Способ контроля коррозионного состояния обсадных колонн скважин



Способ контроля коррозионного состояния обсадных колонн скважин
Способ контроля коррозионного состояния обсадных колонн скважин
Способ контроля коррозионного состояния обсадных колонн скважин

 


Владельцы патента RU 2507394:

Общество с ограниченной ответственностью "ЭНЕРГОДИАГНОСТИКА" (RU)

Изобретение относится к эксплуатации нефтяных и газовых скважин и может быть использовано при контроле коррозионного состояния обсадных колонн (ОК) и насосно-компрессорных труб (НКТ) скважин. Техническим результатом является контроль коррозионного состояния ОК и НКТ скважин прямым методом исследования. Способ заключается в перемещении вдоль контролируемого участка обсадной колонны измерительного скважинного зонда и регистрации его показаний на различных глубинах обсадной колонны, по значениям которых проводят контроль коррозионного состояния обсадных колонн. В качестве перемещаемого вдоль контролируемого участка измерительного скважинного зонда применяют толщиномер. При этом регистрацию показаний толщиномера на различных глубинах обсадной колонны проводят в различные моменты времени в процессе развития коррозионного состояния обсадной колонны с последующим сравнением значений показаний, полученных в различные моменты времени. 9 з.п. ф-лы, 3 ил.

 

Изобретение относится к эксплуатации нефтяных и газовых скважин и может быть использовано при контроле коррозионного состояния обсадных колонн (ОК) и насосно-компрессорных труб (НКТ) скважин.

Известен способ того же назначения, заключающийся в перемещении вдоль контролируемого участка обсадной колонны измерительного скважинного зонда и регистрации его показаний на различных глубинах обсадной колонны, по значениям которых проводят контроль коррозионного состояния обсадных колонн /а.с. СССР №996723, кл. Е21В 47/00, 1983/.

Данный способ принят за прототип.

В прототипе коррозионное состояние системы ОК контролируют, измеряя падение потенциала вдоль фонтанной колонны при помощи измерительного зонда и потенциал какой-либо точки фонтанной колонны относительно электрода сравнения, расположенного на некотором расстоянии от устья скважины.

Недостатком прототипа является его сложность, косвенный характер способа контроля коррозионного состояния ОК и связанные с этим погрешности контроля из-за множества необходимых допущений при оценке коррозионного состояния ОК.

Техническим результатом, получаемым от внедрения изобретения, является контроль коррозионного состояния ОК и НКТ скважин прямым методом, что позволяет упростить известный способ и повысить его точность.

Данный технический результат достигают за счет того, что в известном способе, заключающемся в перемещении вдоль контролируемого участка обсадной колонны измерительного скважинного зонда и регистрации его показаний на различных глубинах обсадной колонны, по значениям которых проводят контроль коррозионного состояния обсадных колонн, в качестве перемещаемого вдоль контролируемого участка измерительного скважинного зонда применяют толщиномер, при этом регистрацию показаний толщиномера на различных глубинах обсадной колонны проводят в различные моменты времени в процессе развития коррозионного состояния обсадной колонны с последующим сравнением значений показаний, полученных в различные моменты времени.

Регистрацию показаний толщиномера на различных глубинах обсадной колонны проводят в два различных момента времени.

В первый момент времени проводят регистрацию фоновых значений толщин стенок обсадных колонн, осуществляемых перед эксплуатацией скважин.

Период времени между моментами регистрации показаний толщиномера задают один год.

В качестве толщиномера применяют бесконтактный толщиномер.

В качестве бесконтактного толщиномера применяют электромагнитный толщиномер.

В качестве электромагнитного толщиномера применяют магнитоимпульсный дефектоскоп.

В качестве бесконтактного толщиномера применяют радиоактивный толщиномер.

В качестве бесконтактного толщиномера применяют толщиномер, основанный на излучении различных физических полей, преимущественно радиоактивного и электромагнитного.

Моменты регистрации показаний толщиномера задают с помощью компьютера.

Изобретение поясняется чертежами. На фиг.1 представлена схема аппаратуры для реализации способа; на фиг.2 и 3 - дефектограммы, поясняющие существо способа.

Аппаратура содержит каротажную систему, состоящую из спускоподъемных устройств 1 (СПУ 1), установленных на N контролируемых скважинах 21…2N, где N=2, 3, …. В состав каждого СПУ 1 входит измеритель глубины h1…hN.

На кабель-тросах 31…3N каротажных систем 21…2N установлены толщиномеры 41…4N (фиг.1).

Имеются также блоки 5 вторичной аппаратуры (БВА 5), в состав которых входят задатчики периодов времени, запускающие в работу толщиномеры 4; выходные приборы толщиномеров и измерителей глубины СПУ 1; радиомодемы с приемо-передающими антеннами 6 (схемы БВА и описание внутренних связей между блоками отсутствует ввиду очевидности и известности данных устройств).

В состав системы контроля входит диспетчерский пункт 7 (ДП 7) с приемопередающей антенной 8, выполненный в виде радиомодема и управляющего компьютера.

ДП 7 связан с БВА 5 по радиоканалам.

Возможен вариант связи ДП 7 с БВА 5 каждой контролируемой скважины 2 по кабелю (данный вариант не описан).

В качестве толщиномера 4 может быть применен бесконтактный толщиномер, например, магнитоимпульсный дефектоскоп (МИД) или радиоактивный толщиномер.

Особенно эффективно применение бесконтактного толщиномера, основанного на использовании различных физических полей, например, радиоактивного и электромагнитного. Использование физических полей различной природы позволяет повысить надежность контроля коррозионного состояния ОК скважины 2.

Способ реализуется следующим образом.

Перед началом эксплуатации скважин 2 проводят измерение фоновых значений диаметра ОК и НКТ и толщин их стенок.

После ввода скважин 2 в эксплуатацию проводят контроль технического состояния ОК путем выявления участков развития коррозии.

Для этого необходимо знать величину скорости коррозии труб, которая устанавливается по временным замерам (дефектоскопии - толщинометрии), получаемым, например, с помощью МИД.

Определяется изменение толщины стенки труб Δδ (мм) за время Δt (год), прошедшее между двумя геофизическими обследованиями колонны, или изменение толщины стенки труб от номинального (фонового) значения за время от окончания строительства скважины до момента выполнения ее обследования.

Расчет остаточного ресурса колонны выполняется при максимальном значении установленной скорости коррозии с учетом погрешности прибора.

Информацию о толщине стенок и о зонах развития коррозии труб несет толщиномер 4, например, МИД.

Магнитоимпульсная дефектоскопия позволяет исследовать одну (центральную) колонну или одновременно две колонны, например, НКТ и ОК, с выявлением интервалов коррозии.

Участки коррозии отмечаются на диаграммах как зоны локального изменения сигнала, приуроченного к той или иной колонне.

По материалам сопоставления данных МИД с фактическими данными и с материалами других методов зоны коррозии, как правило, возникают на местах какого-либо ранее механического износа колонны, либо в местах, близких к негерметичным муфтовым соединениям.

Примеры выявления в НКТ аномалии записи выходных сигналов МИД приведены на фиг.2, 3, полученных в конкретных скважинах.

На фиг.2 фоновый и повторный сигналы выполнены с интервалом во времени 8 лет. В ряде интервалов выявлены аномальные зоны - превышение амплитуды на ранних временах по фоновому замеру над величиной сигнала по повторному замеру. С увеличением времени задержек расхождений в амплитудах практически не наблюдается. Поэтому можно сделать заключение о развитии коррозии в ближней исследуемой колонне, т.е. в НКТ.

В другой скважине (фиг.3) расхождение показаний магнитоимпульсной дефектоскопии на больших задержках (8 лет) указывает на развитие коррозии эксплуатационной колонны.

Результаты измерений (фиг.2, 3) регистрируются в БВА 5 и затем по радиоканалам направляются на ДП 7, где подвергаются дальнейшему анализу.

Таким образом, можно сделать вывод о высокой информативности предложенного способа исследования коррозионного состояния ОК. Скорость коррозии в данном способе определяется прямым способом, исходя из ее определения. Чем достигается поставленный технический результат.

1. Способ контроля коррозионного состояния обсадных колонн скважин, заключающийся в перемещении вдоль контролируемого участка обсадной колонны измерительного скважинного зонда и регистрации его показаний на различных глубинах обсадной колонны, по значениям которых проводят контроль коррозионного состояния обсадных колонн, отличающийся тем, что в качестве перемещаемого вдоль контролируемого участка измерительного скважинного зонда применяют толщиномер, при этом регистрацию показаний толщиномера на различных глубинах обсадной колонны проводят в различные моменты времени в процессе развития коррозионного состояния обсадной колонны с последующим сравнением значений показаний, полученных в различные моменты времени.

2. Способ по п.1, отличающийся тем, что регистрацию показаний толщиномера на различных глубинах обсадной колонны проводят в два различных момента времени.

3. Способ по п.2, отличающийся тем, что в первый момент времени проводят регистрацию фоновых значений толщин стенок обсадных колонн, осуществляемых перед эксплуатацией скважин.

4. Способ по п.1, отличающийся тем, что период времени между моментами-регистрации показаний толщиномера задают один год.

5. Способ по п.1, отличающийся тем, что в качестве толщиномера применяют бесконтактный толщиномер.

6. Способ по п.5, отличающийся тем, что в качестве бесконтактного толщиномера применяют электромагнитный толщиномер.

7. Способ по п.6, отличающийся тем, что в качестве электромагнитного толщиномера применяют магнитоимпульсный дефектоскоп.

8. Способ по п.5, отличающийся тем, что в качестве бесконтактного толщиномера применяют радиоактивный толщиномер.

9. Способ по п.5, отличающийся тем, что в качестве бесконтактного толщиномера применяют толщиномер, основанный на излучении различных физических полей, преимущественно радиоактивного и электромагнитного.

10. Способ по п.1, отличающийся тем, что моменты регистрации показаний толщиномера задают с помощью компьютера.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к устройствам обнаружения импульсных сигналов в многопроводных линиях передачи. .

Изобретение относится к устройствам неразрушающего контроля труб, например трубопроводов различного назначения и обсадных колонн в нефтяных и газовых скважинах. .

Изобретение относится к устройствам неразрушающего контроля дефектов стенок магистральных трубопроводов. .

Изобретение относится к способу неразрушающего испытания труб из ферромагнитной стали посредством магнитного потока рассеяния, в котором перемещающаяся в продольном направлении и дополнительно выборочно вращающаяся труба намагничивается полем равной напряженности, образовавшийся магнитный поток бесконтактно подается на трубу и имеющиеся в приповерхностной зоне наружной и внутренней поверхностей трубы нарушения сплошности вызывают магнитные потоки рассеяния, которые выходят за пределы поверхности трубы и фиксируются датчиками.

Изобретение относится к области магнитных измерений и может быть использовано, например, при контроле колес подвижного железнодорожного состава, железнодорожных рельсов, строительных металлоконструкций.

Изобретение относится к креплению скважин, в частности к способу определения целостности кольцевого уплотнения обсадной колонны в скважине. Техническим результатом является снижение трудозатрат на обеспечение качественного уплотнения межтрубного пространства в скважине.

Изобретение относится к гидрологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин.

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС).

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения качества цементирования скважин. Акустический способ определения места перетока флюида в заколонном пространстве скважины заключается в равномерном перемещении вдоль скважины акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине расположения места перетока флюида.

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано для проведения геофизических исследований технического состояния скважин.

Изобретение относится к системе и способу минимизации поглощения бурового раствора в пределах подземных пластов-коллекторов. Техническим результатом является снижение потерь материалов и повышение эффективности эксплуатации скважин.

Группа изобретений относится к нефтедобывающей промышленности, а именно к пакерам с электронным измерительным прибором и способам для их реализации. Обеспечивает повышение эффективности эксплуатации скважины.
Изобретение относится к геофизическим способам исследования скважин: каротаж-активация-каротаж, в частности к определению низко проницаемых пластов в бурящейся скважине.

Изобретение относится к нефтегазодобывающей промышленности. Предложен способ оптимизации добычи в скважине, в котором управляют системой искусственного подъема в стволе скважины, отслеживают множество параметров добычи на поверхности и в стволе скважины.

Изобретение относится к способу и системе коррекции траектории ствола скважины. Техническим результатом является использование данных, полученных в режиме реального времени, для уточнения модели напряжений для данного региона, так что траекторию можно непрерывно корректировать для достижения оптимального соотношения с измеренными характеристиками напряжений данного региона.

Изобретение относится к бурению скважины и может быть использовано для контроля забойных параметров и каротаже в процессе бурения. Техническим результатом является повышение качества исследования скважины за счет увеличения надежности передачи информации от забоя на поверхность. Предложена забойная телеметрическая система, содержащая соединенные между собой модуль электрогенератора-пульсатора, модуль инклинометра и модуль гамма-каротажа, включающие телеметрические блоки. При этом указанная телеметрическая система дополнительно содержит блок анализа и управления коммутатором и коммутатор, соединенные с указанными модулями. Причем вход блока анализа и управления коммутатором соединен с выходом блока управления пульсациями модуля гамма-каротажа и первым входом коммутатора. А выход блока анализа и управления коммутатором соединен с входом управления коммутатора. Кроме того, второй вход коммутатора соединен с выходом блока управления пульсациями модуля инклинометра, а выход коммутатора соединен с входом пульсатора, установленным в модуле электрогенератора-пульсатора. 6 з.п. ф-лы, 1 ил.
Наверх