода.

На фиг.3 изображена сборочная конструкция устройства для формирования переменной диаграммы направленности вращающегося электромагнитного поля для емкости с переменными размерами площади горла. Полый конус с отверстием в вершине перемещается между двумя упорными кольцами стержнем.

На фиг.4 изображена схема формирования в пространстве у вершины полого конуса вращающегося электромагнитного поля отеканием зарядов с острия.

На фиг.5 изображена схема обработки отработанного трансформаторного масла, находящегося в емкости с узкой площадью горла, узкой диаграммой направленности вращающегося электромагнитного поля. Основание полого конуса с отверстием в вершине размещено у торца волновода.

На фиг.6 изображена схема обработки отработанного трансформаторного масла, находящегося в емкости с переменной площадью горла, переменной диаграммой направленности вращающегося электромагнитного поля. Полый конус с отверстием в вершине перемещается между двумя упорными кольцами стержнем.

На фиг.7 изображена схема обработки отработанного трансформаторного масла, находящегося в емкости с широкой площадью горла, широкой диаграммой направленности вращающегося электромагнитного поля. Вершина полого конуса с отверстием в вершине выдвинута из волновода.

На фиг.1 показано: 1 - волновод, 2 - полый конус с отверстием в вершине (расположение основания полого конуса с отверстием в вершине в волноводе у торца используется для формирования узкой диаграммы направленности вращающихся электромагнитных полей), 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 4 - кольцо упорное на торце волновода со стороны основания полого конуса с отверстием в вершине, 5 - кольцо упорное на торце волновода со стороны вершины полого конуса с отверстием в вершине, 6 - стержень для перемещения по волноводу полого конуса с отверстием в вершине.

На фиг.2 показано: 1 - волновод, 2 - полый конус с отверстием в вершине (расположение основания полого конуса с отверстием в вершине в волноводе у торца используется для формирования широкой диаграммы направленности вращающихся электромагнитных полей), 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 4 - кольцо упорное на торце волновода со стороны основания полого конуса с отверстием в вершине, 5 - кольцо упорное на торце волновода со стороны вершины полого конуса с отверстием в вершине, 6 - стержень для перемещения по волноводу полого конуса с отверстием в вершине.

На фиг.3 показано: 1 - волновод, 2 - полый конус с отверстием в вершине (расположение основания полого конуса с отверстием в вершине в волноводе у торца используется для формирования переменной диаграммы направленности вращающихся электромагнитных полей), 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 4 - кольцо упорное на торце волновода со стороны основания полого конуса с отверстием в вершине, 5 - кольцо упорное на торце волновода со стороны вершины полого конуса с отверстием в вершине, 6 - стержень для перемещения по волноводу полого конуса с отверстием в вершине.

На фиг.4 показано: 2 - полый конус с отверстием в вершине, 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 7 - отрицательные ионы, окружающие полый конус с отверстием в вершине, 8 - направление отекания отрицательных ионов от основания к вершине по поверхности полого конуса с отверстием в вершине, 9 - поток отрицательных ионов, сформированного в процессе отекания их (эффект отекания зарядов с острия) с поверхности полого конуса с отверстием в вершине, 10 - напряженность вращающегося магнитного поля соосно потоку отрицательных ионов, 11 - направление тока, сформированного отрицательными ионами, стекаемых с поверхности полого конуса с отверстием в вершине.

На фиг.5 показано: 1 - волновод, 2 - полый конус с отверстием в вершине (расположение полого конуса с отверстием в вершине основанием у торца волновода используется для формирования узкой диаграммы направленности вращающихся электромагнитных полей), 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 4 - кольцо упорное на торце волновода со стороны основания полого конуса с отверстием в вершине, 5 - кольцо упорное на торце волновода со стороны вершины полого конуса с отверстием в вершине, 6 - стержень для перемещения по волноводу полого конуса с отверстием в вершине, 7 - отрицательные ионы, окружающие полый конус с отверстием в вершине, 8 - направление отекания отрицательных ионов от основания к вершине по поверхности полого конуса с отверстием в вершине, 9 - поток отрицательных ионов, сформированного в процессе отекания их (эффект отекания зарядов с острия) с поверхности полого конуса с отверстием в вершине, 11 - направление тока, сформированного отрицательными ионами, стекаемых с поверхности полого конуса с отверстием в вершине, 12 - напряженность вращающегося магнитного поля в узкой диаграмме направленности, расположенной в пространстве между волноводом и емкостью с узким горлом, 13 - узкое горло емкости, 14 - емкость с узкой площадью горла, 15 - молекулы воды в трансформаторном масле (магнитные диполи), 16 - направление движения (притягивания) молекул воды из объема емкости, заполненного отработанным трансформаторным маслом, на силовые линии вращающегося магнитного поля, 17 - размещение (притянутых) молекул воды (магнитных диполей) на силовых линиях вращающегося магнитного поля в отработанном трансформаторном масле, 18 - осадок продуктов старения на дне емкости, 19 - слой коагулированной воды (центробежными силами при вращении молекул воды на силовых линиях вращающегося магнитного поля), 20 - регенерированное трансформаторное масло.

На фиг.6 показано: 1 - волновод, 2 - полый конус с отверстием в вершине (расположение полого конуса с отверстием в вершине между опорными кольцами используется для формирования переменной диаграммы направленности вращающихся электромагнитных полей), 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 4 - кольцо упорное на торце волновода со стороны основания полого конуса с отверстием в вершине, 5 - кольцо упорное на торце волновода со стороны вершины полого конуса с отверстием в вершине, 6 - стержень для перемещения по волноводу полого конуса с отверстием в вершине, 7 - отрицательные ионы, окружающие полый конус с отверстием в вершине, 8 - направление отекания отрицательных ионов от основания к вершине по поверхности полого конуса с отверстием в вершине, 9 - поток отрицательных ионов, сформированного в процессе отекания их (эффект отекания зарядов с острия) с поверхности полого конуса с отверстием в вершине, 11 - направление тока, сформированного отрицательными ионами, стекаемых с поверхности полого конуса с отверстием в вершине, 15 - молекулы воды в трансформаторном масле (магнитные диполи), 16 - направление движения (притягивания) молекул воды из объема емкости, заполненного отработанным трансформаторным маслом, на силовые линии вращающегося магнитного поля, 17 - размещение (притянутых) молекул воды (магнитных диполей) на силовых линиях вращающегося магнитного поля в отработанном трансформаторном масле, 18 - осадок продуктов старения на дне емкости, 19 - слой коагулированной воды (центробежными силами при вращении молекул воды на силовых линиях вращающегося магнитного поля), 20 - регенерированное трансформаторное масло, 21 - переменное горло емкости, 22 - емкость с переменной площадью горла, 23 - напряженность вращающегося магнитного поля в переменной диаграммой направленности, расположенной в пространстве между волноводом и емкостью с переменным горлом.

На фиг.7 показано: 1 - волновод, 2 - полый конус с отверстием в вершине (расположение полого конуса с отверстием в вершине - вершиной у торца и выдвинутой из волновода используется для формирования широкой диаграммы направленности вращающихся электромагнитных полей), 3 - кольцо скользящее, встроенное в основание полого конуса с отверстием в вершине, 4 - кольцо упорное на торце волновода со стороны основания полого конуса с отверстием в вершине, 5 - кольцо упорное на торце волновода со стороны вершины полого конуса с отверстием в вершине, 6 - стержень для перемещения по волноводу полого конуса с отверстием в вершине, 7 - отрицательные ионы, окружающие полый конус с отверстием в вершине, 8 - направление отекания отрицательных ионов от основания к вершине по поверхности полого конуса с отверстием в вершине, 9 - поток отрицательных ионов, сформированного в процессе отекания их (эффект отекания зарядов с острия) с поверхности полого конуса с отверстием в вершине, 11 - направление тока, сформированного отрицательными ионами, стекаемых с поверхности полого конуса с отверстием в вершине, 15 - молекулы воды в трансформаторном масле (магнитные диполи), 16 - направление движения (притягивания) молекул воды из объема емкости, заполненного отработанным трансформаторным маслом, на силовые линии вращающегося магнитного поля, 17 - размещение (притянутых) молекул воды (магнитных диполей) на силовых линиях вращающегося магнитного поля в отработанном трансформаторном масле, 18 - осадок продуктов старения на дне емкости, 19 - слой коагулированной воды (центробежными силами при вращении молекул воды на силовых линиях вращающегося магнитного поля), 20 - регенерированное трансформаторное масло, 24 - широкое горло емкости, 25 - емкость с широкой площадью горла, 26 - напряженность вращающегося магнитного поля в широкой диаграмме направленности, расположенной в пространстве между волноводом и емкостью с широким горлом.

Статический режим.

Сборка устройства осуществляется следующим образом. На основании полого конуса с отверстием в вершине 2 (фиг.1) размещается, например, на резьбе кольцо скользящее 3 (фиг.1) с размещением на нем стержня 6 (фиг.1), например на резьбе, для перемещения в волноводе полого конуса с отверстием в вершине 2 (фиг.1). Собранную конструкцию с любого торца вставляют в полость волновода 1 (фиг.1). Наворачивают на торец волновода, например, со стороны основания полого конуса с отверстием в вершине упорное кольцо 4 (фиг.1), а на второй торец волновода 1 (фиг.1) со стороны вершины полого конуса с отверстием в вершине 2 (фиг.1) - упорное кольцо 5 (фиг.1).

Устройство работает следующим образом.

Режим первый.

Регенерация отработанного трансформаторного масла, находящегося в емкости 14 (фиг.5) с узкой площадью горла 13 (фиг.5), реализуется узкой диаграммой направленности.

Для этого собранную конструкцию, изображенную на фиг.1 (устройство, формирующее на выходе волновода 1 (фиг.5) узкую диаграмму направленности), размещают, например, на расстоянии 5 см над узким горлом 13 (фиг.5) емкости 14 (фиг.5).

При этом вращающееся магнитное поле 12 (фиг.5), сформированное потоком отрицательных ионов 9 (фиг.5), стекаемых с поверхности полого конуса с отверстием в вершине 2 (фиг.5), размещенном в волноводе 1 (фиг.5), через узкую площадь горла 13 (фиг.5) входит в полость емкости 14 (фиг.5), в которой воздействует на молекулы воды 15 (фиг.5) путем притягивания 16 (фиг.5) их к вращающимся силовым магнитным линиям (с размещением молекул воды 17 (фиг.5) на силовых линиях магнитного поля) и центробежными силами коагулирует молекулы воды 17 (фиг.7) в слой коагулированной воды 19 (фиг.5). Продукты старения 18 (фиг.5) под действием собственного веса выпадают в осадок на дно емкости 14 (фиг.7), а различие в плотностях трансформаторного масла 20 (фиг.5) и воды приводит к расслоению и подъему трансформаторного масла 20 (фиг.5) в емкости 14 (фиг.5) над слоем коагулированной воды 19 (фиг.5).

После регенерации отработанного трансформаторного масла разработанным устройством производят удаление воды и продуктов старения из емкости (не показано).

Режим второй.

Регенерация отработанного трансформаторного масла, находящегося в емкости 22 (фиг.6) с переменной площадью горла 21 (фиг.6), реализуется переменной диаграммой направленности.

Для этого собранную конструкцию, изображенную на фиг.3 (устройство, формирующее на выходе волновода 1 (фиг.6) переменную диаграмму направленности), размещают, например, на расстоянии 5 см над переменной площадью горла 21 (фиг.6) емкости 22 (фиг.6).

При этом вращающееся магнитное поле 23 (фиг.6), сформированное потоком отрицательных ионов 9 (фиг.6), стекаемых с поверхности полого конуса с отверстием в вершине 2 (фиг.6), размещенном в волноводе 1 (фиг.6), через переменную площадь горла 21 (фиг.6) входит в полость емкости 22 (фиг.6), в которой воздействует на молекулы воды 15 (фиг.6) путем притягивания 16 (фиг.6) их к вращающимся силовым магнитным линиям (с размещением молекул воды 17 (фиг.6) на силовых линиях магнитного поля) и центробежными силами коагулирует молекулы воды 17 (фиг.6) в слой коагулированной воды 19 (фиг.6). Продукты старения 18 (фиг.6) под действием собственного веса выпадают в осадок на дно емкости 22 (фиг.6), а различие в плотностях трансформаторного масла 20 (фиг.6) и воды приводит к расслоению и подъему трансформаторного масла 20 (фиг.6) в емкости 22 (фиг.6) над слоем коагулированной воды 19 (фиг.6).

После регенерации отработанного трансформаторного масла разработанным устройством производят удаление воды и продуктов старения из емкости (не показано).

Режим третий.

Регенерация отработанного трансформаторного масла, находящегося в емкости 25 (фиг.7) с широкой площадью горла 24 (фиг.7), реализуется широкой диаграммой направленности.

Для этого собранную конструкцию, изображенную на фиг.2 (устройство, формирующее на выходе волновода 1 (фиг.7) широкую диаграмму направленности), размещают, например, на расстоянии 5 см над широким горлом 24 (фиг.7) емкости 25 (фиг.7).

При этом вращающееся магнитное поле 26 (фиг.7), сформированное потоком отрицательных ионов 9 (фиг.7), стекаемых с поверхности полого конуса с отверстием в вершине 2 (фиг.7), размещенном в волноводе 1 (фиг.7), через переменную площадь горла 24 (фиг.7) входит в полость емкости 25 (фиг.7), в которой воздействует на молекулы воды 15 (фиг.7) путем притягивания 16 (фиг.7) их к вращающимся силовым магнитным линиям (с размещением молекул воды 17 (фиг.7) на силовых линиях магнитного поля) и центробежными силами коагулирует молекулы воды 17 (фиг.7) в слой коагулированной воды 19 (фиг.7). Продукты старения 18 (фиг.7) под действием собственного веса выпадают в осадок на дно емкости 25 (фиг.7), а различие в плотностях трансформаторного масла 20 (фиг.7) и воды приводит к расслоению и подъему трансформаторного масла 20 (фиг.7) в емкости 25 (фиг.7) над слоем коагулированной воды 19 (фиг.7).

После регенерации отработанного трансформаторного масла разработанным устройством производят удаление воды и продуктов старения из емкости (не показано).

В ОАО «Тюменьэнерго» филиал «Тюменские распределительные сети «Южное территориальное производственное отделение проводились испытания по регенерации отработанного трансформаторного масла разработанным устройством, генерируемое вращающееся электромагнитное поле. Физико-химический анализ проб масел выполнялся по СО 34.45-51.300-97. В эксперименте использовалось масло для класса напряжения 110 кВ.

Результаты испытаний приведены в таблице.

Показатель качества Влагосодержание масла, г/т, (ГОСТ 7822-75) Пробивное напряжение, кВ (ГОСТ 6581-75) Кислотное число, мг КОН/г масла (ГОСТ 5985-79)
Результаты измерения до испытаний 25 30 0,022
Результаты измерения после испытаний 17,6 47 0,014

Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в таких маслах должны полностью отсутствовать. Предложенное устройство, по результатам эксперимента, позволяет осуществить требование к трансформаторному маслу путем его регенерации.

Устройство для регенерации отработанного трансформаторного масла, характеризующееся тем, что оно включает волновод, на торцах которого размещены упорные кольца и полый конус с отверстием в вершине с возможностью перемещения его между упорными кольцами стержнем, соединенным с основанием полого конуса через скользящее кольцо.



 

Похожие патенты:
Настоящее изобретение относится к смазке для лубрикации зоны контакта колес и рельсов, содержащей пластичную основу и модифицированный порошкообразный наполнитель, отличающейся тем, что в качестве пластичной основы используют углеводородное масло, а модифицированный порошкообразный наполнитель содержит смесь наноразмерных алюмосиликатных частиц, обработанных поверхностно-активными веществами, при следующем соотношении компонентов, мас.%: модифицированный порошкообразный наполнитель 5-10 поверхностно активное вещество 3-8 углеводородное масло остальное Техническим результатом настоящего изобретения является повышение усталостной прочности и износостойкости тяжелонагруженных узлов трения.

Настоящее изобретение относится к способу получения магнитного масла, включающему обработку магнетита в диэфире карбоновой кислоты в присутствии водного раствора 12-оксистеариновой кислоты или 12-гидрокси-Δ9-октадеценовой кислоты при нагревании до температуры выпаривания воды с последующей термообработкой смеси при 110-180°C и охлаждением полученного масла, содержащего магнетит - 15-30 масс.%, олигоэфир, полученный на основе 12-оксистеариновой кислоты или 12-гидроки-Δ9-октадеценовой кислоты 10-40 масс.% и диэфир карбоновой кислоты - остальное, отличающемуся тем, что полученную смесь подвергают давлению 100-150 МПа с одновременным нагревом в течение 3-17 ч с последующим снятием давления и дальнейшей термообработкой в течение 5-20 ч.
Настоящее изобретение относится к композиции смазки для редукторов, состоящей из углеводородной основы и присадки, отличающейся тем, что состоит из смеси: окисленного гудрона 60-75%, окисленного низкозастывающего минерального масла 21-32%, в качестве катализатора окисления - 1% растительного масла, серы 0,1-3%, в качестве моющей присадки - 1-3% сульфоната кальция; в качестве противоизносной присадки - 0,5-1,0% дитиофосфата цинка; в качестве антипенной присадки 0,003% полиметилсилоксана.

Настоящее изобретение относится к способу подготовки металлических обрабатываемых изделий для холодной штамповки сначала путем нанесения фосфатного слоя, а затем нанесением слоя смазочного покрытия, содержащего органический полимерный материал, причем фосфатный слой образуется с помощью водного кислого фосфатирующего раствора, который содержит от 4 до 100 г/л соединений кальция, магния или/и марганца, включая их ионы, и который является свободным от цинка или содержит цинк в количестве менее 30% масс.
Настоящее изобретение относится к смазочно-охлаждающей жидкости для шлифования плазменных покрытий на никелевой основе, содержащей эмульсол «ЭПМ-1ш» и воду, отличающейся тем, что смазочно-охлаждающая жидкость дополнительно содержит присадку ML - RM 20 и присадку ML - 5331 при следующем соотношении компонентов, мас.%: Эмульсол «ЭПМ-1ш» 2,0-3,2 Присадка ML - RM 20 0,45-0,65 Присадка ML - 5331 0,05-0,08 Вода остальное Техническим результатом настоящего изобретения является достижение высокой производительности обработки и высокой стойкости абразивного инструмента, а также получение удовлетворительной шероховатости обрабатываемой поверхности.

Настоящее изобретение представляет композицию смазочного масла, пригодную для применения в механических, автоматических и бесступенчатых трансмиссиях автомобилей или промышленных системах зубчатых передач.
Изобретение относится к смазочному составу, включающему смазочную среду и продукт дегидратации гидратов природных минералов или смеси природных минералов, или синтезированных гидратов, в котором продукт дегидратации, включающий оксиды MgO, и/или SiO2, и/или Al2O3, и/или СаО, и/или Fe2O3, и/или K2O, и/или Na2O, получен после удаления конституционной воды и разрушения кристаллической решетки при температуре от 350 до 900°С.

Настоящее изобретение относится к применению смазочной композиции в двигателях внутреннего сгорания. Описано применение смазочной композиции, содержащей от 60 до 92 вес.% базового масла и одно или более солевых производных амидов поли(гидроксикарбоновых кислот); для повышения чистоты поршней в двигателях внутреннего сгорания.
Настоящее изобретение относится к не содержащей свинца смазке для использования при горячей штамповке металлов, содержащей от 15 до 40% вес. одного или более масел, от 3 до 20% вес.

Настоящее изобретение относится к технологической смазке для обработки металлов давлением на основе хлорированного парафина (варианты), отличающейся тем, что содержит, масс.%: сульфидированный пропиленгликолевый эфир касторового масла с содержанием серы 2-5% 20-25; неионогенное поверхностно-активное вещество из класса оксиэтилированных алкилфенолов 2-5 и хлорированный парафин - остальное.

Изобретение относится к способу замедления окисления трансформаторного масла, находящегося в электроустановке. .

Изобретение относится к очистке нефтяных масел, в частности к очистке работающих моторных масел от продуктов старения и загрязнений, и может быть использовано на предприятиях сельскохозяйственного, автотранспортного, строительного производства и других отраслей хозяйственной деятельности, использующих автотракторную технику и двигатели внутреннего сгорания.

Изобретение относится к способу регенерации отработанного трансформаторного масла и очищения его от продуктов старения, находящегося в емкости, предусматривающему операции: установку над емкостью трансформаторного масла волновода, в котором располагают усеченный полый конус.
Изобретение относится к области нефтехимии, точнее к восстановлению свойств отработанных смазочных масел, и может быть использовано на маслоочистительных и регенерационных установках.

Изобретение относится к технологии очистки трансформаторных масел и может быть использовано в промышленной энергетике и объектах, использующих трансформаторное масло, когда возникает необходимость в их регенерации.

Изобретение относится к химической технологии и касается способа получения дизельного топлива из отработанного моторного масла. .

Изобретение относится к технологии очистки трансформаторных масел и может быть использовано в промышленной энергетике и объектах, использующих трансформаторное масло, когда возникает необходимость в их регенерации.

Изобретение относится к способу регенерации отработанных минеральных масел. .

Изобретение относится к химической технологии очистки дисперсных сред и коллоидных растворов. .

Изобретение относится к способу замедления окисления трансформаторного масла, находящегося в электроустановке. .
Наверх