Способ автоматического управления установкой для получения спирта с использованием теплового насоса



Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса
Способ автоматического управления установкой для получения спирта с использованием теплового насоса

 


Владельцы патента RU 2508148:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") (RU)

Изобретение относится к автоматическому управлению процессом ректификации. Способ характеризуется тем, что измеряют по линии подачи расход и состав исходной смеси, в линии циркуляции через куб расход и температуру водно-спиртовой смеси, в кубе колонны давление и уровень, на выходе из колонны температуру паров, в линии рециркуляции теплоносителя расход, в буферной емкости уровень, на входе в дефлегматор и выходе из испарителя температуры теплоносителя, в линии циркуляции хладагента давление и расход перед компрессором, давление, температуру и расход перед терморегулирующим вентилем, давление и температуру после вентиля, мощности приводов компрессора и насосов и по измеренным параметрам по программно-логическому алгоритму, заложенному в микропроцессор, осуществляют оперативное управление технологическими параметрами процесса получения спирта с учетом накладываемых на них двухсторонних ограничений, рассчитывают суммарные теплоэнергетические затраты на процесс получения спирта, определяют их производную по количеству испаряемого из водно-спиртовой смеси спирта и в зависимости от знака производной воздействуют на расход исходного продукта в антибатной зависимости. Технический результат: снижение материальных и энергетических ресурсов на единицу массы готового продукта, повышение точности и надежности управления технологическими параметрами ректификации спирта с использованием теплового насоса. 2 ил.

 

Изобретение относится к способам и системам автоматического управления процессом ректификации и может найти применение в спиртовой, химической, нефтехимической и других отраслях промышленности.

Известен способ автоматического регулирования процессом ректификации [Авторское свидетельство СССР №944600, кл. B01D 3/42, 1982] путем воздействия на подачу теплоносителя и орошения в зависимости от изменения значений температур на тарелках, отличающийся тем, что с целью уменьшения энергозатрат путем улучшения качества регулирования подачу теплоносителя и орошения изменяют в зависимости от суммы логарифмов отношений разности температур, измеренных в различных точках колонны, поддерживая произведение расхода орошения на расход теплоносителя постоянным. Устройство для реализации способа содержит ректификационную колонну, датчики температуры, вычислительные блоки, регулятор, регулятор расхода теплоносителя, регулятор расхода орошения.

Недостатком данного способа и реализующего его устройства является то, что при управлении колонной применяется мультипликативная связь (произведение) двух потоков информации (расходов) от датчиков, имеющих квадратические статические характеристики. Поэтому качество регулирования при таком большом количестве нелинейных, взаимосвязанных, измеряемых параметров находится под большим сомнением, особенно по метрологическим показателям качества управления.

Известен способ автоматического регулирования процессом ректификации и реализующее его устройство [Авторское свидетельство СССР SU №1526723, кл. B01D 3/42, G05D 27/00, 1989], которое содержит ректификационную колонну, датчики температуры, блок коррекции профиля температур по давлению паров, регуляторы расходов теплоносителя и орошения, регулятор расхода питающей смеси, регулятор теплосодержания, датчики давления, дефлегматор в верхней части колонны, первый теплообменник в нижней части колонны, второй теплообменник, расположенный в месте подачи питающей смеси, исполнительные устройства. Способ автоматического регулирования процессом ректификации путем задания температурного профиля колонны и изменения подачи теплоносителя и орошения в зависимости от изменения температурного профиля ректификационной колонны реализует измерение давления в верхней и нижней частях колонны и в зависимости от измеренных значений давлений корректирование температурного профиля колонны, определение высоты участка колонны, на котором температура не меньше температуры кипения кубового продукта заданного состава, и высоты участка колонны, на котором температура не превышает температуры кипения дистиллята заданного состава, расчет скорости изменения температуры по высоте колонны и в зависимости от значений определенных высот участков колонны и скорости изменения температуры по высоте колонны параметров - корректирование расходов теплоносителя и орошения, расхода и теплосодержания питающей смеси.

Недостатком способа является попытка уменьшить статическую погрешность измерения температурного профиля колонны применением контроля давления в верхней и нижней части колонны. Это неизбежно приводит к появлению неопределенностей по фиксации температуры верха и низа колонны, что увеличивает динамические погрешности процесса управления и время регулирования температуры питающей тарелки. Также в известном способе и реализующем его устройстве отсутствует компенсация инерционности процесса ректификации, что приводит к ухудшению качества регулирования.

Известен способ, реализуемый в устройстве для автоматического управления процессом экстрактивной ректификации путем стабилизации перепадов температуры в укрепляющей и исчерпывающей секциях колонны изменением расходов флегмы, экстрагента и теплоносителя, с коррекцией по составу дистиллята и кубового продукта [Авторское свидетельство СССР N 1001954, М. Кл.3 B01D 3/42 от 07.03.83].

Недостатком известного способа является недостаточное качество регулирования составов получаемых продуктов разделения из-за отсутствия компенсации внутренних перекрестных связей по каналам "расход флегмы - температура на нижней контрольной тарелке", "расход теплоносителя - температура на верхней контрольной тарелке" и внешних возмущений по температуре экстрагента и давлению теплоносителя, подаваемого в куб колонны.

Известен способ автоматического регулирования теплового режима ректификационной колонны путем изменения расхода топлива в подогреватель циркулирующего нижнего продукта в зависимости от температуры отгонной части колонны [Шувалов В.В. Огаджанов Г.А. Голубятников В.А. Автоматизация производственных процессов в химической промышленности.- М.: Химия, 1991. С.439, 440].

Недостаток известного способа заключается в том, что он не обеспечивает стабилизацию парового потока в ректификационной колонне, т.к. на процесс парообразования влияет изменение давления и состава питания, что приводит к низкому качеству регулирования.

Известен способ автоматического регулирования теплового режима ректификационной колонны путем стабилизации перепада давления циркулирующего продукта в подогревателе [Авторское свидетельство СССР №538723, опубл. БИ N 46 15.12.76].

Недостатком известного способа является большая инерционность системы регулирования при возмущении со стороны расхода питания, что приводит к ухудшению качества продуктов разделения.

Известен способ автоматического регулирования процессом ректификации в устройстве [Патент РФ №2449827 B01D 3/42, опубл. Бюл. №13. 10.05.2012], в котором управление работой ректификационной колонны достигается путем учета и компенсации инерционных свойств процесса ректификации, а также вычислением минимального среднеквадратического отклонения текущего значения температуры от прогнозируемого и установления этого значения в качестве задания регулятору температуры питающей тарелки и тем самым изменения температурного профиля по всей высоте колонны.

Недостатком способа является низкая точность управления работой ректификационной колонны, так как процесс регулирования ограничивается процессами, осуществляемыми только внутри колонны.

Известен способ управления процессом ректификации [Абрамов К.В., Софиева Ю.Н. Разработка инвариантной системы управления процессом ректификации // ПРИБОРЫ №3(64), 2012 - с.42-47.] путем применения разомкнутой инвариантной системы регулирования в автоматизированной системе управления (АСУ) ректификационными установками.

Недостатком известного способа являются высокие энергозатраты из-за отсутствия регулирования процесса создание теплоты.

Наиболее близким по технической сущности и достигаемому эффекту является способ автоматического регулирования теплового режима ректификационной колонны [Патент РФ №2081664, B01D 3/42, опубл. 20.06.1997] путем стабилизации перепада давления кипящего циркулирующего продукта в подогревателе с коррекцией по температуре отгонной части ректификационной колонны, отличающийся тем, что расход топлива в подогреватель регулируют в зависимости от перепада давления циркулирующего продукта в трубчатом змеевике подогревателя с дополнительной коррекцией по скорости изменения отношения расходов питания и циркулирующего продукта.

Недостатком прототипа является отсутствие регулирования расхода энергии на создание холода и теплоты путем их взаимной компенсации.

Технической задачей изобретения является снижение материальных и энергетических ресурсов на единицу массы готового продукта, повышение точности и надежности управления технологическими параметрами процесса ректификации спирта с использованием теплового насоса.

Для решения технической задачи изобретения предложен способ автоматического управления установкой для получения спирта с использованием теплового насоса, характеризующийся тем, что измеряют по линии подачи расход и состав исходной водно-спиртовой смеси, в линии циркуляции через куб - расход и температуру водно-спиртовой смеси, температуру, в кубе колонны - давление и уровень, на выходе из колонны - температуру паров, в линии рециркуляции теплоносителя - расход, в буферной емкости - уровень, на входе в дефлегматор и выходе из испарителя - температуру теплоносителя, в линии циркуляции хладагента - его давление и расход перед компрессором, давление, температуру и расход - перед терморегулирующим вентилем, давление и температуру - после терморегулирующего вентиля, мощности приводов компрессора и циркулирующих насосов - в линии циркуляции водно-спиртовой смеси через куб и в линии рециркуляции теплоносителя и по измеренным параметрам по программно-логическому алгоритму, заложенному в микропроцессор, осуществляют оперативное управление технологическими параметрами процесса получения спирта, рассчитывают суммарные теплоэнергетические затраты на процесс получения спирта, определяют их производную по количеству испаряемого из водно-спиртовой смеси спирта и в зависимости от знака производной воздействуют на расход исходного продукта в антибатной зависимости.

Технический результат изобретения заключается в снижении материальных и энергетических ресурсов на единицу массы готового продукта, повышении точности и надежности управления технологическими параметрами процесса ректификации спирта с использованием теплового насоса.

На фиг.1 представлена схема, реализующая способ управления установкой для получения спирта с использованием теплового насоса, на фиг.2 представлен график зависимости удельных суммарных энергозатрат R от расхода исходного сырья Gисх.с..

Схема (фиг.1) содержит ректификационную колонну 1 с насадками 2 ,имеющую куб 3, дефлегматор 4 со змеевиком 5, испаритель 6 со змеевиками 7 и 8, промежуточную буферную емкость 9, компрессор 10, теплообменник (конденсатор) 11 со змеевиками 12, 13, теплообменник (конденсатор) 14 со змеевиками 15, 16, терморегулирующий вентиль 17, циркуляционные насосы 18, 19, двигатели 20-22, двухходовые и трехходовые вентили, соответственно 23 и 24-26 линии подачи исходной водно-спиртовой смеси 27, циркуляции водно-спиртовой смеси через куб 3, имеющей рабочий участок 28, а также участок 29, включаемый в работу во время пуска установки, удаления отработанной водно-спиртовой смеси 30, циркуляции теплоносителя (хладоносителя) 31, удаления эпюрата 32 из дефлегматора 4, циркуляции хладагента 33, датчики: расхода 34-40, состава 41 исходной водно-спиртовой смеси, давления 42-45, температуры 46-52, уровня жидкости 53-54, мощности электроприводов 55-57, микропроцессор 58 (А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н, О, П, Р, С, Т, У, Ф, X, Ц, Ч, Ш, Щ, Э, Ю - входные каналы управления, а, б, в, г, д, е, ж, з - выходные каналы управления), исполнительные механизмы 59-66.

Вторичные приборы, цифроаналоговые (ЦАП) и аналого-цифровые (АЦП) преобразователи на схеме не показаны.

Способ автоматического управления установкой для получения спирта с использованием теплового насоса осуществляют следующим образом.

Исходная водно-спиртовая смесь с составом, определяемым датчиком 41, и расходом, контролируемым датчиком 39 по линии подачи 27 через вентиль 23 посредством исполнительного механизма 66, подается в линию циркуляции через куб 3, проходя последовательно по участку 29, а затем по рабочему участку 28. Подача исходного продукта осуществляется до предельно допустимого уровня, контролируемого датчиком 53, информация с которого передается в микропроцессор 58, который в свою очередь передает корректирующий сигнал исполнительному механизму 66 на закрытие вентиля 23.

При этом участок 29 линии циркуляции водно-спиртовой смеси через куб 3 функционирует только в начальный период пуска установки.

После заполнения куба 3 до заданного значения уровня в начальный период пуска установки приводится в работу компрессор 10, в котором происходит сжатие паров хладагента, циркулирующего по линии 33. В результате работы сжатия происходит выделение теплоты, которая затем в теплообменниках (конденсаторах) 11 и 14 передается водно-спиртовой смеси, проходящей через участки 28 и 29 линии циркуляции водно-спиртовой смеси через куб 3.

В результате нагрева исходной водно-спиртовой смеси до температуры ее кипения, например 78…95°С, информация о которой передается с датчика температуры 46 микропроцессору 58, последний передает корректирующий сигнал исполнительному механизму 65 на закрытие вентиля 25 и прекращение циркуляции водно-спиртовой смеси по участку 29. При этом в кубе 3 колонны 1 происходит парообразование с поверхности водно-спиртовой смеси. Затем происходит разделение на контактных устройствах колонны 1, после чего спиртовой пар из верхней части ректификационной колонны 1 подается в дефлегматор 4, где благодаря тому, что через трубки змеевика 5 пропускается охлажденный теплоноситель из испарителя 6, в результате рекуперативного теплообмена между спиртовыми парами и теплоносителем (хладоносителем) происходит конденсация спиртовых паров. После получения теплоносителем теплоты от паров спирта он направляется по линии рециркуляции 31 в испаритель 6, где он охлаждается за счет испарения хладагента в результате его впрыска через терморегулирующий вентиль 17 в трубки змеевика 8, где он кипит за счет подвода теплоты от теплоносителя.

Охладившись в змеевике 7, теплоноситель, циркулирующий в линии 31, перемещается в буферную емкость 9, откуда насосом подается обратно в дефлегматор 4.

Одновременно дополнительно измеряют состав исходного продукта с помощью датчика 41, расход с помощью датчика 38 и температуру с помощью датчика 52 в линии подачи исходной водно-спиртовой смеси 27, расход с помощью датчика 38 и температуру с помощью датчика 52 в линии циркуляции водно-спиртовой смеси через куб 3 на рабочем участке 28, расход с помощью датчика 40 в линии удаления отработанной водно-спиртовой смеси 30, давление с помощью датчика 42 и температуру с помощью датчика 46 в кубе 3, температуру в конце колонны 1 с помощью датчика 47, температуру до и после испарителя с помощью датчиков 48 и 49, расхода с помощью датчика 35 в линии циркуляции теплоносителя (хладоносителя) 31, расхода с помощью датчика 34 в линии удаления эпюра-та 32 из дефлегматора 4, давления в линии циркуляции хладагента 33 на участке между теплообменником-конденсатором 14 и терморегулирующим вентилем 17 до и после компрессора 10, с помощью соответственно датчиков 44, 43, 45, расход с помощью датчиков 36 и 37, температуру с помощью датчиков 50 и 51.

При этом осуществляют оперативное управление технологическими параметрами по программно-логическому алгоритму, заложенному в микропроцессор 58, в который передается информация о ходе процесса получения спирта в ректификационной установке с использованием теплового насоса от датчиков 34-57.

По текущей информации датчиков 39 и 41 соответственно по расходу в линии 27 и состава (в основном воды и спирта) исходного водно-спиртового сырья микропроцессор 58 устанавливает частоту вращения электродвигателя 20 компрессора 10 воздействием на его мощность, значение которой измеряется датчиком 57посредством исполнительного механизма 63.

Из условия материального и теплового балансов микропроцессор 58 устанавливает задание на температуру удаления выпаривания в кубе 3, текущее значение которой измеряется датчиком 52 путем изменения расхода водно-спиртовой смеси в линии ее циркуляции на участке 28 воздействием на мощность электродвигателя 22 циркуляционного насоса 19, значение которой измеряется датчиком 55, посредством исполнительного механизма 63 и с помощью вентиля 25 и исполнительного механизма 65, а также величину давления в кубе 3, измеряемую датчиком 42, воздействием на расход в линии 32 с помощью вентиля 24 посредством исполнительного механизма 60.

При уменьшении температуры в линии циркуляции водно-спиртовой смеси в кубе 3 сначала уменьшают циркуляцию путем воздействия на мощность циркуляционного насоса 19, а затем на увеличение давления в кубе 3 путем воздействия на соотношение расходов удаляемого эпюрата и возврата в колонну воздействием на исполнительный механизм 60 вентиля 24.

По информации с датчика 48 об отклонении фактического значения температуры от заданного на входе в дефлегматор микропроцессор 58 осуществляет коррекцию следующим образом: при отклонении текущей температуры в сторону увеличения сначала уменьшают расход теплоносителя помощью исполнительного механизма 61 воздействием на мощность электродвигателя 22 циркуляционного насоса 19 до достижения предельно минимального значения, затем осуществляют коррекцию величины температуры измеряемой датчиком 51 путем корректирующего воздействия с микропроцессора 58 на снижение мощности привода 20 с помощью исполнительного механизма 63 до достижения температуры теплоносителя (хладоносителя) заданного значения, обеспечивающего конденсацию пара спирта, а при отклонении температуры теплоносителя (хладоносителя) в сторону уменьшения сначала осуществляют коррекцию величины температуры измеряемой датчиком 51 путем корректирующего воздействия с микропроцессора 58 на увеличение мощности привода 20 с помощью исполнительного механизма 63 до достижения температуры теплоносителя (хладоносителя) заданного значения, обеспечивающего конденсацию пара спирта, а затем увеличивают расход теплоносителя с помощью исполнительного механизма 61 воздействием на мощность электродвигателя 22 циркуляционного насоса 19 до достижения предельно максимального значения.

По текущей информации датчика о мощности электроприводов 55-57 компрессора 10 и циркуляционных насосов 18-19 микропроцессор 58 непрерывно определяет энергозатраты на мощность электроприводов компрессора 10 и циркуляционных насосов 22-31.

Затем микропроцессор 58 по измеренным параметрам (суммарной мощности электроприводов 55-57 компрессора 10 и циркуляционных насосов 18-19 и количеству получаемого спирта) рассчитывает технико-экономический показатель (критерий оптимизации), в качестве которого использован суммарный расход электрической энергии, приходящийся на единицу испаряемого (получаемого) спирта:

где N1 - потребляемая мощность привода компрессора 10, кВт; N2 и N3 - потребляемые мощности циркуляционных насосов 18-19, кВт; соответственно в линии циркуляции теплоносителя 31 и в линии циркуляции водно-спиртовой смеси через куб 3; ZЭ - цена за электроэнергию, р/(кВт·ч); G - массовая доля ароматного спирта, получаемого в установке в единицу времени, т/ч.

В соответствии с материальным балансом по спирту зависимость расхода готового спирта от расхода водно-спиртовой смеси можно представить с учетом расхода влаги следующим образом:

где Gф.к. - расход готового спирта, кг/ч; Gисх.с. - расход исходного продукта (водно-спиртовой смеси), кг/ч; k - коэффициент, wн, wк - соответственно начальное и конечное содержание воды в продукте, кг/кг (wк=0); - коэффициент удаления воды из исходного продукта (водно-спиртовой смеси), кг/ч.

По данным процесса ректификации спирта установлена однозначная функциональная связь между слагаемыми в числителе критерия оптимизации (1) и расходом исходного продукта:

где а1, а2, а3 - эмпирические коэффициенты, определяемые экспериментально.

С учетом формул (3)-(5) технико-экономический показатель (критерий оптимизации) (1) приводится к виду

Массовая доля воды G, удаляемая из перерабатываемого продукта в единицу времени, т/ч, будет равна

Приведя формулу (6) к виду, удобному для исследования на экстремум, приравниваем первую производную критерия (6) нулю :

После ряда преобразований получаем

Уравнение (9) равно нулю, если его числитель равен нулю, т.е.

Из уравнения (10) экстремальное значение расхода исходного продукта, соответствующее экстремальному расходу тепловой и электрической энергии, приходящемуся на единицу испаряемой влаги:

Условия экстремума выполняются как при максимуме, так и при минимуме функции. Поэтому необходимо убедиться, что решение, найденное в нашем случае, соответствует именно минимуму. Это можно установить по знаку второй производной критерия оптимизации (6). Взяв вторую производную критерия (6) и приравняв ее нулю, легко доказывается, что: .

Следовательно, в точке экстремума (10) имеет место минимум расхода тепловой и электрической энергии, приходящегося на единицу испаряемой влаги.

Затем микропроцессор 58 осуществляет выбор оптимальных режимов работы ректификационной установки с учетом оценки энергетической эффективности. Для этого микропроцессор 58 по рассчитанному технико-экономическому показателю (критерию оптимизации) (формула 1) определяет производную по количеству испаряемого из водно-спиртовой смеси спирта и в зависимости от знака производной воздействуют на расход исходного продукта, определяемого датчиком 39, в антибатной зависимости воздействием на исполнительный механизм 66 крана 23.

Таким образом, данный метод оценки эффективности предлагаемого способа автоматического управления установкой для получения спирта с использованием теплового насоса позволяет осуществить выбор оптимального расхода исходного продукта по минимальному значению критерия (6) с учетом ограничений, накладываемых на диапазоны изменения режимных параметров процесса ректификации.

Окончание процесса ректификации фиксируется фактом отклонения температуры паров спирта в сторону увеличения, информация о которой передается с датчика 47 в микропроцессор 58, который в свою очередь передает корректирующие сигналы исполнительным механизмам 63, 61 и 64 последовательно на остановку работы компрессора и циркуляционного насоса 18, а затем на открытие трехходового крана 26 для удаления из линии циркуляции водно-спиртовой смеси через куб 3, обедненной спиртом водно-спиртовой смеси, информация о расходе которой передается с датчика 40 в микропроцессор 58.

Пример реализации способа. В качестве конкретного примера по реализации способа рассматривается процесс получения ароматных спиртов в ректификационной установке с использованием теплового насоса.

Пределы регулирования основных параметров процессов получения ароматных спиртов в ректификационной установке с использованием теплового насоса обоснованы в результате экспериментальных исследований: температура кубе 3 ректификационной колонны 1 составляет 75…98°С, величина давления в кубе 3 колонны 1-2,66 кПа, холодопроизводительность теплового насоса 3,2-12,4 кВт, потребление мощности компрессором составляет 1,42…3,8 кВт.

Производительность установки в зависимости от начального состава водно-спиртовой смеси составляет 0,1…0,4 дал/ч.

В качестве объекта исследования использовалась водно-спиртовая смесь 40…65%, которая подавалась в куб 3 ректификационной колонны 1, где на насадках 2 происходило разделение продукта.

Поддержание и регулирование параметров процесса ректификации производилось в соответствии с вышеприведенным в предлагаемом способе алгоритмом, заложенным в микропроцессор 58, который осуществлял выбор оптимальных режимов работы установки с применением теплового насоса с учетом оценки энергетической эффективности. Для этого микропроцессор 58 по рассчитанному технико-экономическому показателю (формула 1) определял удельные суммарные энергозатраты (фиг.2).

Критерий оптимизации (1) для данных режимов процесса получения спирта получен в виде:

Оптимальное значение расхода исходного продукта Gucx.c. * определяется из условия:

Отсюда следует

Тогда значение критерия оптимизации R*, соответствующее оптимальному значению G*, составит R*=900 р/т.

Из анализа формулы (23) следует, что реализация данного способа с минимальными удельными энергетическими затратами, составляющими 900 р/т, при ограничениях на производительность оборудования и качество получаемого спирта, достигается при расходе исходного продукта 0,1 т/ч (фиг.2). Незначительное отклонение расхода исходного продукта от этого значения неизбежно приводит к перерасходу тепловой и электрической энергии на единицу массы получаемого спирта.

В результате показана возможность оценки эффективности предлагаемого способа автоматического управления установкой для получения спирта с использованием теплового насоса по величине энергетических затрат, приходящихся на единицу массы получаемого спирта. Обоснован выбор оптимального расхода исходного продукта по минимальному значению удельных энергетических затрат с учетом ограничений, накладываемых на диапазоны изменения режимных параметров процесса ректификации.

Предложенный способ автоматического управления установкой для получения спирта с использованием теплового насоса позволяет:

- обеспечить минимальные теплоэнергетические затраты на процесс получения спирта;

- снизить материальные и энергетические ресурсы на единицу массы готового продукта;

- получить готовый продукт высокого качества за счет поддержания наиболее оптимальной продолжительности процесса получения спирта в ректификационной установке с использованием теплового насоса;

- достигнуть большой точности поддержания технологических параметров и надежности системы автоматического регулирования на всех стадиях процесса получения спирта в ректификационной установке с использованием теплового насоса.

Способ автоматического управления установкой для получения спирта с использованием теплового насоса, характеризующийся тем, что измеряют по линии подачи расход и состав исходной водно-спиртовой смеси, в линии циркуляции через куб расход и температуру водно-спиртовой смеси, в кубе колонны давление и уровень, на выходе из колонны температуру паров, в линии рециркуляции теплоносителя расход, в буферной емкости уровень, на входе в дефлегматор и выходе из испарителя температуры теплоносителя, в линии циркуляции хладагента давление и расход перед компрессором, давление, температура и расход перед терморегулирующим вентилем, давление и температура после терморегулирующего вентиля, мощности приводов компрессора и циркулирующих насосов в линии циркуляции водно-спиртовой смеси через куб и в линии рециркуляции теплоносителя и по измеренным параметрам по программно-логическому алгоритму, заложенному в микропроцессор, осуществляют оперативное управление технологическими параметрами процесса получения спирта с учетом накладываемых на них двухсторонних ограничений, рассчитывают суммарные теплоэнергетические затраты на процесс получения спирта, определяют их производную по количеству испаряемой из водно-спиртовой смеси спирта и в зависимости от знака производной воздействуют на расход исходного продукта в антибатной зависимости.



 

Похожие патенты:

Изобретение относится к устройствам для управления процессом ректификации и может быть использовано в химической, фармацевтической, нефтеперерабатывающей и пищевой промышленности.

Изобретение относится к области контроля и управления, а именно к способам измерения циркуляционного потока и стабилизации уровня жидкого компонента в испарительной системе дистилляционной колонны, предназначенной для получения целевого продукта, например стабильного изотопа О18, методом низкотемпературной дистилляции оксида азота NO.

Изобретение относится к технологии получения целевого продукта, такого как стабильный изотоп О18, методом низкотемпературной дистилляции оксида азота NO в 3-секционной колонне.

Изобретение относится к способу дистилляционного разделения C5+-фракций на легкокипящую (А), среднекипящую (В) и высококипящую (С) фракции. .

Изобретение относится к устройствам для автоматического управления технологическим режимом отпарных секций (стриппингов) сложных ректификационных колонн первичной перегонки и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к области разделения жидких смесей, а именно к области разделения трех и более компонентов, входящих в состав жидких смесей, методом ректификации, и может быть использовано в пищевой, химической, нефтехимической областях промышленности, а также других областях техники и жизнедеятельности человека, где возникает необходимость разделения подобных смесей.

Изобретение относится к области разделения жидких смесей, в частности, к конструкциям ректификационных колонн, и может быть использовано в нефтехимической, химической и пищевой промышленностях, а также различных областях деятельности человека для разделения многокомпонентных жидких смесей.

Изобретение относится к усовершенствованию процесса отделения стирола от непрореагировавшего этилбензола, полученного на стадии дегидрирования этилбензола с образованием стирола.

Изобретение предназначено для автоматического управления процессом ректификации и может быть использовано в химической, фармацевтической, нефтеперерабатывающей и пищевой промышленности. Способ заключается в адаптивном управлении верхней точкой профиля температур путем изменения расхода флегмы в зависимости от величины текущих потерь сырья, компенсации возмущающего воздействия со стороны питающей смеси, прогнозе концентрации по математической модели компенсатора верха колонны. Устройство включает ректификационную колонну, датчики температуры, регуляторы температуры верха и низа колонны, температуры питающей смеси, расхода перегретого пара, расхода хладагента, расхода греющего пара, дефлегматор, два теплообменника, расположенные на линии отвода кубового остатка и на линии подачи питающей смеси, блок идентификации текущего значения эффективности работы ректификационной колонны, два хроматографа, расположенные на линии отвода целевого продукта и на линии подачи питающей смеси, выходы которых соединены с входом регулятора концентрации целевого продукта в нижней части колонны, регулятор расхода флегмы, расхода целевого продукта, уровня кубовой жидкости колонны, блок формирования задания для регулятора расхода флегмы и регулятора температуры верха, блок компенсации возмущений. Технический результат: повышение эффективности работы колонны. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способу оптимизации параметров технологического потока в блоке перегонки сырой нефти для снижения коррозии и/или осаждения продуктов коррозии в указанном блоке, согласно которому: измеряют и/или прогнозируют по меньшей мере один параметр, выбранный из группы, включающей рН, концентрацию хлорид-ионов, концентрацию ионов железа, концентрацию ионов металлов, отличных от железа, и скорость коррозии, и связанный по меньшей мере с двумя химическими реагентами, выбранными из группы, включающей нейтрализующее вещество, каустический агент и пленочный ингибитор, в одном или более местах блока перегонки сырой нефти; определяют оптимальный диапазон, связанный с измеренным и/или предсказанным параметром, при этом оптимальный диапазон может быть установлен пользователем; если измеренный и/или предсказанный параметр выходит за пределы оптимального диапазона, связанного с этим параметром, вызывают изменение поступления по меньшей мере двух химических реагентов из указанных нейтрализующего вещества, каустического агента и пленочного ингибитора в технологический поток. Изобретение также касается носителя цифровых данных и системы оптимизации параметров технологического потока блока перегонки сырой нефти. Технический результат - регулирование системных параметров позволяет эффективно контролировать коррозию в блоке перегонки сырой нефти путем снижения коррозионной активности текучей среды в технологическом потоке и/или путем защиты системы от потенциально коррозионного вещества. 3 н. и 11 з.п. ф-лы, 7 ил., 3 пр.

Изобретение относится к автоматическому управлению спиртовой колонной брагоректификационной установки непрерывного действия и может быть использовано на спиртовом производстве. Способ характеризуется тем, что осуществляют регулирование давления в нижней части спиртовой колонны путем подачи греющего пара в колонну, осуществляют регулирование отбора спирта с одной из верхних тарелок колонны, величину которого корректируют в функции от разности заданного и текущего значений температуры паровой фазы над контрольной тарелкой колонны, осуществляют регулирование расхода охлаждающей воды, поступающей в дефлегматор спиртовой колонны, причем расход охлаждающей воды в дефлегматор спиртовой колонны регулируют в функции от разности заданного и текущего значений температуры конденсата на выходе из дефлегматора спиртовой колонны. Изобретение обеспечивает улучшение качества получаемого спирта, снижение удельных затрат греющего пара и повышение производительности спиртовой колонны. 1 ил.

Изобретение относится к автоматическому управлению процессом ректификации многоколонной брагоректификационной установки непрерывного действия и может быть использовано в спиртовом производстве. Способ характеризуется тем, что осуществляют регулирование расхода бражки, расхода пара, подаваемого в колонны в зависимости от давления в их нижних частях, и расхода воды, поступающей в дефлегматоры и конденсаторы установки. Осуществляют задание величины расхода пара, подаваемого в бражную колонну, в функции от рассогласования между заданной и текущей температурой верхней части бражной колонны. С помощью подачи гидроселекционной воды на одну из верхних тарелок колонны эпюрации осуществляют регулирование концентрации спирта в эпюрате на выходе из низа колонны эпюрации на основе прямого измерения его концентрации или определения ее с помощью температуры и давления низа колонны эпюрации. Осуществляют определение нагрузки колонны ректификации спиртом по потоку эпюрата на ее входе с учетом концентрации эпюрата и величины его расхода. Осуществляют выделение низкочастотной составляющей переменной нагрузки колонны ректификации по спирту и задание требуемой нагрузки установки по спирту. Осуществляют корректировку задания на расход бражки в бражную колонну в зависимости от разности низкочастотной составляющей текущей нагрузки колонны ректификации по спирту и требуемого значения нагрузки по спирту для установки брагоректификации. Осуществляют стабилизацию отбора спирта из колонны ректификации в функции от разности заданного и текущего значений концентрации этилового спирта или их косвенных оценок в виде текущей и заданной температур паров над контрольной тарелкой колонны ректификации с учетом скорости изменения концентрации (температуры), причем расход воды в конденсатор и дефлегматор колонны ректификации регулируют в функции от разности заданного и текущего значений температуры флегмы на входе в колонну ректификации. Изобретение обеспечивает улучшение качества получаемого этилового спирта, повышение производительности установки и снижение удельных затрат греющего пара. 7 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к способу очистки (мет)акрилатов, ангидридов метакриловой кислоты или ангидридов акриловой кислоты в качестве мономеров, при котором, по меньшей мере, часть содержащихся в исходном составе мономеров испаряют и затем конденсируют. По меньшей мере, часть исходного состава испаряют в короткоходовом испарителе, причем плотность массового потока выпаров m ˙ выбирают согласно соотношению (I), в котором M ˜ означает среднюю молярную массу выпаров в короткоходовом испарителе, кг/кмоль; T - температуру выпаров, K; pi - давление в короткоходовом испарителе, мбар; m ˙ - плотность массового потока выпаров, кг/(м2·ч), и перед указанными испарением и конденсацией содержащихся в исходном составе мономеров из него отводят компоненты с низкой точкой кипения путем испарения в короткоходовом испарителе. Способ позволяет надежно и просто очищать, в частности, высококипящие мономеры. 12 з.п. ф-лы, 3 пр.

Изобретение относится к автоматическому управлению эпюрационной колонной брагоректификационной установки непрерывного действия и может быть использовано на спиртовом производстве. Способ характеризуется тем, что осуществляют регулирование давления в нижней части эпюрационной колонны брагоректификационной установки путем подачи греющего пара в эпюрационную колонну, осуществляют регулирование расхода гидроселекционной воды на верхние тарелки эпюрационной колонны, осуществляют регулирование расхода охлаждающей воды, поступающей в дефлегматор эпюрационной колонны, причем расход охлаждающей воды в дефлегматор эпюрационной колонны регулируют в функции от разности заданного и текущего значений температуры конденсата на выходе из дефлегматора эпюрационной колонны. Изобретение обеспечивает улучшение качества получаемого эпюрата, снижение удельных затрат греющего пара и повышение производительности эпюрационной колонны. 1 ил.

Изобретение относится к автоматическому управлению бражной колонной брагоректификационной установки непрерывного действия и может быть использовано на спиртовом производстве. Способ характеризуется тем, что осуществляют регулирование расхода бражки и давления в нижней части бражной колонны путем подачи пара в бражную колонну, осуществляют регулирование задания величины давления низа бражной колонны в функции от рассогласования между заданной и текущей температурой в верхней части бражной колонны, осуществляют регулирование расхода воды, поступающей в конденсатор и водяную секцию дефлегматора бражной колонны, причем расход воды в конденсатор и водяную секцию дефлегматора бражной колонны регулируют в функции от разности заданного и текущего значений температуры бражного дистиллята на выходе из водяной секции дефлегматора бражной колонны. Изобретение обеспечивает улучшение качества получаемого этилового спирта, повышение производительности установки и снижение удельных затрат греющего пара. 1 ил.

Изобретение относится к автоматическому управлению колонной окончательной очистки брагоректификационной установки непрерывного действия спиртового производства или иных производств. Согласно изобретению способ предусматривает регулирование давления в нижней части колонны окончательной очистки подачей греющего пара, расхода охлаждающей воды, поступающей в дефлегматор колонны окончательной очистки, при этом расход охлаждающей воды в дефлегматор колонны окончательной очистки регулируют в функции от разности заданного и текущего значений температуры конденсата на выходе из дефлегматора колонны окончательной очистки. Изобретение обеспечивает улучшение качества получаемого спирта и снижение удельных затрат греющего пара. 1 ил.

Изобретение относится к автоматическому управлению сивушной колонной брагоректификационной установки непрерывного действия спиртового производства или иных производств. Согласно изобретению способ предусматривает регулирование давления в нижней части сивушной колонны подачей греющего пара, расхода охлаждающей воды, поступающей в дефлегматор сивушной колонны, при этом расход охлаждающей воды в дефлегматоре сивушной колонны регулируют в функции от разности заданного и текущего значений температуры конденсата на выходе из дефлегматора сивушной колонны. Изобретение обеспечивает улучшение качества получаемого спирта и снижение удельных затрат греющего пара. 1 ил.

Изобретение относится к автоматическому управлению разгонной колонной брагоректификационной установки (БРУ) непрерывного действия спиртового производства или иных производств. Способ автоматического управления разгонной колонной брагоректификационной установки заключается в регулировании давления в ее нижней части подачей греющего пара, расхода охлаждающей воды, поступающей в конденсатор и дефлегматор разгонной колонны, расхода гидроселекционной воды в разгонную колонну. На выходе из дефлегматора колонны измеряют температуру конденсата с помощью датчика температуры. Расход охлаждающей воды в дефлегматор колонны регулируют в функции от разности заданного и текущего значений температуры конденсата на выходе из дефлегматора колонны с помощью регулятора. Измеряют температуру жидкой фазы на одной из нижних тарелок колонны с помощью датчика температуры. Расход гидроселекционной воды в колонну регулируют с учетом корректирующего сигнала регулятора, выходной сигнал которого формируют в функции от разности задания на температуру жидкой фазы на одной из нижних тарелок колонны и текущего значения температуры жидкой фазы на одной из нижних тарелок колонны. Технический результат: снижение удельных затрат греющего пара. 1 ил.
Наверх