Устройство отсчета угла поворота шпинделя



Устройство отсчета угла поворота шпинделя
Устройство отсчета угла поворота шпинделя
Устройство отсчета угла поворота шпинделя

 


Владельцы патента RU 2506535:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (RU)

Предлагаемое устройство относится к средствам измерений, а именно к устройствам отсчета угла поворота тел вращения. Устройство отсчета угла поворота шпинделя, содержит датчик угла поворота и датчик индекса, предварительные усилители низкой частоты, выходы которых через резисторы подключены к входам счетчиков, выходы которых подключены к входам дешифраторов, выходы которых подключены к входам матричных семисегментных светодиодных индикаторов. При этом датчик угла поворота и датчик индекса выполнены в виде двух оптоэлектронных пар, каждая из которых состоит из лампы накаливания, фотодиода и дисковой пластины с отверстиями для них, а их выходы подключены к входам предварительных усилителей низкой частоты, в каждом из которых имеются цепи входных сигналов, обратной связи и коррекции. Технический результат изобретения - повышение надежности и улучшение динамических свойств управляемого электрического привода. 3 ил.

 

Изобретение относится к измерительной технике, а именно - к средствам контроля угла поворота тел вращения.

Известно устройство измерения геометрических параметров [см. способ и устройство измерения геометрических параметров и указания мест установки грузов при динамической балансировке. Патент №2438106 (13) C1. МПК G01М 1/00].

Недостатком устройства является его сложность, заключающаяся в применении вычислительного устройства, измерительной оптической стереосистемы, состоящей из двух бесконтактных измерительных устройств, с помощью которых определяют геометрические параметры положения грузов любого типа, как равные положениям световых меток.

Наиболее близким к предлагаемому является устройство, выбранное по патенту [см. бесконтактный датчик углового положения вала. Патент №2378613 (13) С2. МПК. G01B 7/30]. Сущность конструкции состоит в том, что датчик содержит магниточувствительный элемент, расположенный неподвижно в центре кольцевого ротора-магнита. Ротор-магнит намагничен радиально со спаданием поля от центра к краям полуколец, при этом у одного его полукольца векторы индукции направлены наружу, а у другого вовнутрь. Направление чувствительности магниточувствительного элемента лежит в плоскости ротора-магнита. Во внутренней полости ротора-магнита неподвижно и симметрично размещены два одинаковых сегмента-магнитопровода, образующие немагнитные зазоры с ротором-магнитом и эквидистантную немагнитную щель между собой, перпендикулярную направлению чувствительности магниточувствительного элемента. Вся конструкция помещена соосно в цилиндрический магнитный экран.

Недостатком данного устройства бесконтактного датчика углового положения вала является ограниченная возможность применения в связи с отсутствием визуального отсчета угла поворота вала.

Задачей предлагаемого изобретения является расширение области применения. Это достигается расширением функциональных возможностей устройства отсчета угла поворота шпинделя за счет предлагаемого схемного решения и использованием визуального отсчета угла поворота. Предлагаемое устройство, наряду с упрощением конструкции, обеспечивает повышение надежности и улучшение динамических свойств устройства отсчета угла поворота шпинделя за счет применения датчиков угла поворота шпинделя и датчика индекса (начала отсчета) выполненных в виде оптоэлектронных пар, каждый из которых подключен к предварительным усилителям! низкой частоты, счетчикам, дешифраторам и двум матричным семисегментным светодиодным индикаторам.

Поставленная задача решается следующим образом: устройство отсчета угла поворота шпинделя содержит датчик угла поворота шпинделя и датчик индекса, выполненные в виде двух оптоэлектронных пар, лампа накаливания - фотодиод и дисковой пластины с отверстиями, выходы каждого из которых подключены к входам предварительных усилителей низкой частоты, выходы которых подключены к входам счетчиков, выходы которых подключены к входам дешифраторов, выходы которых подключены к входам двух матричных семисегментных светодиодных индикаторов для визуального отсчета угла поворота шпинделя. Техническим результатом является расширение функциональных возможностей устройства отсчета угла поворота шпинделя за счет применения датчика угла поворота шпинделя и датчика индекса, выполненных в виде оптоэлектронных пар и дисковой пластины с отверстиями, а также схемного решения, состоящего в применении предварительных усилителей низкой частоты, счетчиков и дешифраторов, подключенных к двум матричным семисегментным светодиодным индикаторам.

Сравнительный анализ с прототипом показывает, что предлагаемое устройство отличается тем, что датчик угла поворота шпинделя и датчик индекса выполнены в виде двух оптоэлектронных пар, лампа накаливания - фотодиод и дисковой пластины с отверстиями для них, выходы каждого из которых подключены к входам предварительных усилителей низкой частоты, выходы которых подключены к входам счетчиков, выходы которых подключены к входам дешифраторов, выходы которых подключены к входам двух десятичных матричных семисегментных светодиодных индикаторов для визуального отсчета угла поворота шпинделя.

Сущность предложенного технического решения поясняется чертежом (фиг.1, фиг.2, фиг.3). Предложенное устройство содержит датчик угла поворота шпинделя и датчик индекса, выполненные в виде оптоэлектронных пар, состоящих из лампы накаливания 9, 10, фотодиода 12, 13 и дисковой пластины 11 с отверстиями для них (фиг.2), выходы которых подключены к входам предварительных усилителей низкой частоты 1 и 2, в которых имеются цепи входных сигналов на элементах C1, R1, R2 и С5, R6, R7, цепи обратных связей на элементах С3, R4 и С7, R9 и цепи коррекции на элементах С2, R3, С4 и С6, R8, С8, выходы которых через резисторы R5 и R10 подключены к входам счетчиков 3, 4, выходы которых подключены к входам дешифраторов 5, 6, выходы которых поступают на входы десятичных матричных семисегментных светодиодных индикаторов 7, 8 (фиг.1) для визуального отсчета угла поворота шпинделя.

Временная диаграмма действующих сигналов представлена на фиг.3: U - напряжение, t - время; а - сигнал отсчета угла поворота, b - сигнал индекса, являющиеся выходными для элементов 12, 13 (фиг.1) и входными для элементов C1, С5 (фиг.2). Формирование сигналов отсчета угла поворота осуществляется следующим образом. На вход устройства поступает сигнал индекса b (фиг.2), определяющий длительность такта Т, в течение которого происходит отсчет импульсов сигнала а (фиг.3), определяющего углы поворота, пропорциональные количеству импульсов отсчета, а именно: 00, 20, 40, 60, 80 и 100.

Устройство работает следующим образом (фиг.1, фиг.2, фиг.3). Импульсы а и b, которые формируются от элементов 9, 12 датчика отсчета угла поворота шпинделя и элементов 10, 13 датчика индекса, при вращении дисковой пластины 11 (фиг.2), с отверстиями для них, подаются на входы предварительных усилителей низкой частоты 1 и 2, в которых имеются цепи входных сигналов на элементах C1, R1, R2 и С5, R6, R7, цепи обратных связей на элементах С3, R4 и С7, R9 и цепи коррекции на элементах С2, R3, С4 и С6, R8, С8 (фиг.1). Усиленные сигналы а и b, через резисторы R5 и R10 поступают на входы счетчиков 3 и 4, выходы которых управляют входами дешифраторов 5 и 6, а сигналы с их выходов управляют входами каждого десятичного матричного семисегментного светодиодного индикатора 7, 8 (фиг.1) для визуального отображения количества импульсов отсчета угла поворота. Например, для формирования сигнала а дисковая пластина 11 выполняется с отверстиями по периметру и с отверстием по окружности другого диаметра для формирования сигнала индекса b (фиг.2). Визуальный отсчет числа импульсов n на десятичных матричных светодиодных индикаторах 7, 8, равный «00», «20», «40», «60» «80» и «00» соответствует определенному углу поворота шпинделя. При этом цена импульса вычисляется из соотношения q=360/n и составляет 3,6 град (при n=100). Затем определяются углы αn=q×n, соответствующие 5-ти узловым точкам окружности, относительно которых размещают балансировочные грузы расчетной массы. Интегральные микросхемы предварительных усилителей, счетчиков, дешифраторов и семисегментных индикаторов могут быть выполнены, например, на ИМС К548УН1Б, 74LS90D (К155ИЕ2), 7447N (К514ИД2) и АЛС321А соответственно.

Применение устройства позволит обеспечить повышение надежности и улучшение динамических свойств управляемого электрического привода с визуальным отсчетом угла поворота шпинделя.

Повышение эффективности устройств отсчета угла поворота тел вращения подобного типа основано на сочетании электронно-механических средств и средств вычислительной техники, предназначенных для контроля угловых перемещений, что позволит повысить конкурентоспособность предложенного устройства.

Источники информации:

1. Способ и устройство измерения геометрических параметров и указания мест установки грузов при динамической балансировке. Патент РСФСР №2438106 (13) С1. МПК G01М 1/00].

Перечень фигур:

Фиг.1. Схема электрическая принципиальная устройства отсчета угла поворота шпинделя.

Фиг.2. Датчик угла поворота и датчик индекса.

Фиг.3. Временная диаграмма.

Устройство отсчета угла поворота шпинделя, содержащее датчик угла поворота и датчик индекса, предварительные усилители низкой частоты, выходы которых через резисторы подключены к входам счетчиков, выходы которых подключены к входам дешифраторов, выходы которых подключены к входам матричных семисегментных светодиодных индикаторов, отличающееся тем, что датчик угла поворота и датчик индекса выполнены в виде двух оптоэлектронных пар, каждая из которых состоит из лампы накаливания, фотодиода и дисковой пластины с отверстиями для них, а их выходы подключены к входам предварительных усилителей низкой частоты, в которых имеются цепи входных сигналов, обратной связи и коррекции, выходы которых через резисторы подключены к входам счетчиков, выходы которых подключены к входам дешифраторов, выходы которых поступают на входы двух десятичных матричных семисегментных светодиодных индикаторов для отсчета угла поворота.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения угловых перемещений в авиационной технике, в том числе в различных цепях управления электротехнических, электромеханических устройств.

Изобретение относится к измерительной технике и предназначено для определения угла наклона объектов в диапазоне от 0 до 180°. .

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала электродвигателя. .

Изобретение относится к роторным механизмам, а конкретнее к способам и устройствам для контроля роторных механизмов. .

Изобретение относится к автоматике и вычислительной технике и предназначено для использования в устройствах автоматизации измерения угловых перемещений в качестве канала точного отсчета.

Изобретение относится к области электротехники. .

Изобретение относится к области автоматики и может быть использовано при определении угловой ориентации трехосного гиростабилизатора относительно базового корпуса.

Изобретение относится к области приборостроения и может быть использовано в системах управления различных объектов, в том числе и летательных аппаратов, в условиях значительных механических перегрузок.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может быть использовано в устройствах автоматики для получения выходных напряжений, пропорциональных углу поворота. В многоступенчатый датчик угла вводятся упоры на роторы и статоры всех ступеней и пружины между роторами и статорами вращающихся трансформаторов, которые обеспечивают одновременный поворот роторов вращающихся трансформаторов всех ступеней относительно их статоров с меньшими углами и, соответственно, с большей точностью. Технический результат - повышение точности измерения углов поворота. 1 ил.

Изобретение относится к измерительной технике и представляет собой датчик для непрерывного измерения углового положения (θа) вала. Датчик содержит статор, ротор, соединяемый с валом. На статоре или роторе расположены постоянные магниты чередующейся полярности. Также датчик содержит магнитный контур для канализирования магнитной индукции, создаваемой магнитами, с обеспечением ее пропорциональности синусоидальной функции углового положения (θr) ротора. Магнитный контур представляет собой зубцовый контур и содержит по меньшей мере один измерительный модуль, содержащий три зубца на каждую пару магнитов, причем каждый из зубцов модуля содержит зазор, в котором размещен преобразователь. Датчик содержит, по меньшей мере, два электрических преобразователя с линейной выходной характеристикой, разнесенные по отношению один к другому на угол (φ) и расположенные в зазорах, предусмотренных в указанном контуре. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и представляет собой индукционный датчик для измерения земного магнитного поля. Датчик содержит электромагнитный узел обнаружения магнитного поля, размещённый на маятнике. Маятник помещен в корпус и подвешен к его стенке на шарнире. Противоположная от шарнира стенка корпуса имеет форму полусферы и соответствует по размеру сферической поверхности маятника. Техническим результатом является обеспечение постоянства расстояния между корпусом и маятником, когда маятник совершает движения, и ламинирования между ними амортизационной жидкости. 2 н. и 14 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений (поворотов), с помощью преобразователя перемещения индукционного типа. Технический результат: расширение диапазона измерения датчика углового положения до 360°. Сущность: датчик содержит две пары неподвижных (1), (3) и подвижных (2), (4) пластин, содержащих по две идентичные катушки (соответственно (5), (6), (7), (8), (9), (10), (11), (12)), которые расположены равномерно в равных секторах с углом раскрытия, равным 180°. Подвижные пластины (2), (4) жестко установлены на одном валу вращения (14), установленном с одной степенью свободы в основании датчика (15). Неподвижные пластины (1), (3) установлены в основании датчика (15) - его корпусе. В одной паре пластин (например, (1) и (2), см. фиг.1) соответственно неподвижные (5), (6) и подвижные (7), (8) катушки расположены симметрично, а в другой паре пластин (например, (3) и (4)) неподвижные (9), (10) и подвижные (11), (12) катушки смещены на угол равный 90°. На каждой пластине (1), (2), (3) и (4), соответственно расположенные на них две катушки (5), (6) - (7), (8) - (9), (10) - (11), (12) соединены между собой последовательно и встречно. Все пластины (1). (2), (3) и (4) с печатными катушками датчика имеют идентичные реперные сквозные отверстия (13), расположенные по периферии за окружностью печатных катушек. Пассивные короткие проводники (21) печатных катушек расположены на обратной стороне пластин (1), (2), (3) и (4) и соединены с длинными активными проводниками (22) через толщину пластин при помощи металлизированных отверстий (23). Датчик снабжен вращающимся трансформатором, подвижная обмотка которого закреплена на валу вращения и подсоединена к зигзагоподобным катушкам индуктивности подвижных пластин датчика. Вращающийся трансформатор может быть выполнен в виде неподвижной (16) и подвижной (17) плоских пластин из диэлектрического материала, обращенных друг к другу сторонами с нанесенными на них печатными плоскими спиралеобразными обмотками соответственно (18) и (19). 3 з.п. ф-лы, 10 ил.

Изобретение относится к области измерительных электрических машин и цифровых преобразователей угла. Достигаемый технический результат - повышение точности контроля указанных изделий. Устройство содержит угломерное устройство 1, станину 2, приспособление 3, преобразователь угла 4, прямоугольный рычаг 5, имеющий на концах горизонтального катета плоские шлифованные площадки 6, верхние концы ведущего и ведомого штоков 7 механической следящей системы 8 и электрическую схему контроля точности 9. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано в следящих приводах, в автоматических системах управления мобильными объектами и в робототехнике. Способ заключается в возбуждении первичной обмотки синусно-косинусного вращающегося трансформатора гармоническим напряжением генератора, считывании модулированных синусного и косинусного сигналов с выходных обмоток синусно-косинусного вращающегося трансформатора, изменении амплитуды указанных сигналов, детектировании, преобразовании их в цифровую форму и записи полученных сигналов в регистр. При этом амплитуды сигналов, считанных с выходных обмоток синусно-косинусного вращающегося трансформатора, перед преобразованием их в цифровую форму уменьшают так, чтобы их значения стали меньше амплитуды напряжения сигнала, формируемого гармоническим генератором, полученные сигналы складывают с напряжением гармонического генератора, детектируют с помощью амплитудного детектора и фильтруют. Технический результат заключается в устранении влияния нестабильности частоты возбуждения на точность измерений угла поворота вала привода и в увеличении количества достоверно получаемых разрядов двоичных кодов синуса и косинуса измеренного угла в цифровых регистрах. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к способам калибровки и устройствам измерения угла на основе мостового магниточувствительного датчика, и может быть использовано в автомобильной технике, станкостроении, авиационной и ракетной технике и других областях, где требуется измерять углы до 90° с помощью датчиков на основе магниторезисторов или элементов Холла. Устройство измерения угла на основе мостового магниточувствительного датчика содержит два моста, повернутых друг относительно друга на 45°, два усилителя, два ЦАП, АЦП и вычислительное устройство. Усилители соединены с выходами мостов датчика, входы смещения нуля усилителей соединены с выходами компенсационных ЦАП, входы которых соединены с вычислительным устройством. Вход АЦП соединен с выходом первого усилителя, а вход опорного напряжения АЦП соединен с выходом второго усилителя. Вычислительное устройство содержит память программ и калибровочные данные, а также цифровой и аналоговый интерфейсы. Технический результат заключается в возможности измерения угла в диапазоне от 45° до -45° за один такт преобразования АЦП с использованием одного АЦП. 2 н.п. ф-лы, 3 ил.
Наверх