Сплав, аккумулирующий водород


 


Владельцы патента RU 2536616:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" (RU)

Изобретение относится к области металлургии, в частности к сплавам на основе титана, используемых для аккумулирования водорода, и может быть использовано в экологически чистых энергетических устройствах. Сплав содержит, мас. %: титан 46,3-48,8; алюминий 0,14-2,87; кальций 0,06-1,24; магний 0,08-1,61; железо - остальное. Уменьшается время активации и увеличивается сорбционная емкость сплава. 1 табл.

 

Изобретение относится к области металлургии, в частности к составам сплавов на основе титана, используемых для аккумулирования водорода с целью применения его в различных экологически чистых энергетических устройствах и химических технологиях.

Интерметаллид TiFe является одним из наиболее известных водородаккумулирующих сплавов на основе титана. Однако это соединение характеризуется значительной разницей давлений водорода (гистерезисом) в процессах поглощения и выделения водорода и трудностью в активации.

Известен сплав на основе титана, состав которого описывается формулой TiFe1-ХAlХ, где Х=0,04 ÷ 0,2 [1, стр.94]. Там же указывается, что замещение железа алюминием в соединении TiFe понижает давление плато, уменьшает сорбционную емкость и облегчает активацию. Этот сплав принят за прототип, и его химический состав содержит, мас. %: титан 46,7-48,9; алюминий 1,1-5,5; железо - остальное. Активация сплава осуществлялась в течение 5 дней. Для полной (завершенной) активации необходимо провести примерно 25 циклов «абсорбция-десорбция водорода» [2]. Впоследствии были сделаны некоторые уточнения в области стабильности гидридных фаз, а именно: «Плато давлений у гидридных фаз соединений TiFe0,98Al0,02 и TiFe0,96Al0,04 повсеместно выше, чем у TiFe, тогда как у TiFe0,94Al0,06 и TiFe0,90Al0,10 они ниже» [3]. Сорбционная емкость при десорбции водорода при 50°С составила: для TiFe0,96Al0,04 - 1,072 мас. % Н2 (121 дм3Н2/кг сплава); для TiFe0,9Al0,1 - 0,991 мас. % Н2 (112 дм3Н2/кг сплава); для TiFe0,8Al0,2 - 0,666 мас. % Н2 (75 дм3Н2/кг сплава) [1, стр.186].

Сплав-прототип имеет очень большое время активации и небольшую сорбционную емкость, особенно при повышенном содержании алюминия.

Техническим результатом на которое направлено изобретение является повышение активности сплава для уменьшения времени активации и увеличение сорбционной емкости сплава на основе титана.

Поставленная задача достигается тем, что сплав, содержащий титан, железо и алюминий, дополнительно содержит кальций и магний при следующем соотношении компонентов, мас. %: титан 46,3-48,8; алюминий 0,14-2,87; кальций 0,06-1,24; магний 0,08-1,61; железо - остальное.

Предварительно была изготовлена лигатура, в которую полностью вошли алюминий, кальций и магний. Предлагаемый сплав может быть выражен формулой TiFe1-ХАХ, где А - лигатура, имеющая следующий состав компонентов, мас. %: кальций 21-23, магний 28-30, алюминий - остальное; X=0,01÷0,2.

Для получения сплава были подготовлены три состава компонентов, содержащих титан, железо, а также алюминий, кальций и магний, входящих в лигатуру. Указанные составы и их влияние на сорбционные свойства сплава представлены в таблице.

Каждый состав сплава сплавлялся в дуговой печи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поду в атмосфере аргона.

Сплав активировался водородом при давлении 3 МПа и температуре 20°С. Время активации составлял период от начала обработки сплава водородом до разогрева реактора.

Таблица

Компоненты Состав сплава, мас. %
1 2 3
Титан 46,3 47,5 48,8
Алюминий 0,14 1,47 2,87
Кальций 0,06 0,64 1,24
Магний 0,08 0,82 1,61
Железо остальное остальное остальное
Сорбционные свойства
Время активации, ч 48 43 40
Абсорбционная емкость, дм3Н2/кг сплава 212 225 230
Десорбционная емкость, дм3Н2/кг сплава 165 160 152

Определение сорбционной емкости сплава при поглощении водорода осуществлялось при 20°С методом прямой абсорбции водорода, согласно которому количество поглощенного водорода определяется по уравнению состояния газа в зависимости от изменения его давления в системе известного объема [4, стр.14-19]. Время приближения к равновесию составляло 15 ч и более. Для определения давления водорода применялся образцовый манометр типа МО модели 1231. Для определения расхода газа при десорбции водорода при 50°С был применен барабанный газовый счетчик типа ГСБ-400.

Источники информации

1. Сплавы-накопители водорода. Справ. изд.: Б. А. Колачев, Р. Е. Шалин, А. А. Ильин. - М.: Металлургия, 1995. - 384 с.

2. G. Bruzzone, G. Costa, M. Ferretti and G. L. Olcese. Hydrogen storage in aluminium-substituted TiFe compounds // Int. J. Hydrogen Energy, Vol.6. P. 181-184. Pergamon Press Ltd. 1981. Printed in Great Britain. © International Association for Hydrogen Energy.

3. S. H. Lim and Jai-Young Lee. The effects of aluminium substitution in TiFe on its hydrogen absorption properties // Journal of the Less-Common Metals, Vol.97. 1984. P. 65-71.

4. В. И. Михеева. Гидриды переходных металлов. М.: Изд-во АН СССР. - 1960. - 212 с.


Сплав на основе титана, содержащий алюминий, железо, отличающийся тем, что он дополнительно содержит кальций и магний при следующем соотношении компонентов, мас. %: титан 46,3-48,8; алюминий 0,14-2,87; кальций 0,06-1,24; магний 0,08-1,61; железо - остальное.



 

Похожие патенты:
Изобретение относится к цветной металлургии, в частности к изготовлению заготовок из титановой губки. Способ изготовления заготовок из титана включает размещение частиц титановой губки в камере пресса, компактирование частиц губки до получения заготовки, ее прессование, удаление загрязнений с поверхности прессованной заготовки, покрытие ее смазкой и последующую прокатку.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе алюминида титана Ti3Al, и может быть использовано для изготовления деталей газотурбинных двигателей, силовых установок и агрегатов авиационного, топливно-энергетического и морского назначения.

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей.

Изобретение относится к области металлургии, в частности к сплавам на основе гамма-алюминида титана и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°C, в частности лопаток газотурбинных двигателей.
Изобретение относится к области металлургии, а именно к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности.

Изобретение может быть использовано для пайки высокотемпературным припоем тугоплавких металлических и/или керамических материалов. Припой выполнен из сплава, содержащего компоненты в следующем соотношении, мас.%: цирконий 45-50, бериллий 2,5-4,5; алюминий 0,5-1,5, титан - остальное.
Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах.
Изобретение относится к области металлургии, а именно к производству титановых сплавов, и может быть использовано для высоконагруженных деталей и узлов, работающих при температурах до 550°C длительно и при 600°C кратковременно.
Изобретение относится к порошковой металлургии, в частности к получению порошка сплава на основе элементов 4 группы периодической таблицы. Может использоваться в пироиндустрии при получении запальных устройств, в качестве газопоглотителей в вакуумных трубках, в лампах, в вакуумной аппаратуре и в установках для очистки газов.
Изобретение относится к области металлургии, а именно к сплавам на основе титана, и может быть использовано в элементах оборудования химических производств, в сварных соединениях судостроения.

Изобретение относится к области хранения и отбора водорода с применением пористых компонентов, взаимодействующих с водородом с обратимым образованием гидридов металлов.

Изобретение относится к химической промышленности. Технологический углеводородный газ после сероочистки в смеси с водяным паром подают в обогреваемые жаропрочные трубы, внутри которых размещают никельсодержащий катализатор в виде слоя гранул в форме шара или цилиндра с поверхностью 400÷700 м2/м3 и порозностью 0,5-0,7 м3/м3.

Изобретение относится к устройству переработки газового углеводородного сырья для получения синтез-газа. Устройство содержит узел подвода исходных компонентов - окислителя и углеводородного газа, узел охладителя, смеситель образования реакционной смеси, камеру горения в виде цилиндрического канала, корпус которой имеет охлаждающий тракт, дополнительные стенки-перегородки с охлаждающим внутренним проходным трактом, связанным с охлаждающим трактом корпуса камеры.

Изобретение может быть использовано в химической промышленности. Способ совместного производства метанола и аммиака из исходного углеводородного сырья осуществляют посредством следующих этапов.

Изобретение может быть использовано в химической промышленности и в энергетике. На стадии 12 получают синтез-газ 50, содержащий по меньшей мере CO и H2 и имеющий первую температуру по меньшей мере 900 °C, посредством реакции углеводородного сырья с кислородом.

Изобретение относится к области нефтехимии и может быть использовано для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Метансодержащее сырьё подвергают окислительной конверсии при температуре 650-1100°C в лифт-реакторе.

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды.
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом.
Изобретение относится к катализаторам, используемым для получения водорода или синтез-газа для химического производства в процессах парциального окисления, парового реформинга и автотермического реформинга углеводородного сырья.

Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода.
Изобретение относится к химии и технологии органического синтеза, а именно к способу получения синтез-газа (смеси оксида углерода и водорода), который может быть использован в нефтехимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов оксосинтезом, углеводородов и синтетического моторного топлива. Способ осуществляется каталитической конверсией углекислого газа в присутствии водорода при температуре 250-350°С и атмосферном давлении на катализаторе, содержащем 0,8-8,0% церия на γ-оксиде алюминия. Изобретение обеспечивает упрощение технологии процесса, снижение энергетических затрат и достижение полного превращения диоксида углерода в синтез-газ при невысоких температурах без использования дополнительного количества углеводородного сырья и водяного пара. 6 пр.
Наверх