Средство для очистки воды от растворимых загрязнений и способ очистки


 


Владельцы патента RU 2508151:

Дубовый Владимир Климентьевич (RU)

Изобретение относится к области очистки воды. В качестве средства для очистки воды используют объемный материал из стеклянных волокон диаметром от 100 до 400 нм с объемной плотностью 12-26 кг/м3. Очистку воды осуществляют путем ее пропускания через слой данного материала. Предложено экологически безопасное эффективное средство, позволяющее очистить природную воду от растворимых загрязнений. 2 н.п. ф-лы, 4 табл., 6 пр.

 

Изобретение относится к очистке природных вод, т.е. вод, содержащихся в природных водоемах открытого типа (реки, озера, болота и пр.); при этом решаемся задача очистки воды в бытовых, дачных, походных и иных (чрезвычайных) условиях индивидуальными потребителями с целью обеспечения самих себя количеством питьевой воды, минимально необходимым для суточного потребления.

Насколько известно заявителю и авторам, на сегодня нет технического решения задачи, которое было бы приемлемым для широкого круга индивидуальных потребителей.

Ниже сформулирован комплекс требований к средству и способу очистки природной воды, исходя из поставленной задачи.

1. Средство для очистки воды должно быть экологически безопасным.

2. Средство должно быть совершенно доступным, т.е. производиться в промышленных масштабах по утвержденной в установленном порядке нормативно-технической документации.

3. Средство и способ должны быть простыми в применении для любого индивидуального пользования.

4. Средство должно быть настолько дешевым, чтобы его было использовать одноразово для получения объема воды, удовлетворяющего суточную потребность человека (2-3 литра).

5. Средство и способ должны обеспечить очистку природной воды до кондиций, соответствующих (или близких по значению) требованиям, предъявляемым к питьевой воде по основным нормируемым показателям.

Ближайшим аналогом по отношению к предлагаемому изобретению является разработка «Фильтр «Золотая формула». (http://www.goldenfilter.ru/ Фильтры для очистки воды производства ООО «Холдинг «Золотая формула» на основе УСВР).

В основе этого фильтра в качестве средства для очистки природной воды предложено использовать т.н. углеродную смесь высокой реакционной способности (названную разработчиками УСВР). Согласно данной разработке, воду пропускают через слой УСВР, заключенный в корпус.

Недостаток данной разработки состоит в том, что материал, используемый в фильтре, не является широко доступным и - главное - он слишком дорог для одноразового использования; для того чтобы снизить себестоимость очистки воды, фильтр приходится использовать многократно, при этом неизбежны перерывы, вследствие чего в фильтре возможно развитие биохимических процессов с образованием новых токсичных продуктов, что может привести к вторичному загрязнению воды при многократном использовании фильтра.

В последние два года в широкой печати и средствах массовой информации появилось много критических отзывов о фильтре Петрика. В частности во многих источниках отмечается, что при использовании фильтров Петрика в очищенной воде увеличивается содержание ионов тяжелых металлов. Участники международного форума «Чистая вода 2010» состоявшегося 17.10.10 в Москве, официально обратились к руководству страны с призывом запретить использование фильтров Петрика. (http:/www.infox.ru/science/fake/2010/07/07/FiltryPyetrika-try.phtml). В результате Мосгорсуд запретил использовать аббревиатуру МЧС и фамилию Шойгу на фильтрах Петрика (http:/news.yandex.ru/yandsearek?…). Как следствие, портативные проточные фильтры «Золотая формула Шойгу» сняты с производства.

Еще одним аналогом является патент RU №2381052 «Способ получения высокотермостойкого долговечного фильтрующего

волокнистого материала». Как известно (А.Г. Касаткин. Основные процессы и аппараты химической технологии. Изд. Химия, М., 1971. - с.194), «фильтрование - это процесс разделения суспензий с использованием пористых перегородок, которые задерживают твердую фазу суспензии и пропускают жидкую фазу», т.е. предложенный в патенте RU №2381052 фильтровальный материал предназначен для удаления взвешенных частиц и не приведено никаких данных о сорбции материалом веществ из растворов. Кроме того, высокая плотность (200-900 кг/м3) и прочность фильтровального материала обуславливает недостаточно развитую внутреннюю поверхность, в принципе не способную сорбировать растворенные в воде вещества. Несмотря на то, что в фильтрующем материале также присутствуют стеклянные волокна диаметром от 0,2 до 10 мкм, они являются лишь частью, общей композиции из 2-4 разных компонентов фильтровального материла, и с большой вероятностью выполняют лишь армирующую функцию.

В данном изобретении в качестве средства для очистки природной воды предлагается использовать объемный материал из стеклянных волоком, скрепленных между собой силами естественного сцепления. Данный материал производится промышленным способом ООО «Новгородский завод стекловолокна» (г.Великий Новгород) в форме т.н. матов - объемных пластин размером 1×1 метр и плотностью 10…15 кг/м3. При этом выпускаются маты из стекловолокон, имеющих диаметр 100, 180, 250 и 400 нм, по соответствующим техническим условиям. Данный материал не токсичен, экологически безопасен, не имеет запаха, внешне и на ощупь сходен с обычной хлопковой ватой. Его используют в качестве сырья для производства листовых композиционных материалов типа бумаг и картонов технического назначения.

О применении стекловолокнистых объемных материалов в качестве средства для очистки водных средств от растворимых загрязнений какие-либо сведения отсутствуют.

Нами впервые установлена способность объемного материала из стеклянных волокон поглощать растворенные в воде органические и минеральные вещества и на этой основе предлагается использовать его в качестве средства для очистки воды.

Для проведения очистки воды по предлагаемому способу объемный материал из стеклянных волокон укладывают на воронку и через его слой пропускают очищаемую воду, наливая ее так, чтобы вода полностью закрывала слой стекловолокон; при этом воду из воронки отбирают как в режиме свободного истечения, так и в замедленном режиме, установив на выходе из воронки регулирующий кран. (В последнем случае эффективность очистки повышается, см. пример 2).

На эффективность очистки влияют также объем пропущенной воды на единицу массы стекловолокна (л/г - см. пример 1) и поверхностная плотность слоя материала, уложенного на воронке (г/см2 - см. пример 3). Искусственное уплотнение объемного материла резко снижает эффективность очистки (пример 5). Поэтому уплотнять материал при укладке на воронку не следует.

Предлагаемые материал и способ очистки возможно также использовать и для доочистки водопроводной воды (см. пример 6).

Как видно из приведенного примера 1, удельный расход материала для очистки 1 литра воды составляет от 0.8 до 1.3 г.при существующем уровне цен на стеклянные волокна, производимые ООО «Новгородский завод стекловолокна», стоимость очистки 1 литра воды составит 0,5…2,6 руб., что значительно ниже, чем цены на бутилированную питьевую воду составляющую около 15 руб.

Для обеспечения широкого использования изобретения в дальнейшем возможен выпуск своеобразных «картриджей» - точно отмеренных и соответствующим образом сформированных навесок стекловолокон, помещенных в полиэтиленовые пакеты. Далее достаточно извлечь «картридж», уложить его на воронку (многократного использования) и пропускать через него определенный объем воды. По завершении процесса «картридж» выбрасывают.

ПРИМЕРЫ

ПРИМЕР 1. В качестве средства для очистки воды использовали объемный материал из стеклянных волокон диаметром 250 нм, выпускаемый OCX) «Новгородский завод стекловолокна» (объемная плотность образца 12 кг/м3). Навеску материала в количестве 4 г равномерно распределяли на воронке Бюхнера диаметром 80 мм и через его слой пропускали определенный объем воды, взятой из реки Северная Двина, в режиме свободного истечения. Поверхностная плотность укладки материала на воронке составляла 0,08 г/см3, скорость протока воды в, опытах - 19,5 мл/г·мин.

Было проведено 5 опытов, расход воды в которых составлял от] до 5 литров. Результаты опытов представлены в таблице 1, из которой видно, что во всех вариантах очищенная вода по всем исследованным показателям удовлетворяет требованиям СанПиНом 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников». При этом минимальный расход сорбента составляет 0,8 г/л.

Таблица 1
Результаты опытов, пример 1
Объем
очищенной воды, л
Показатели загрязнения воды
Перманганатная окисляемость, мг·О2 Содержание алюминия, мг/дм3 Общая жесткость, мл·экв/л Цветность, град Показатель рН
1 4,8 0,055 1,7 19 6,5
2 4,8 0,057 1,6 21 7,0
3 5,6 0,061 1,9 24 6,5
4 5,7 0,058 1,9 26 7,0
5 5,7 0,060 1,9 26 6,9
Исходная вода 17,6 0,400 3,1 52 5,8
Нормы по СанПиН 2.1.4.1175-02 в пределах 5-7 не более 0,500 7-10 30 6,0-9,0

ПРИМЕР 2. Две навески по 4 г. объемного материала из стекловолокон диаметром 250 нм поместили на две воронки Бюхнера диаметром 80 мм и через каждую пропускали по 3 л воды, взятой из реки Северная Двина, при этом в первом опыте воду пропускали в режиме свободного истечения (скорость протока составила 20,5 мл/г·мин), а во втором воду пропускали с замедленным отбором (скорость протока - 4,5 мл/г·мин).

Из результатов представленных в таблице 2, видно, что это при искусственном замедлении скорости протока воды через объемный материал достигается более высокий эффект очистки по всем показателям.

Таблица 2
Результаты опытов, пример 2
Скорость
протока воды, мл/г·мин
Показатели загрязнения воды
Перманганатная окисляемоесть, мг·O2 Содержание алюминия, мг/дм3 Общая жесткость, мл·экв/л Цветность, град Показатель рН
20,5 5,7 0,081 2,3 26 6,2
4,5 4,8 0,057 1,6 20 7,0
Исходная вода 19,6 0,400 3,0 54 6,0

ПРИМЕР 3. Три навески объемного материала, взятого в условиях примера 1 массой по 4 г., поместили на 3 воронки разного диаметра так, что при одинаковой объемной плотности поверхностная плотность (в г/см") оказалась различной. Через каждую воронку пропускали по 1 литру воды, взятой из реки Северная Двина, при скорости протока 18-20 мл/ гмин. Результаты опытов представлены в таблице 3.

Таблица 3
Результаты опытов, пример 3
Поверхностная плотность материала, г/см2 Показатели загрязнения воды
Перманганатная окисляемость. мг·O2 Содержание алюминия, мг/дм3 Общая жесткость, мл·экв/л Содержание соединений хлора, *мл/л Показатель рН
0,05 6,3 0,061 1,8 148 6,5
0,08 5,7 0,057 1,7 120 6,6
0,12 4,9 0,055 1,6 115 6,6
Исходная вода 19,6 0,318 3,2 360 6,0
*) - допустимое содержание хлоридов по СанПиН 2.1.4.1 1 75-02 не более 350 мл/л

С увеличением поверхностной плотности укладки материала на воронке возрастает эффективность очистки воды по показателям перманганатная окисляемость, который в данном примере (как и в предыдущих) является основным, критериальным показателем качества очистки воды, поскольку все остальные показатели очищенной воды намного ниже предельно допустимых (по СанПиН 2.1.4.1 1 75-02) уровней.

ПРИМЕР 4. Четыре образца объемного материала из стеклянных волокон, отличающихся по диаметру волокон - 100, 180, 250 и 400 нм - и имеющих примерно одинаковую объемную плотность - 10, 11, 12,5 и 15 кг/м3 соответственно - поместили на 4 одинаковых воронки Бюхнера диаметром 80 мм (масса образца на каждой воронке 4 г). Через каждую воронку пропустили по 1 л воды, взятой из реки Северная Двина, в режиме свободного истечения.

Результаты испытаний (табл.4) показывают, что все образцы обеспечивают достаточно эффективную очистку воды.

Таблица 4
Результаты опытов, пример 4
Диаметр стекловолокон, нм Показатели загрязнения воды
Перманганатная окисляемость, мгO2 Содержание алюминия, мг/дм3 Общая жесткость, мл·экв/л Содержание соединений хлора, мл/л Показатель рН
100 4,9 0,05 1,6 150 6,6
180 5,0 0,05 1,7 160 6,6
250 5,2 0,06 1,8 160 6,5
400 5,8 0,09 2,1 180 6,4
Исходная вода 25 0,490 4,0 300 5,8

ПРИМЕР 5. Были проведены 4 опыта, в которых брали по 4 г материала из стекловолокон диаметром 250 им с объемной плотностью 12 кг/м3; в первом опыте навеску укладывали без предварительного уплотнения, а в последующих опытах - уплотняли до 17, 26 и 102 кг/м3. В каждом опыте через воронку пропускали по 1 л воды из реки Северная Двина, и на выходе контролировали показатель «перманганатная окисляемость», численные значения которого составили при плотностях 12, 17, 26 и 102 кг/м3 соответственно 5,2; 5,7; 7,2 и 17,4 мг·O2/л при начальной загрязненности воды 19,6 мг·O2/л.

ПРИМЕР 6. Испытывали эффективность использования

стекловолокна для доочистки водопроводной воды. Брали воду из водопроводной сети в одном из окраинных районов г.Архангельска. Условия опыта: материал - из стекловолокон диаметром 250 нм, объемная плотность 12 кг/м3, поверхностная плотность 0,08 г/см2, скорость тока воды 21,8 мл/г·мин, расход воды 1 л/г. «Перманганатная окисляемость» пропущенной через объемный материал воды составила 6,4 мг·O2/л, по сравнению с 7,2 мг.O2/л отобранной водопроводной воды, что свидетельствует об эффективности использования объемного материала из стеклянных волокон для доочистки водопроводной воды низкого качества.

1. Применение объемного материала из стеклянных волокон диаметром от 100 до 400 нм и объемной плотностью от 12 до 26 кг/м3 в качестве средства для очистки воды от растворимых загрязнений.

2. Способ очистки воды от растворимых загрязнений путем пропускания через поглощающий загрязнения материал, отличающийся тем, что воду пропускают через объемный материал из стеклянных волокон диаметром от 100 до 400 нм с объемной плотностью от 12 до 26 кг/м3.



 

Похожие патенты:

Изобретение может быть использовано в технологии осуществления реакции Фишера-Тропша в промышленности. Способ очистки водного потока, выходящего после реакции Фишера-Тропша, включает обработку неорганическим основанием, имеющим рКа выше или равным 6,5, и подачу его в испаритель, получают два выходящих потока - поток пара из головной части испарителя и водный поток из нижней части испарителя.

Изобретение может быть использовано для контролирования роста биопленки или микроорганизмов в водной системе, такой как система изготовления пульпы, бумаги или картона.

Изобретение может быть использовано при очистке сточных вод металлургических предприятий. Для очистки солянокислых растворов от ионов меди используют реагент, представляющий собой механически активированную смесь порошков железа и серы, взятую при следующем соотношении компонентов, масс.%: железо 95,0 - 99,5; сера 0,5 - 5,0.

Изобретение относится к устройствам для обеззараживания воды. Предложено устройство для обеззараживания воды, содержащее УФ-лампу (50) и, по меньшей мере, один обтекаемый водой, имеющий приток (32) и сток (34) сосуд (30), в котором расположена реакционная камера (35), причем сток (34) сосуда (30) образует свободный слив.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам очистки подтоварных вод, формирующихся в пунктах подготовки нефти. Способ очистки подтоварной воды заключается в том, что через расположенный в нижней части флотационного объема эжектор, в который непрерывно поступает осадок из флотационной камеры, вводят очищаемую воду.

Изобретение относится к устройствам для получения талой воды, в частности для получения талой воды из морской методом вымораживания. Устройство включает корпус, в котором размещены термостатированная рабочая емкость с крышкой и отверстием для слива воды, внутри рабочей емкости находится сетка с магнитом с чередующимися полюсами и полой трубкой, ко дну рабочей емкости крепится биметаллическая пластина, контактирующая с фиксатором, шарнирно скрепленным с подпружиненным штоком, на которой крепится магнит с чередующимися полюсами.

Группа изобретений относится к системам и средствам контроля безопасности использования объектов промышленного и бытового назначения. Система контроля водоотводов содержит множество объектов, сообщенных отводящим трубопроводом с водоочистителями, каждый из которых расположен на территории объекта и сообщен с магистральным трубопроводом.
Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов.

Изобретение относится к обогащению полезных ископаемых методом флотации, в частности для извлечения из пульп полиметаллических руд легкошламующихся минералов совместно с известными способами флотации или самостоятельно, например, для извлечения драгоценных металлов из хвостов гравитационного обогащения, и может быть использовано для обогащения мелко- и тонковкрапленных полиметаллических руд.
Изобретение относится к области средств очистки окружающей среды, а именно средств очистки акватории от загрязнения нефтью и нефтепродуктами, и может быть использовано при попадании в водную среду нефти и нефтепродуктов.

Изобретение относится к изготовлению кардиоимплантатов из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированным ионно-плазменной обработкой поверхностным слоем, предназначенных для длительной эксплуатации в сердечно-сосудистой системе организма и обладающих коррозионной стойкостью, биосовместимостью и нетоксичностью в биологических средах.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается противосудорожного средства, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, и способа его получения.

Изобретение относится к каталитическому электроду для мембранно-электродных блоков спиртовых (использующих в качестве топлива метанол или этанол) топливных элементов, где в качестве электрокаталитического материала используется электропроводный диоксид титана, легированный оксидом рутения в соотношении рутения к титану от 4 до 7 мол.%, с нанесенными на поверхности сферических частиц оксида титана, легированного рутением, наночастицами платины размером 3-5 нм.
Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов.

Изобретение относится к способу получения каталитически активных магниторазделяемых наночастиц. Способ включает синтез магнитных наночастиц с использованием соединений переходных металлов.

Изобретение относится к области магнитных датчиков на основе многослойных наноструктур с магниторезистивным эффектом. Способ согласно изобретению включает окисление кремниевой подложки 1, формирование диэлектрического слоя 2, формирование магниторезистивной структуры, содержащей верхний 3 и нижний 4 защитные слои, между которыми расположена ферромагнитная пленка 5, формирование из трех рядов параллельных магниторезистивных полосок балластных плеч мостовой схемы и полоски рабочего плеча мостовой схемы путем жидкостного травления, причем ширина магниторезистивных полосок балластных плеч мостовой схемы в N раз меньше ширины полоски рабочего плеча, а длины магниторезистивных полосок балластных и рабочего плеча мостовой схемы равны, нанесение первого изолирующего слоя 6, вскрытие в нем контактных окон к полоскам, формирование перемычек между рядами магниторезистивных полосок балластных плеч мостовой схемы путем напыления слоя алюминия 7 и последующего плазмохимического травления, формирование второго изолирующего слоя 8, вскрытие в нем переходных окон к перемычкам, формирование планарного проводника, проходящего над рабочем плечом мостовой схемы, путем напыления слоя алюминия 9 последующего плазмохимического травления и пассивацию с образованием верхнего защитного слоя 10.

Изобретение относится к измерительной технике. Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д.

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО3)3·6Н2O или Се(СН3СОО)3·Н2O, получение спиртового раствора стабилизатора золя органического N-содержащего соединения: N,N-диметилоктиламина, тетраэтиламмоний гидроксида или моноэтаноламина с концентрацией 0,45-3,30М, 0,37М и 0,016М, получение золя в водно-органической системе соединением составленных растворов, упаривание водно-органической системы, формирование геля и термообработка геля в интервале температур 95-500°С по ступенчатому графику, причем в качестве стабилизатора золя используют одно из следующих низкомолекулярных органических N-содержащих соединений (N): N,N-диметилоктиламин, тетраэтиламмоний гидроксид, моноэтаноламин в виде спиртового раствора при мольном отношении N/металл, равном 1-20.

Изобретение относится к способу удаления загрязняющих веществ из газовых потоков путем контакта с регенерируемым сорбентом. Способ включает а) контактирование потока газа, включающего H2S, с хлорсодержащим соединением для образования смешанного газового потока; b) контактирование смешанного газового потока с сорбентом в зоне сорбции для получения первого продуктового газового потока и насыщенного серой сорбента, где сорбент включает цинк, диоксид кремния и металл-промотор; c) сушку насыщенного серой сорбента, чтобы посредством этого получить высушенный насыщенный серой сорбент; d) контактирование высушенного насыщенного серой сорбента с регенерационным газовым потоком в зоне регенерации для получения регенерированного сорбента, включающего цинксодержащее соединение, силикат и металл-промотор, и отходящего газового потока; е) возврат регенерированного сорбента в зону сорбции для получения обновленного сорбента, включающего цинк, диоксид кремния и металл-промотор; и f) контактирование обновленного сорбента с указанным смешанным газовым потоком в зоне сорбции для образования второго продуктового газового потока и насыщенного серой сорбента.
Наверх