Сплав на основе титана

Изобретение относится к области металлургии, а именно к сплавам на основе титана, и может быть использовано в элементах оборудования химических производств, в сварных соединениях судостроения. Сплав на основе титана содержит, мас. %: алюминий 4,3-6,3, молибден 1,5-2,5, углерод 0,05-0,14, цирконий 0,2-1,0, кислород 0,06-0,14, кремний 0,02-0,12, железо 0,05-0,25, ниобий 0,3-1,20, рутений 0,05-0,14, титан - остальное. Суммарное содержание кремния и железа не должно превышать 0,30 мас.%. Сплав обладает повышенной стойкостью к щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием и при температуре до 250 °С. 2 табл., 1 пр.

 

Изобретение относится к цветной металлургии, в частности к созданию высокопрочных сплавов на основе титана, обладающих повышенной устойчивостью против щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (до 3,5% NaCl), pH 2,5-4,0 и температурой до 250°С.

Сплав предназначен для использования в элементах оборудования: химических производств, оффшорной техники и судостроения, в том числе сварных конструкций морской техники.

Известны сплавы на основе титана, предназначенные для использования в агрессивных средах (Grade 13 и Grade 15, Grade 26 и Grade 27, Grade 28 и Grade 29 no ASTM В 265-98, RU 2439188 С22С 14/00, RU 2426808 С22С 14/00). Эти сплавы, обладая хорошей коррозионной стойкостью, тем не менее имеют определенные недостатки, ограничивающие их применение в средах с повышенным солесодержанием (до 3,5% NaCl), pH 2,5-4,0 и температурой до 250°С.

Недостатками перечисленных сплавов являются для одних - низкий уровень прочности, для других - пониженные значения пластичности. Кроме того, несмотря на коррозионную стойкость перечисленные сплавы в ответственных нагруженных узлах морской техники применяются ограниченно.

Известен сплав на основе титана с рутением и палладием (RU 2203974 С22С 14/00 07.05.2001). Этот сплав содержит повышенное содержание β-стабилизирующих элементов, в том числе железа, что приводит к структурной неоднородности и снижению стойкости против щелевой и питтинговой коррозии в средах с повышенным солесодержанием (3,5% NaCl), pH 2,5-4,0 и температурой до 250°С.

Наиболее близким по содержанию ингредиентов является сплав на основе титана, содержащий мас. %: алюминий 0,25-7,5, молибден 0,1-3 0,0, углерод до 0,3, цирконий 0,1-10,0, кислород до 0,3, кремний 0,1-1,0, железо 0,1-2,0, ниобий 0,1-10,0, титан остальное (GB 785293, С22С 14/00).

Из альтернативных вариантов составов указанного сплава (GB 785293, С22С 14/00) в качестве прототипа выбран состав сплава, качественный и количественный состав которого соответствует качественному и количественному составу заявляемого сплава.

Это сплав, который имеет достаточно высокие характеристики прочности и пластичности, может использоваться в сварных конструкциях. Недостатком сплава-прототипа является пониженная стойкость к щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (до 3,5% NaCl), pH 2,5-4,0 и температурой до 250°С.

Техническим результатом заявляемого изобретения является создание сплава, обладающего более высокой стойкостью к щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (3,5% NaCl), pH 2,5-4,0 и температурой до 250°С по сравнению со сплавом-прототипом.

Технический результат достигается за счет того, что в состав известного сплава, содержащего алюминий, молибден, углерод, цирконий, кислород, кремний, железо, ниобий, титан остальное, дополнительно вводится рутений при следующем соотношении компонентов (мас. %):

Алюминий 4,3-6,3;

Молибден 1,5-2,5;

Углерод 0,05÷0,14;

Цирконий 0,2-1,0;

Кислород 0,06÷0,14;

Кремний 0,02÷0,12;

Железо 0,05÷0,25;

Ниобий 0,3÷1,20;

Рутений 0,05-0,14;

Титан остальное

При этом суммарное содержание железа и кремния должно быть менее или равно

[Si]+[Fe]≤0,30

В заявляемом изобретении легирующие и примесные элементы находятся в соотношении, обеспечивающем высокую стойкость кα - щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (3,5% NaCl), pH 2,5-4,0 и температурой до 250°С.

Кремний и железо в заявляемом изобретении участвуют в комплексном микролегировании. Выполнение заявленного соотношения [Si]+[Fe]≤0,30 исключает образование сегрегации указанных элементов по границам структурных блоков и зерен и обеспечивает получение однородного регламентированного структурного состояния, что повышает электрохимическую однородность сплава, которая необходима для повышения стойкости к щелевой и питтинговой коррозии.

Превышение заявленного суммарного содержания [Si]+[Fe] снижает стойкость к щелевой коррозии заявляемого сплава, особенно сварных соединений, так как переплавленный металл зоны термического влияния (з.т.в.) и сварного шва теряет способность к внутризеренной деформации. Деформация в этом случае локализуется по границам крупных зерен, характерных для переплавленного металла и з.т.в., образуя микротрещины, что способствует развитию щелевой коррозии.

Алюминий в заявляемых пределах 4,3-6,3% интенсивно повышает прочностные характеристики сплава, исключает образование α2-фазы и обеспечивает хорошие деформационные характеристики при производстве полуфабрикатов. Повышение алюминия сверх пределов, заявленных в сплаве, снижает коррозионную стойкость и повышает склонность к коррозионному растрескиванию за счет протекания процессов упорядочения в α-фазе.

Содержание молибдена ограничено пределами 1,5-2,5%, т.к. при содержании молибдена более 2,5% в сварном соединении образуется малопластичная α-фаза, уменьшается деформационная способность, которая способствует образованию микротрещин и снижает стойкость к питтинговой коррозии.

Молибден повышает прочностные характеристики сплава, блокирует процесс упорядочения и образования α2-фазы и, расширяя двухфазную (α+β) область, обеспечивает повышение технологических свойств сплава.

Содержание углерода в заявляемом сплаве ограничено выбранными пределами, так как при содержании более 0,14% углерод выделяется в виде округлых включений карбидов по границам зерен, которые снижают коррозионную стойкость. При содержании углерода менее 0,05% снижается прочность сплава.

Нейтральный β-стабилизатор - цирконий в пределах 0,2-1,0% в сочетании с алюминием обеспечивает однородное распределение легирующих компонентов в α-фазе, снижает внутрикристаллическую ликвацию, что обеспечивает повышение стойкости к щелевой и питтинговой коррозии.

При содержании более 1,0% цирконий снижает ударную вязкость и увеличивает склонность к коррозионному растрескиванию, что способствует снижению стойкости против питтинговой коррозии.

Изоморфный β-стабилизатор - ниобий в заданных пределах 0,3-1,20% входит в соствав сплава как технологическая добавка, обеспечивающая введение необходимого количества углерода и равномерное распределение его в структуре сплава без образования карбидов, поэтому в заданных пределах повышает структурную однородность сплава и коррозионную стойкость к щелевой и питтинговой коррозии.

Рутений в количестве 0,05-0,14% в заявляемом сплаве является микролегирующей и катодно-модифицирующей добавкой, способствует пассивации за счет снижения перенапряжения реакции выделения водорода и повышает коррозионную стойкость к щелевой и питтинговой коррозии.

Микролегирование сплава рутением смещает электрохимический потенциал сплава в область устойчивой пассивности, что исключает питтингообразование.

При содержании рутения менее 0,05% в указанных агрессивных средах пассивация не наступает. Полная пассивация в хлоридных растворах при содержании рутения до 0,14% обусловлена облегчением протекания катодной реакции восстановления водорода (H++е→Н). Содержание рутения сверх указанного предела неэффективно и нецелесообразно.

Пример выполнения.

Выплавляли слитки с химическим составом заявляемого сплава и сплава-прототипа (таблица 1).

Слитки ковали на заготовки и прокатывали в листы толщиной 4,0 мм, из которых затем изготавливали образцы размером 4,0×35×35 мм для проведения коррозионных испытаний на щелевую и питтинговую коррозию.

Коррозионные испытания проводили на образцах - пластинах размером 35×35×4 мм. Методика проведения испытаний соответствовала требованиям ГОСТ9.912-89 (СТ СЭВ 64461-88).

С целью ускорения коррозионные испытания проводили в автоклаве в среде 20% раствора NaCl при температуре 250°С в течение 200 часов. Давление составляло 40 ата. Результаты испытаний приведены в таблице 2.

Оценка склонности к щелевой коррозии произведена по результатам исследования потери массы в размерности 10-3 г/(дм2 час) и наличии локальных повреждений.

Оценка склонности к питтингу выполнена визуально при осмотре поверхности образцов с использованием оптического оборудования при увеличении х12. Выявляли питтинги диаметром более 0,1 мм.

На образце сплава-прототипа обнаружены питтинговые поражения поверхности размером более 4,0 мм. На образце из заявляемого сплава никаких поражений поверхности обнаружено не было, поверхность образцов была блестящая. Представленные результаты показывают, что заявляемый сплав по стойкости к щелевой и питтинговой коррозии превосходит аналогичные характеристики известного сплава-прототипа. Это позволяет увеличить ресурс различных элементов оборудования при эксплуатации в водных растворах с повышенным содержанием хлоридов при повышенной температуре до 250°С и рН 2,5 в 2-3 раза.

Таблица 1
Химический состав заявляемого сплава и сплава-прототипа на основе титана
Сплав № состава Al Mo C Zr O2 Si Fe Nb Ru Si+Fe≤0,30 Ti
Заявляемый 1 4,3 1,5 0,05 0,2 0,14 0,02 0,25 0,3 0,14 0,27 ост.
2 5,0 2,5 0,10 0,7 0,08 0,05 0,20 0,5 0,10 0,25 ост.
3 6,3 2,0 0,14 1,0 0,06 0,12 0,05 1,20 0,05 0,17 ост.
Прототип GB785293 6,0 2,0 0,15 1,5 0,14 0,15 0,25 1,5 - 0,40 ост.
Таблица 2
Коррозионная стойкость заявляемого сплава и сплава-прототипа
Сплав № состава Характеристика среды Результаты коррозионных испытаний, длительность испытаний 200 часов
Щелевая коррозия Питтинговая коррозия
Степень поражений Характеристика состояния поверхности
Заявляемый 1 20% раствор NaCl аэрированный, насыщенный CO2, pH=3,5, температура 250°С Нет поражений Поверхность образцов блестящая Нет поражений Поверхность образцов блестящая, повреждений нет
2 Нет поражений Поверхность образцов блестящая Нет поражений Поверхность образцов блестящая, повреждений нет
3 Нет поражений Поверхность образцов блестящая Нет поражений Поверхность образцов блестящая, повреждений нет
Прототип GB785293 Местное поражение На поверхности серая пленка Поверхность поражена язвами Язвы диаметром более 4,0 мм

Сплав на основе титана, содержащий алюминий, молибден, углерод, цирконий, кислород, кремний, железо, ниобий и титан, отличающийся тем, что он дополнительно содержит рутений при следующем соотношении компонентов, мас.%:

Алюминий 4,3÷6,3
Молибден 1,5÷2,5
Углерод 0,05÷0,14
Цирконий 0,2÷1,0
Кислород 0,06÷0,14
Кремний 0,02÷0,12
Железо 0,05÷0,25
Ниобий 0,3÷1,20
Рутений 0,05÷0,14
Титан остальное

при этом выполняется следующее соотношение:
[Si]+[Fe]≤0,30.



 

Похожие патенты:

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы, в частности сплавов на основе TiNi. Наноструктурный сплав титан-никель с эффектом памяти формы характеризуется структурой из наноскристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен с размером менее 0,1 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%.
Изобретение относится к металлургии, а именно к сплавам на основе титана с высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использовано в свариваемых элементах оборудования: химических производств, оффшорной техники и судостроения.

Изобретение относится к области металлургии и может быть использовано в качестве конструкционного материала для изделий авиационной и космической промышленности.

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, и может быть использовано в авиационной промышленности. Высокопрочный псевдо-бета титановый сплав содержит, мас.%: 5,3-5,7 алюминия, 4,8-5,2 ванадия, 0,7-0,9 железа, 4,6-5,3 молибдена, 2,0-2,5 хрома, 0,12-0,16 кислорода, остальное титан и примеси и, при необходимости, один или более дополнительных элементов, выбранных из N, С, Nb, Sn, Zr, Ni, Co, Cu и Si, причем каждый дополнительный элемент присутствует в количестве менее 0,1%, и общее содержание дополнительных элементов составляет менее 0,5 мас.%.

Изобретение относится к порошковой металлургии, а именно к дисперсно-упрочненным композиционным материалам. .

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой, в частности, двухфазных альфа-бета титановых сплавов, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях техники, машиностроения, медицины.

Изобретение относится к области спецэлектрометаллургии и может быть использовано при вакуумно-дуговом переплаве базового -TiAl-сплава, который затвердевает через -фазу.

Изобретение относится к области металлургии, в частности к листам из чистого титана, которые могут быть использованы для изготовления пластин теплообменников. .

Изобретение относится к области металлургии, а именно к термомеханическим исполнительным механизмам, предназначенным для преобразования тепловой энергии в механическую.
Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии.
Изобретение относится к порошковой металлургии, в частности к получению порошка сплава на основе элементов 4 группы периодической таблицы. Может использоваться в пироиндустрии при получении запальных устройств, в качестве газопоглотителей в вакуумных трубках, в лампах, в вакуумной аппаратуре и в установках для очистки газов. Оксид базисного элемента, выбранного из Ti, Zr и Hf, смешивают с легирующим металлическим порошком, выбранным из Ni, Сu, Та, W, Re, Os или Ir, и с порошком восстановителя. Полученную смесь нагревают в печи в атмосфере аргона до начала реакции восстановления. Реакционный продукт выщелачивают, промывают и сушат. Оксид базисного элемента имеет средний размер частиц от 0,5 до 20 мкм, удельную поверхность по БЭТ от 0,5 до 20 м2/г и минимальное содержание оксида 94 вес.%. Обеспечивается получение порошка с воспроизводимыми временем горения, удельной поверхностью, распределением частиц по размерам и временем горения. 22 з.п. ф-лы, 5 пр.
Изобретение относится к области металлургии, а именно к производству титановых сплавов, и может быть использовано для высоконагруженных деталей и узлов, работающих при температурах до 550°C длительно и при 600°C кратковременно. Сплав на основе титана содержит, мас.%: Al 5,0-6,6, Mo 1,5-2,5, Zr 1,0-2,8, V 0,4-1,4, Fe 0,08-0,40, Si 0,08-0,28, Sn 1,5-3,8, Nb 0,4-1,2, O 0,02-0,18, C 0,008-0,080, Ti - остальное. Сплав обладает высокими прочностными характеристиками при температурах до 600°C, повышенным уровнем технологичности при горячей деформации. 2 н.п. ф-лы, 3 табл., 3 пр.
Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах. Способ получения сплава на основе титана с содержанием бора 0,002-0,008 мас.% включает проведение плавки в вакуумной дуговой гарнисажной печи с расходуемым электродом, не имеющей дополнительного вакуумного порта для введения модифицирующих добавок. Навеску модификатора B4C, завернутую в алюминиевую фольгу, закладывают в отверстие расходуемого электрода, которое высверливают от сплавляемого торца электрода на расстоянии, определяемом в зависимости от времени его расплавления. Получают сплав на основе титана с равноосной структурой и размером зерна менее 15 мкм. 1 табл., 1 пр.

Изобретение может быть использовано для пайки высокотемпературным припоем тугоплавких металлических и/или керамических материалов. Припой выполнен из сплава, содержащего компоненты в следующем соотношении, мас.%: цирконий 45-50, бериллий 2,5-4,5; алюминий 0,5-1,5, титан - остальное. Припой выполнен в виде гибкой ленты и получен сверхбыстрой закалкой сплава путем литья расплава на вращающийся диск. Припой обладает высокими эксплуатационными характеристиками, обеспечивает уменьшение интерметаллидных прослоек в паяном шве. 2 з.п. ф-лы, 11 ил., 1 пр.
Изобретение относится к области металлургии, а именно к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности. Сплав для поглощения тепловых нейтронов на основе титана содержит, вес. %: углерод 0,03-0,10; железо 0,15-0,25; кремний 0,05-0,12; азот 0,01-0,04; алюминий 1,8-2,5; цирконий 2,0-3,0; самарий 0,5-5,0; титан и примеси остальное. Сплав обладает повышенным уровнем поглощения тепловых нейтронов, высокими эксплуатационными и пластическими свойствами. 3 табл., 1 пр.

Изобретение относится к области металлургии, в частности к сплавам на основе гамма-алюминида титана и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°C, в частности лопаток газотурбинных двигателей. Способ получения сплава на основе гамма-алюминида титана γ-TiAl, имеющего плотность при комнатной температуре не более 4,2 г/см3, температуру солидуса не менее 1450°C, количество фаз α2 и γ при 600-800°C не менее 20 мас.% и не менее 69 мас.% соответственно, суммарное количество этих фаз не менее 95 мас.%, а содержание ниобия в γ-фазе не менее 3 мас.%, заключается в том, что сплав на основе гамма-алюминида титана γ-TiAl, содержащий ниобий в количестве 1,3, или 1,5, или 1,6 ат.% и переходные металлы, выбранные из хрома в количестве 1,3 или 1,7 ат.% и циркония в количестве 1,0 ат.%, подвергают горячему изостатическому прессованию, совмещенному с термообработкой путем отжига при температуре 800°С и выдержки в течение 100 часов. Сплав обладает низкой плотностью и имеет стабильный фазовый состав при рабочих температурах. 1 з.п. ф-лы, 2 ил., 4 табл., 1 пр.

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ получения литого сплава на основе гамма алюминида титана для фасонных отливок включает получение смеси порошков, формирование из нее брикета и проведение самораспространяющегося высокотемпературного синтеза. Получают смесь порошков из чистых металлов, содержащую титан, алюминий, ниобий и молибден в количестве, мол.%: алюминий 40-44, ниобий 3-5, молибден 0,6-1,4, титан - остальное. Брикет формируют с относительной плотностью 50-85 % и подвергают его термовакуумной обработке при температуре 550-650°C в течение 10-40 мин, скорости нагрева 5-40°C/мин и давлении 10-1-10-3 Па, а СВС проводят при начальной температуре 560-650°C. Получают отливки заданной конфигурации с высоким уровнем механических свойств при повышенных температурах. 2 ил., 2 табл., 2 пр.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе алюминида титана Ti3Al, и может быть использовано для изготовления деталей газотурбинных двигателей, силовых установок и агрегатов авиационного, топливно-энергетического и морского назначения. Сплав на основе алюминида титана Ti3Al содержит, мас.%: Al 13-15, Nb 3-6, V 2-4, Zr 0,5-1,0, Mo 1-3, Sn 0,5-3, Si 0,1-0,3, Ti - остальное. Заготовку из сплава на основе алюминида титана Ti3Al подвергают термоводородной обработке путем ее насыщения водородом с последующим отжигом в вакууме. Насыщение заготовки водородом ведут до концентрации 0,4-0,6 мас.% в две стадии, затем заготовку подвергают прокатке. Отжиг в вакууме проводят в две стадии с остаточным давлением не выше 5·10-5 мм рт.ст. Жаропрочный сплав на основе алюминида титана Ti3Al характеризуется высокими показателями пластичности и жаропрочности. 2 н.п. ф-лы, 1 табл.
Изобретение относится к цветной металлургии, в частности к изготовлению заготовок из титановой губки. Способ изготовления заготовок из титана включает размещение частиц титановой губки в камере пресса, компактирование частиц губки до получения заготовки, ее прессование, удаление загрязнений с поверхности прессованной заготовки, покрытие ее смазкой и последующую прокатку. Перед размещением частиц титановой губки в камере пресса их нагревают в вакуумной нагревательной печи до температуры 700-800°C, легируют водородом до концентрации 0,1-0,9 мас.%, после чего снижают температуру в печи до температуры не ниже 300°C, компактирование ведут при температуре 300-700°С, прессование компактных заготовок осуществляют полунепрерывным методом через матрицу при температуре не выше 700°C с коэффициентом вытяжки не более двух, а затем при температуре не выше 700°C и коэффициенте вытяжки не менее трех, при этом прокатку заготовок проводят при температуре не выше 700°С, после которой осуществляют отжиг в вакууме при температуре не ниже 700°C. Обеспечивается возможность обрабатывать труднодеформируемый титан при более низких температурах, повышаются механические свойства получаемых заготовок. 1 пр.
Изобретение относится к области металлургии, в частности к сплавам на основе титана, используемых для аккумулирования водорода, и может быть использовано в экологически чистых энергетических устройствах. Сплав содержит, мас. %: титан 46,3-48,8; алюминий 0,14-2,87; кальций 0,06-1,24; магний 0,08-1,61; железо - остальное. Уменьшается время активации и увеличивается сорбционная емкость сплава. 1 табл.
Наверх