Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт



Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт
Способ исследования продуктивности наклонно направленной скважины, вскрывшей продуктивный пласт

 


Владельцы патента RU 2504652:

Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (RU)

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к бурению скважин и добыче газа. Группа изобретений может найти применение при проведении геофизических и гидродинамических исследований и позволяет оценить продуктивность газовых скважин, вскрывших продуктивный изотропный пласт под заданным зенитным углом, и оптимизировать их конструкции. Технический результат, на достижение которого направлено предлагаемое решение, заключается в повышении точности оценки продуктивности наклонно-направленных скважин, вскрывших изотропный газовый пласт, при любых зенитных углах наклона их эксплуатационной части ствола. Группа изобретений позволяет обеспечить исследования притока газа к наклонно-направленной скважине и определять на основе моделирования ее продуктивность путем замены наклонно-направленной скважины (ННС) вертикальными и горизонтальными проекциями. 3 н. и 1 з.п. ф-лы, 4 ил.

 

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к бурению скважин и добыче газа. Группа изобретений может найти применение при проведении геофизических и гидродинамических исследований и позволяет оценить продуктивность газовых скважин, вскрывших продуктивный изотропный пласт под заданным зенитным углом, и оптимизировать их конструкции.

Из уровня техники известен способ определения дебита нефтяной скважины (патент RU №2354825 С2, Е21В 47/10, опубл. 10.05.2009). Известный способ включает отбор пробы нефти в заданном количестве, взятой в любом удобном месте из скважины. Отобранную пробу гомогенизируют до получения однородной по свойствам массы, затем определяют коэффициент вязкости этой пробы при соответствующих условиях: P=P1, T=T1, P=P2=P1, T=T2>T1 и Р=Р32, Т=Т32, где P1, Р2, Р3, T1, Т2, Т3 - значения величин давления Р и температуры Т в каждом из трех замеров вязкости данной пробы нефти. С помощью математических формул определяют параметры α, β, γ. Затем замеряют давление РL, Р0 и температуру ТL, Т0 на уровнях перфорированных отверстий и определяют параметры коэффициентов вязкости по математическим формулам. Известный способ не раскрывает, каким образом можно определить профиль ствола скважины.

Известен способ определения положения ствола направленной скважины (патент RU №2300631 С2, Е21В 47/022, опубл. 10.06.2007).

Известный способ определения положения ствола направленной скважины включает углубление скважины, циркуляцию бурового раствора, измерение гидростатического давления бурового раствора и определение зенитного угла ствола скважины. Согласно изобретению производят спуск бурильной колонны, выравнивают и измеряют среднюю плотность бурового раствора по стволу, измеряют гидростатическое давление в бурильных трубах глубинным манометром и в скважинах со значениями зенитного угла ствола скважины меньше и больше 90° определяют вертикальные и горизонтальные проекции и средние значения зенитного угла ствола скважины по заданным соотношениям. Недостаток известного способа состоит в том, что при определении зенитного угла ствола наклонно-направленной скважины не учитываются параметры «недовскрытой» части пласта, что не позволяет обеспечить достаточную точность при определении ее профиля.

Задачей предлагаемой группы изобретений является создание способа исследования притока газа к наклонно-направленной скважине с целью определения ее продуктивности, обеспечения оптимальной конструкции эксплуатационной части ствола наклонно-направленной скважины и ее профиля.

Технический результат, на достижение которого направлено предлагаемое решение, заключается в повышении точности оценки продуктивности наклонно-направленных скважин, вскрывших изотропный газовый пласт, при любых зенитных углах наклона их эксплуатационной части ствола.

Другой технический результат, на достижение которого направлена предлагаемая группа изобретений, заключается в обеспечении оптимизации конструкции наклонно-направленной скважины и ее профиля, т.е. в обеспечении выбора оптимальных значений длины, радиуса и зенитного угла наклона ствола в продуктивной части пласта.

Технический результат способа определения притока газа к наклонно-направленной скважине (ННС) достигается за счет того, что в диафрагменном измерителе критического течения газа (ДИКТ), установленном на газовой вертикальной скважине, используют диафрагму с малым диаметром калиброванного отверстия. Затем открывают коренную задвижку фонтанной елки и запускают газовую вертикальную скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени. Показания приборов регистрируют на носитель информации. Закрывая коренную задвижку, газовую вертикальную скважину останавливают. Затем в ДИКТ устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят газовую вертикальную скважину на установившийся режим. Вновь регистрируют результаты измерений на носитель информации и останавливают газовую вертикальную скважину. Операции повторяют по числу имеющихся диафрагм с различными диаметрами. По данным промысловых исследований газовой вертикальной скважины на стационарных режимах фильтрации определяют линейный А и квадратичный В коэффициенты фильтрационных сопротивлений, пластовое Рпл и забойное Рз давления, характеристики продуктивности пласта. Проводят оценку притока газа к скважине и ее продуктивности. На основании полученных результатов исследования газовой вертикальной скважины строят модель профиля ННС, который проецируют на вертикальную и горизонтальную оси. Участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных и вертикальных интервалов. Для заданного значения зенитного угла φ ННС определяют длину горизонтальной IГ и вертикальной IВ проекций ствола скважины как

lГ=L sin φ

и

lВ=L cos φ соответственно,

где L - длина ствола эксплуатационной части ННС. Затем определяют линейный и квадратичный коэффициенты фильтрационных сопротивлений для i-го участка вертикальной проекции ствола скважины

где i=1, 2,…N,

а, b - не зависящие от конструкции скважины множители, учитывающие влияние фильтрационно-емкостных свойств пласта и физико-химические свойства флюидов, определенные для газовой вертикальной скважины,

- эффективная толщина единичного вскрытого интервала вертикальной проекции ствола, Кпес - коэффициент песчанистости,

Rкв - радиус контура дренирования газовой вертикальной скважины,

, где Rс - радиус ствола ННС.

Определяют продуктивность каждого i-го участка вертикальной проекции скважины

а затем определяют суммарную продуктивность ННС

.

Технический результат способа определения притока газа к наклонно-направленной скважине (ННС) (по второму варианту) достигается за счет того, что в диафрагменном измерителе критического течения газа (ДИКТ), установленном на газовой вертикальной скважине, используют диафрагму с малым диаметром калиброванного отверстия, открывают коренную задвижку фонтанной елки и запускают газовую вертикальную скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени. Показания приборов регистрируют на носитель информации. Закрывая коренную задвижку, газовую вертикальную скважину останавливают. В ДИКТ затем устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят газовую вертикальную скважину на установившийся режим. Затем регистрируют результаты измерений на носитель информации и останавливают газовую вертикальную скважину. Осуществляют повтор операций по числу имеющихся диафрагм с различными диаметрами. По данным промысловых исследований газовой вертикальной скважины на стационарных режимах фильтрации определяют линейный А и квадратичный В коэффициенты фильтрационных сопротивлений, пластовое Рпл и забойное Рз давления, характеристики продуктивности пласта. Затем проводят оценку притока газа к скважине и ее продуктивности. На основании полученных результатов исследования газовой вертикальной скважины строят модель профиля ННС, который проецируют на вертикальную и горизонтальную оси. Участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных и вертикальных интервалов. Затем определяют для заданного значения зенитного угла φ ННС длину горизонтальной lГ и вертикальной lВ проекций ствола скважины как

lГ=L sin φ

и

lВ=L cos φ соответственно,

где L - длина ствола эксплуатационной части ННС. Определяют линейный и квадратичный коэффициенты фильтрационных сопротивлений для i-го участка горизонтальной проекции ствола скважины

где i=1, 2,…N,

j=I, II - зоны дренирования газа (иллюстрация на фиг.1);

hij - эффективная толщина на i-м участке j-й зоны дренирования;

- длина единичного вскрытого интервала (см. фиг.1).

Затем определяют продуктивность каждого интервала горизонтальной проекции ствола скважины

а затем

определяют суммарную продуктивность ННС

.

Технический результат способа определения критического зенитного угла наклонно-направленной скважины достигается за счет того, что определяют суммарную продуктивность ННС способами определения притока газа к ННС по первому и второму вариантам для различных значений зенитного угла. Затем в одной и той же системе координат строят графики нормализованной зависимости продуктивности ННС, полученной путем замены ННС вертикальными и горизонтальными проекциями ствола скважины от величины зенитного угла. В качестве критического зенитного угла ННС принимают угол, соответствующий значению зенитного угла в точке пересечения упомянутых кривых.

Величину критического зенитного угла принимают равной 50°.

Сущность заявленной группы изобретений поясняется технологическими схемами, представленными на фиг.1-4.

На фиг.1 представлена схема притока газа к стволу наклонно-направленной скважины радиусом Rс (м), длиной L (м), вскрывшей полосообразный пласт толщиной Нпл (м) с зенитным углом наклона φ (град.). Расстояние от оси скважины до ее контура дренирования равно Rкг (м). Длина горизонтальной проекции вскрытой части равна Iг (м).

На фиг.2 представлена схема притока газа к стволу наклонно-направленной скважины радиусом Rс длиной L, расположенной в продуктивной толще с зенитным углом φ, вскрывшей пласт от кровли до некоторой глубины, при плоскорадиальном притоке флюида. Радиус контура дренирования равен Rкв (м). Толщина вскрытой части пласта равна Iв (м).

На фиг.3 представлен график выполаживания относительной погрешности вычисления продуктивности наклонно-направленной скважины от числа разбиений ствола (при некотором фиксированном зенитном угле φ) на элементарные интервалы.

На фиг.4 представлен график нормализованных зависимостей функций продуктивности наклонно-направленной скважины от зенитного угла.

Предложенную группу изобретений можно реализовать следующим образом.

Бурение бокового ствола и проводка наклонно-направленной скважины (ННС) из пилотной вертикальной скважины (ВС), вскрывшей продуктивный изотропный пласт, или путем реконструкции эксплуатационной ВС требует предварительного исследования продуктивности Q (тыс. м3/сут) ВС. При этом под продуктивностью скважины понимают либо зависимость дебита от депрессии, либо объемный приток газа к стволу скважины в единицу времени. Исследование проводят с учетом заданной конструкции ННС (в предельном случае - вертикального или горизонтального ствола). Исходя из выбранной конструкции ННС, используемого на заданном месторождении бурового оборудования и инструментов, осуществляют следующий выбор: тип ствола эксплуатационной части (открытый не обсаженный, перфорированный в заданном интервале, оснащенный фильтром хвостовик), его длина L (м), внешний радиус Rс (мм) и зенитный угол φ в продуктивном пласте. Учитывая особенности конкретного месторождения и условия его разработки, проводят промысловые исследования геолого-физических параметров залежи и газогидродинамические исследования вертикальной скважины.

Исследование газовых скважин, например, методом установившихся отборов при стационарных режимах фильтрации газа могут быть проведены в следующем порядке.

На устье скважины осуществляют подготовительные операции: проводят монтаж приборов и оборудования; осуществляют продувку скважины; проводят герметизацию устья; полностью восстанавливают устьевое давление путем технологического отстоя. В диафрагменном измерителе критического течения газа (ДИКТ) устанавливают диафрагму с малым диаметром калиброванного отверстия. После этого открывают коренную задвижку фонтанной елки, пускают скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени. Показания приборов регистрируют, после чего останавливают скважину, закрывая коренную задвижку. Затем в ДИКТ устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят скважину на установившийся режим. Результаты измерений также фиксируют, а скважину останавливают. Перечисленные операции повторяют от 6 до 10 раз в зависимости от числа имеющихся диафрагм. Выборочно осуществляют контроль замеров для убывающей последовательности диаметров калибровочного отверстия диафрагм.

По данным промысловых исследований газовой скважины на стационарных режимах фильтрации определяют линейный А (МПа2/тыс.м3/сут)) и квадратичный В (МПа2/тыс.м3/сут)2) коэффициенты фильтрационных сопротивлений, пластовое Рпл (МПа) и забойное Рз (МПа) давления, характеристики продуктивного пласта: общую Нпл (м) и эффективную Нэф (м) толщины пласта по разрезу скважины, безразмерный коэффициент песчанистости Кпес и радиус контура дренирования ВС Rкв (м). Затем проводят оценку притока газа к скважине и ее продуктивности Q, используя квадратичную зависимость стационарной фильтрации

На основе известных формул (Гриценко А.И. и др., Руководство по исследованию скважин. - М.: Наука, 1995, стр.182-183, (15.4), (16.4), (17.4)) определяют не зависящие от конструкции скважины множители а (МПа2/(тыс.м2/сут)) и b (МПа2/(тыс.м2/сут)2), учитывающие влияние фильтрационно-емкостных свойств пласта и физико-химические свойства флюидов

где C1, С3 и С2, С4 - коэффициенты несовершенства по степени и характеру вскрытия пласта ВС соответственно.

Для определения коэффициентов несовершенства по степени вскрытия (C1, С3) имеются ряд зависимостей (например, Гриценко А.И. и др., Руководство по исследованию скважин. - М: Наука, 1995, стр.183-186, (19.4), (21.4), (22.4), (24.4), (29.4)).

Влияние коэффициентов несовершенства по характеру вскрытия на приток газа (С2 и С4), как правило, не рассматривается, а считается, что ствол скважины либо открытый, либо с достаточным числом перфорационных отверстий эксплуатационной колонны в интервале эффективной толщины пласта, т.е. С24=0.

Расчетные фильтрационные коэффициенты притока газа к ВС АВС и ВВС (т.е. коэффициенты А и В в уравнении (1)) определяют с помощью тех же известных формул (Гриценко А.И. и др., Руководство по исследованию скважин. - М: Наука, 1995, стр.182-183, (16.4), (17.4)).

Расчетные фильтрационные коэффициенты притока газа к горизонтальной скважине (ГС) AГС и ВГС определяют с помощью различных методик. Например, при схематизации притока газа к ГС (см. фиг.1), вскрывшей изотропный полосообразный пласт, коэффициенты фильтрационных сопротивлений имеют следующий вид (Алиев З.С. и др., Определение производительности горизонтальных скважин, вскрывших газовые и газонефтяные пласты. М.: Недра, 1995, стр.53, (2.21)):

где Rкг - расстояние от оси горизонтальной скважины до ее контура питания, которое определяют на основе промысловых исследований и полученного значения радиуса контура дренирования ВС Rкв

Rкг≈0,8·Rкв.

При формировании модели притока газа к ННС, вскрывшей изотропную залежь, участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных или вертикальных интервалов (см. фиг.1 и 2). Суммарная длина этих интервалов равна длине горизонтальной проекции ствола скважины: lГ=L sin φ или длине вертикальной проекции: lВ=L cos φ.

При любом значении зенитного угла φ в случае замены ННС элементарными горизонтальными участками достаточное число разбиений составляет N=50·L/Нпл. Обоснование выбора числа N иллюстрируется с помощью выполаживающейся зависимости относительной погрешности вычисления продуктивности от числа интервальных разбиений N (см. фиг.3). Для интервалов вертикальной проекции величина N не имеет принципиального значения при вскрытии изотропного пласта и может быть принята равной той же величине, что и для ГС.

Искомую продуктивность ННС определяют суммарной продуктивностью всех этих интервалов. В зависимости от положения каждого интервала, а также исходя из соблюдения равенства площади фильтрации, ему назначается гидродинамически эквивалентный радиус элемента ствола

для вертикальной проекции - ;

для горизонтальной проекции - .

Для всего интервала зенитного угла радиус (либо длина) контура дренирования описывается следующей зависимостью, полученной экспериментально:

.

На базе совершенных средств измерения и программных решений для исследования параметров газовой скважины строят модель профиля ННС и определяют производные данные от ее вертикальной и горизонтальной проекций.

Если локальный интервал ННС расположен под зенитным углом от 0° до некоторой критической величины φкр (характеристика φкр приведена ниже), то его фильтрационные коэффициенты определяют в соответствии с формулами (3). Коэффициенты C1 и С3, определяющие степень вскрытия пласта, оказывают значительное влияние на продуктивность скважины. Несовершенство по степени вертикального вскрытия ННС выражается в «недовскрытии» пласта по его геометрической толщине в зависимости от зенитного угла φ. На фиг.2б заштрихованная зона соответствует не вскрытой части пласта. Тогда формулы (3) для i-го элемента скважины преобразуются в следующий вид:

где i=1, 2,…N;

- эффективная толщина единичного вскрытого интервала.

Далее определяют продуктивность каждого i-го интервала с учетом уравнения притока (1), представленного в виде

Соответственно суммарная продуктивность ННС составит

Если локальный интервал ННС расположен под зенитным углом от некоторой критической величины φкр до 90°, то его фильтрационные коэффициенты AГС и ВГС определяют в соответствии с формулами (4). В этом случае несовершенство по степени вскрытия ННС выражается в «недовскрытии» части пласта по его длине, определяемой величиной зенитного угла φ. Это иллюстрирует заштрихованная зона на фиг.1б. С учетом сказанного, формулы (4) можно записать в следующем виде:

где i=1, 2,…N;

j=I, II - зоны дренирования газа (иллюстрация на фиг.1);

hij - эффективная толщина на i-м участке j-й зоны дренирования;

- длина единичного вскрытого интервала (см. фиг.1).

Далее продуктивность каждого интервала определяется с учетом уравнения притока газа к скважине (1)

Соответственно суммарная продуктивность ИНС

Критический угол (φкр) определяется путем сравнения нормализованных зависимостей продуктивности ННС от угла наклона (см. фиг.4). Кривая 1, как функция от φ, получена на основе моделирования продуктивности пласта путем замены ННС горизонтальными элементами. Кривая 2, как функция от φ, получена на основе моделирования продуктивности пласта путем замены ННС вертикальными элементами. Точка пересечения двух кривых служит индикатором (критическим углом) смены рассмотренных расчетных алгоритмов для корректного определения продуктивности ННС на всем интервале изменения зенитного угла от 0° до 90°, а именно: от 0° до φкр продуктивность элементарных интервалов рассчитывается по формулам (6) и (7); от φкр до 90° продуктивность элементарных интервалов рассчитывается по формулам (9) и (10). В нормализованной зависимости величина критического зенитного угла φкр изменяется в пределах от 49,3° до 50,3°, т.е. условно может считаться константой, равной 50°.

Применяя предлагаемую модель для проведения промысловых газогидродинамических исследований пилотных вертикальных скважин, можно оперативно, с достаточно высокой точностью оценить продуктивность проектируемой наклонно-направленной скважины для вскрытия изотропного газового пласта при любом зенитном угле наклона ее эксплуатационной части ствола, либо с помощью предложенного в настоящем решении исследовательского аппарата провести оптимизацию конструкции наклонно-направленной скважины и ее профиля, т.е. выбрать оптимальные значения длины, радиуса и зенитного угла наклона ствола в продуктивной части пласта.

1. Способ определения притока газа к наклонно-направленной скважине (ННС), заключающийся в том, что в диафрагменном измерителе критического течения газа (ДИКТ), установленном на газовой вертикальной скважине, используют диафрагму с малым диаметром калиброванного отверстия, открывают коренную задвижку фонтанной елки и запускают газовую вертикальную скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени, показания приборов регистрируют на носитель информации, закрывая коренную задвижку, газовую вертикальную скважину останавливают, в ДИКТ устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят газовую вертикальную скважину на установившийся режим, регистрируют результаты измерений на носитель информации и останавливают газовую вертикальную скважину, повторяют операции по числу имеющихся диафрагм с различными диаметрами, по данным промысловых исследований газовой вертикальной скважины на стационарных режимах фильтрации определяют линейный А и квадратичный В коэффициенты фильтрационных сопротивлений, пластовое Рпл и забойное Рз давления, характеристики продуктивности пласта, проводят оценку притока газа к скважине и ее продуктивности, на основании полученных результатов исследования газовой вертикальной скважины строят модель профиля ННС, который проецируют на вертикальную и горизонтальную оси, участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных и вертикальных интервалов, определяют для заданного значения зенитного угла φ ННС длину горизонтальной lГ и вертикальной lВ проекций ствола скважины как
lГ=L sin φ
и
lВ=L cos φ соответственно,
где L - длина ствола эксплуатационной части ННС,
определяют линейный и квадратичный коэффициенты фильтрационных сопротивлений для i-го участка вертикальной проекции ствола скважины


где i=1, 2,…N,
a, b - не зависящие от конструкции скважины множители, учитывающие влияние фильтрационно-емкостных свойств пласта и физико-химические свойства флюидов, определенные для газовой вертикальной скважины,
- эффективная толщина единичного вскрытого интервала вертикальной проекции ствола, Кпес - коэффициент песчанистости,
RКВ - радиус контура дренирования газовой вертикальной скважины,
, где RС - радиус ствола ННС,
определяют продуктивность каждого i-го участка вертикальной проекции скважины

определяют суммарную продуктивность ННС
.

2. Способ определения притока газа к наклонно-направленной скважине (ННС), заключающийся в том, что в диафрагменном измерителе критического течения газа (ДИКТ), установленном на газовой вертикальной скважине, используют диафрагму с малым диаметром калиброванного отверстия, открывают коренную задвижку фонтанной елки и запускают газовую вертикальную скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени, показания приборов регистрируют на носитель информации, закрывая коренную задвижку, газовую вертикальную скважину останавливают, в ДИКТ устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят газовую вертикальную скважину на установившийся режим, регистрируют результаты измерений на носитель информации и останавливают газовую вертикальную скважину, повторяют операции по числу имеющихся диафрагм с различными диаметрами, по данным промысловых исследований газовой вертикальной скважины на стационарных режимах фильтрации определяют линейный А и квадратичный В коэффициенты фильтрационных сопротивлений, пластовое Рпл и забойное Рз давления, характеристики продуктивности пласта, проводят оценку притока газа к скважине и ее продуктивности, на основании полученных результатов исследования газовой вертикальной скважины строят модель профиля ННС, которой проецируют на вертикальную и горизонтальную оси, участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных и вертикальных интервалов, определяют для заданного значения зенитного угла φ ННС длину горизонтальной lГ и вертикальной lВ проекций ствола скважины как
lГ=L sin φ
и
lВ=L cos φ соответственно,
где L - длина ствола эксплуатационной части ННС,
определяют линейный и квадратичный коэффициенты фильтрационных сопротивлений для i-го участка горизонтальной проекции ствола скважины


где i=1, 2,…N,
j=I, II - зоны дренирования газа;
hij - эффективная толщина на i-м участке j-й зоны дренирования;
- длина единичного вскрытого интервала,
Rкг - расстояние от оси горизонтальной скважины до ее контура питания,
, где RС - радиус ствола ННС,
определяют продуктивность каждого интервала горизонтальной проекции ствола скважины

определяют суммарную продуктивность ННС
.

3. Способ определения критического зенитного угла наклонно-направленной скважины (ННС), заключающийся в том, что определяют суммарную продуктивность ННС способом по п.1 для различных значений зенитного угла, для которых также определяют суммарную продуктивность ННС способом по п.2 для различных значений зенитного угла, строят графики нормализованной зависимости продуктивности ННС, полученной путем замены ННС вертикальными и горизонтальными проекциями ствола скважины от величины зенитного угла, в качестве критического зенитного угла ННС принимают угол, соответствующий значению зенитного угла в точке пересечения упомянутых кривых.

4. Способ по п.3, отличающийся тем, что величину критического зенитного угла принимают равной 50°.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения качества цементирования скважин. Акустический способ определения места перетока флюида в заколонном пространстве скважины заключается в равномерном перемещении вдоль скважины акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине расположения места перетока флюида.

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано для проведения геофизических исследований технического состояния скважин.

Заявляемое изобретение относится к нефтедобыче, а именно к устройствам для измерения количества нефти и нефтяного газа, извлекаемых из недр, и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин.

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе.

Изобретение относится к нефтегазодобыче и может быть использовано на стадиях строительства, эксплуатации, консервации и ликвидации скважин многопластовых нефтегазоконденсатных месторождений для определения природы углеводородных газов, поступивших в межколонные пространства скважин, или газов бурового раствора.

Изобретение относится к нефтяной промышленности и может найти применение при измерениях количества жидкостной составляющей скважинной продукции. Технический результат направлен на повышение точности определения жидкостной составляющей скважинной продукции.

Изобретение относится к области добычи нефти и может быть использовано для измерений дебита продукции нефтегазодобывающих скважин. .
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважины. .

Изобретение относится к буровой технике, а именно к способам определения дебитов и плотности пластового флюида нефтяных пластов и слоев пониженной, низкой и ультранизкой продуктивности, объединенных в общий эксплуатационный объект скважины.

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений.

Предлагаемое изобретение относится к области добычи нефти и может быть использовано для определения дебитов нефти, воды и попутного нефтяного газа как передвижными, так и стационарными замерными установками. Целью заявляемого изобретения является повышение точности измерения и определение газового фактора нефти с учетом растворенного газа. Способ определения дебитов нефти, попутного газа и воды нефтяных скважин, включающий в себя заполнение до максимального уровня через открытый входной кран измерительной емкости скважинной продукцией. После достижения уровнем водонефтяной смеси максимального положения производится закрытие входного крана емкости и выдержка для сепарации свободного газа из жидкости. Определяют дебит водонефтяной смеси по скорости заполнения емкости продукцией и объему сепарированной жидкости. Производят открытие входного крана и вытеснение продукции из емкости в коллектор в течение периода, равного времени предыдущего заполнения емкости продукцией скважины. Производят постепенный отбор газовой среды и закачку ее в коллектор компрессором. Отбор газовой фазы осуществляют через редуктор давления, понижающий давление на приеме компрессора до атмосферной величины, а дебит попутного газа определяют по подаче компрессора, времени снижения давления газа в калиброванной емкости до атмосферной величины и объему емкости, занятой к этому моменту газовой фазой. 2 ил.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и может быть использовано, в частности, при определении профиля притока скважины и параметров околоскважинного пространства. Согласно способу изменяют дебит скважины и осуществляют измерение во времени температуры втекающего в скважину флюида для каждого пласта, определяют величину изменения температуры ΔТ р начального этапа, и величину установившегося значения А логарифмической производной температуры от времени для каждого пласта. Величину удельного дебита q каждого пласта определяют по приведенному математическому выражению. Определяют дебит Q каждого пласта скважины, а профиль притока скважины определяют как совокупность дебитов Q всех пластов. Техническим результатом является повышение точности определения параметров скважины. 5 ил.

Изобретение относится к гидрологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин. Техническим результатом, получаемым при внедрении изобретения, является расширение эксплуатационных возможностей за счет однозначной интерпретации результатов термического каротажа для случаев присутствия в скважине температурных аномалий от стационарных градиентов температур и перетоков флюида. Данный технический результат достигается за счет того, что обычная термическая каротажная система дополнена термоанемометром, объединенным с термической системой в единую схему. 3 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение при определении заколонных перетоков скважины. Техническим результатом является определение заколонных перетоков при потоке жидкости за скважиной сверху вниз. В способе скважину оборудуют колонной труб со свабом. Низ колонны размещают ниже перфорированного интервала продуктивного пласта. Скважину оборудуют глубинным термометром на кабеле в межтрубном пространстве. Поднимают сваб по колонне труб и одновременно поднимают по межтрубному пространству на кабеле глубинный термометр в режиме регистрации. При подъеме сваба организуют изменение направления потока жидкости в скважине от направления из продуктивного пласта вверх по скважине при добыче нефти на направление от продуктивного пласта вниз к низу колонны труб. Операции повторяют, регистрируют термограммы при измененном направлении потока флюидов в скважине, анализируют термограммы и сравнивают с термограммой остановленной скважины. Отмечают на термограммах при измененном направлении потока флюидов в скважине увеличение температуры в исследуемом интервале. Делают предположение о наличии заколонных перетоков сверху вниз с вышележащих в нижележащие пласты. Делают заключение о поступлении флюида из вышележащего пласта по пути заколонных перетоков в перфорированный интервал. 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Технический результат направлен на повышение точности и качества измерения дебита скважин. Устройство содержит вертикальную цилиндрическую емкость, входную и выходную в виде сифона, жидкостные линии, газовую линию, датчики давления и температуры газовой фазы, счетно-решающий блок. Объемный счетчик жидкости, запорный клапан, установленный, как и счетчик, на общей линии вслед за ним перед впадением ее в сборный коллектор, и при этом газовая и выходная жидкостная нисходящей ветвью сифона линии сообщены с гидравлическим замком. Датчики давления и температуры установлены на газовой линии, запорный клапан, объемный счетчик жидкости и счетно-решающий блок взаимосвязаны между собой через импульсный распределительный блок определения измеряемой рабочей среды. Запорный клапан выполнен перепускным дискретного действия с магнитной фиксацией, разгрузкой и контролем положения: «Открыто» или «Закрыто».1 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод. Способ включает в себя процедуры нахождения начального содержания газа в жидкости и замера выделенного из жидкости объема газа. При этом начальное газосодержание в жидкости определяют по каждой из группы нефтедобывающих скважин, работающих на единый трубопровод. Остаточное содержание газа в трубопроводной жидкости после отвода газа в сепарационной емкости определяют по формуле: Г = ∑ i = 1 n ( Г i ⋅ Q i ) − Q г ∑ i = 1 n Q i где Гi - начальное газосодержание в жидкости i-ой скважины; Qi - дебит по жидкости i-ой скважины; n - количество скважин в группе, работающих на единый трубопровод; Qг - объем газа, выделившийся из трубопроводной жидкости в сепарационной емкости за единицу времени. 1 ил., 1 табл.

Изобретение относится к нефтяной промышленности и может быть использовано при гидродинамических исследованиях многозабойных скважин. Предложен способ исследования многозабойной горизонтальной скважины, содержащий этапы, на которых осуществляют спуск в скважину глубинного прибора, проведение гидродинамических исследований и извлечение геофизического прибора из многозабойной горизонтальной скважины. При этом перед спуском глубинного прибора на устье многозабойной горизонтальной скважины на нижний конец колонны труб устанавливают гидравлический отклонитель с легкоразбуриваемой сбивной насадкой с калиброванным отверстием и фиксирующим срезным штифтом. Спускают колонну труб с гидравлическим отклонителем с одновременной промывкой до интервала зарезки исследуемого бокового ствола. Причем в процессе спуска колонну труб оснащают пусковыми клапанами. Затем создают избыточное гидравлическое давление в колонне труб и спускают ее в исследуемый боковой ствол и увеличивают избыточное давление в колонне труб до разрушения срезного штифта и отсоединения сбивной насадки от гидравлического отклонителя. Далее на устье скважины соединяют глубинный прибор с жестким кабелем и спускают его в колонну труб до выхода из колонны и размещения его в исследуемом боковом стволе. После чего вызывают приток жидкости из пласта закачкой газа в межколонное пространство через пусковые клапаны и производят гидродинамические исследования в исследуемом боковом стволе проталкиванием глубинного прибора до его забоя. После проведения гидродинамических исследований последовательно извлекают жесткий кабель с глубинным прибором из колонны труб и колонну труб с гидравлическим отклонителем. Техническим результатом является повышение точности и эффективности проведения гидродинамических исследований в боковых стволах многозабойной горизонтальной скважины. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для изоляции водопритоков в открытых стволах многозабойных горизонтальных скважин. Устройство содержит спускаемую в скважину колонну пустотелых герметичных труб и геофизический прибор для проведения геофизических исследований. На нижнем конце колонны пустотелых герметичных труб, в качестве которых применяют колонну насосно-компрессорных труб, выполнены отверстия, в них установлены сбивные клапаны, а ниже отверстий в колонне насосно-компрессорных труб выполнена внутренняя кольцевая выборка, в которой установлено разрезное стопорное кольцо. При этом на нижнем конце колонны насосно-компрессорных труб ниже отверстий установлен гидравлический отклонитель, обеспечивающий попадание в открытый ствол многозабойной горизонтальной скважины. Кроме того, устройство снабжено продавочной пробкой, имеющей возможность перемещения по колонне насосно-компрессорных труб под действием избыточного давления жидкости с возможностью разрушения сбивных клапанов с открытием отверстий в колонне насосно-компрессорных труб и фиксации стопорным кольцом в колонне насосно-компрессорных труб ниже отверстий. Геофизический прибор спущен в колонну насосно-компрессорных труб посредством жесткого кабеля до упора в продавочную пробку. Технический результат заключается в повышении надежности работы и точности определения обводнившегося интервала в открытых стволах многозабойной горизонтальной скважины. 3 ил.
Изобретение относится к нефтяной промышленности и может найти применение при определении обводненности продукции нефтедобывающей скважины. Технический результат направлен на повышение точности определения обводненности продукции скважины. Определение проводят в скважине, которую снабжают колонной насосно-компрессорных труб с электроцентробежным насосом и обратным клапаном на конце. Для определения обводненности выбирают скважину, расположенную в районе середины нефтяной залежи, с режимами добычи, близкими к средним по залежи. Скважину эксплуатируют не менее времени выхода на рабочий режим. Останавливают скважину и проводят технологическую выдержку до отделения от продукции скважины газа, расслоения на нефть и воду. Выполняют измерение высоты столба жидкости, по взаиморасположению линий раздела сред жидкость - газ и вода - нефть определяют объемное значение обводненности.

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды. Технический результат заключается в возможности идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин непосредственно в процессе измерения дебита скважин. Способ заключается в непрерывном мониторинге суммарных массового расхода жидкости Мжи и объемного расхода газа Qги и вычислении коэффициента K и = Δ M ж и Δ Q г и , где ΔМжи и ΔQги соответственно разности предыдущих (запомненных) и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин M ¯ ж и и Q ¯ г и . В случае отклонения численного значения Ки за пределы от заданных значений измеряют суммарный массовый расход жидкости Мжи(n-1) и суммарный объемный расход свободного газа Qги(n-1) по (n-1) скважинам, где n - общее число скважин в кусте, вычисляют по каждой скважине массовый расход жидкости (водонефтяной смеси) Мжi=Мжи-M(n-1), объемный расход свободного газа Qгi=Qги-Qги(n-1) и коэффициент K i = M ж i Q г i , после чего сравнивают численные значения коэффициентов Ki по каждой скважине с текущим численным значением Ки, а скважину с измененным массовым расходом жидкости куста нефтяных скважин идентифицируют по признаку минимальной разности между численным значением Ki одной из скважин куста нефтяных скважин и численным значением коэффициента Ки. 1 з.п. ф-лы, 1 ил.
Наверх