Фотокатализатор на основе оксида титана и способ его получения



Фотокатализатор на основе оксида титана и способ его получения

 


Владельцы патента RU 2508938:

Общество с ограниченной ответственностью Научно Производственный Центр "Квадра" (RU)

Изобретение относится к области катализа. Описан способ получения фотокатализатора, состоящий из осаждения прекурсора катализатора на основе оксида титана из сульфатного раствора титана, смешения полученного осадка с органическим соединением, сушки и последующего обжига. Технический результат - увеличение активности фотокатализатора. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к химической технологии получения катализаторов, а именно фотокатализаторов на основе оксида титана. Изобретение может найти применение в химической, строительной и других отраслях промышленности для получения широкого спектра материалов, содержащих в своем составе предлагаемый фотокатализатор, обладающих высокой фотокаталитической активностью в видимом диапазоне светового излучения.

Фотокатализаторы - это полупроводниковые материалы, способные под действием светового излучения образовывать пару электрон-дырка. Это приводит к образованию на их поверхности свободных радикалов с высокой реакционной активностью. Оксид титана является одним из наиболее эффективных, доступных и безопасных для окружающей среды фотокатализаторов. Однако будучи полупроводником с шириной запрещенной зоны (для анатазной формы) - 3,2 эВ заметную фотокаталитическую активность он проявляет в ультрафиолетовой части спектра светового излучения (длина волны менее 400 нм). Для практического применения важно, чтобы диоксид титана был способен проявлять фотокаталитическую активность в видимой части светового излучения. Поэтому были разработаны различные способы синтеза фотокатализаторов на основе модифицированного разными методами оксида титана.

Известны способы [1] получения фотокатализаторов на основе оксида титана путем его легирования ионами металлов, таких как медь, серебро, вольфрам, молибден, хром и т.п. Легирование может осуществляться совместным осаждением оксида титана и оксида легирующего металла из раствора или плазменными методами. Принцип действия этих методов основан на том, что ионы металлов, встроенные в кристаллическую решетку кристаллов оксида титана, препятствуют рекомбинации пары электрон-дырка, которая образуется на поверхности кристалла при воздействии на него светового излучения. Недостаток способа состоит в том, что наличие в кристаллической решетке кристаллов оксида титана атомов других металлов хотя и повышает общий выход активных радикалов, но не делает фотокатализатор более активным в относительно длинноволновой (длина волны более 400 нм) области светового излучения.

Существует способ увеличения фотокаталитической активности оксида титана путем изменения формы и структуры его частиц, в частности получения нанодисперсных частиц [2], мезопористых материалов [3], нанотрубок из оксида титана [4] и т.п. Увеличение фотокаталитической активности в этом случае связано с увеличением площади поверхности оксида титана, на которой происходит генерация пары электрон-дырка. Кроме общего недостатка с предыдущими рассмотренными способами эти способы имеют недостаток, связанный со сложностью процесса производства и высокой себестоимостью получаемого фотокатализатора.

Описаны фотокатализаторы на основе оксида титана, модифицированного азотом [5], [6] или углеродом [7], [8], [9]. Увеличение фотокаталитической активности в этих случаях наиболее вероятно связано с явлением фотосенсибилизации. Недостатком рассмотренных способов является сложность процесса и/или высокая стоимость используемых для получения фотокатализатора исходных веществ.

Наиболее близким аналогом заявляемого способа получения фотокатализатора на основе модифицированного оксида титана является способ, описанный в [10]. Сущность способа состоит в смешении исходного материала оксида титана в виде водной суспензии с углеродсодержащим компонентом, характеризуемым температурой разложения не более 400°С. В качестве исходного материала используется соединение титана в форме аморфного, частично кристаллического или кристаллического оксида титана с удельной площадью поверхности твердых частиц не менее 50 м2/г по методу БЭТ. После смешения указанных компонентов смесь подвергают высушиванию, помолу и обжигу при температуре не более 400°С. Рассматриваемый способ получения фотокатализатора экономически эффективен, с точки зрения возможности организации производства, а фотокатализатор, полученный согласно ему, обладает высокой фотокаталитической активностью.

Недостаток фотокатализатора и способа его получения, описанного в [10], состоит в меньшей фотокаталитической активности получаемого фотокатализатора по сравнению с фотокатализатором, полученным согласно заявленному способу.

Техническим результатом заявленного изобретения является то, что предлагаемый фотокатализатор обладает большей фотокаталитической активностью по сравнению с ближайшим аналогом [10]. При этом предлагаемый способ получения технологичен и может быть реализован при промышленном получении фотокатализатора.

Технический результат достигается за счет того, что фотокатализатор дополнительно содержит в своей кристаллической структуре атомы титана со степенью окисления +3 и дополнительно содержит атомы меди, образующие кластеры оксида одновалентной меди.

Способ его получения состоит из осаждения прекурсора катализатора на основе оксида титана из сульфатного раствора титана, дополнительно содержащего раствор сульфата меди. Осаждение производят раствором гидрооксида натрия или калия, содержащим раствор оксалата натрия, калия, аммония или их смеси. После чего проводят отмывку от сульфат ионов, смешение в условиях, обеспечивающих кавитацию жидкой фазы, с раствором органического вещества из перечня: янтарная кислота, пентаэритрит, этиленгликоль, полиэтиленгликоль или глицин, сушку размолом в порошок продукта до необходимой фракции и нагревом до температуры не выше 400°С в течение времени, при котором содержание углерода в фотокатализаторе становится равным 0,01-2 мас.%. Приведенный способ получения предлагаемого катализатора дополнительно характеризуется тем, что:

1) осаждение прекурсора осуществляется из его сульфатного раствора, дополнительно содержащего раствор сульфата меди, в мольном соотношении в пересчете на чистый титан и медь, равном 100:(0,1-5,2) соответственно;

2) для осаждения прекурсора из сульфатного раствора титана, содержащего сульфат меди, используют раствор гидрооксида натрия или калия, дополнительно содержащий раствор оксалата натрия, калия, аммония или их смеси, при этом содержание оксалат ионов в растворе гидрооксида натрия или калия должно соответствовать стехиометрическому соотношению, необходимому для осаждения оксалата меди;

3) отмывка от сульфат ионов ведется до их содержания в прекурсоре в пределах 0,2-1 мас.%;

4) в пересчете на сухое вещество прекурсор смешивается с раствором органического вещества из перечня: янтарная кислота, пентаэритрит, этиленгликоль, полиэтиленгликоль или глицин, в соотношении, при котором в пересчете на чистый оксид титана и углерод верно массовое соотношение ТiO2:С=100:(0,1-5,6).

На рисунке приведена типичная фотография АСМ частицы одного из образцов полученного фотокатализатора.

Предлагаемый фотокатализатор обладает развитой удельной поверхностью, обеспечивающей максимальный выход пар «электрон-дырка» при его облучении квантами света. Замена в узлах кристаллической решетки оксида титана, части атомов с зарядом Ti+4 на Ti+3 приводит к образованию кислородных вакансий, что препятствует взаимной аннигиляции пары «электрон-дырка» и увеличению выхода свободных радикалов, что также увеличивает фотокаталитическую активность. Одновременно предлагаемый фотокатализатор содержит атомы меди в составе соединения Сu2О. Оксид одновалентной меди является полупроводником с шириной запрещенной зоны 2,0-2,2 эВ. Таким образом, он может быть переведен в возбужденное состояние путем его облучения световым излучением видимого диапазона. Поскольку оксид меди I находится в контакте с оксидом титана, осуществляется передача избыточной энергии к оксиду титана. Это позволяет последнему проявлять фотокаталитическую активность в условиях его облучения световым излучением с длиной волны более 500 нм. Присутствие углерода, сопряженного с оксидом титана, благодаря механизму фотосенсибилизации также обеспечивает эффективную работу предлагаемого фотокатализатора в условиях его облучения световым излучением видимого диапазона. При этом имеет место более сильная связь между частицами углерода и оксида титана, чем в наиболее близком рассматриваемом аналоге [10], что также повышает эффективность фотокатализатора. Более сильное взаимодействие частиц углерода и оксида титана может быть подтверждено кипячением образца фотокатализатора в щелочном растворе. В отличие от аналогичного теста с образцом фотокатализатора-прототипа [10] не происходит окрашивание раствора.

Таким образом, сумма отличительных признаков предлагаемого фотокатализатора позволяет говорить о выполнении требования «изобретательский уровень».

Способ синтеза предлагаемого фотокатализатора состоит в следующем. К сульфатному раствору оксида титана, дополнительно содержащему раствор сульфата меди, добавляют водный раствор осадителя, содержащего оксалат и гидрооксид ионы. В качестве источника оксалат и гидрооксид ионов используются раствор гидрооксида натрия или калия и раствор оксалата натрия, калия, аммония или их смесь. Гидрооксид натрия или калия берется в количестве, необходимом для нейтрализации кислотного сульфатного раствора титана и осаждения гидратированного оксида титана. Оксалат натрия, калия, аммония или их смесь берут в таком количестве, которое обеспечивает содержание оксалат ионов в стехиометрическом количестве, необходимом для осаждения оксалата меди. Содержание сульфата меди в сульфатном растворе титана в пересчете на чистый титан и медь составляет 0,1-5,2 мол.%. Содержание меди ниже приведенной границы не сказывается на свойствах фотокатализатора. Содержание меди более 5,2 мол.% не приводит к дальнейшему росту фотокаталитической активности продукта. Смешение сульфатного раствора титана и меди с раствором осадителя производят в условиях развитой кавитации жидкости. Технически это может быть реализовано путем воздействия ультразвуковых колебаний или в гидродинамическом кавитационном смесителе. Кавитационный режим смешения необходим для уменьшения размера осаждаемых кристаллитов и уменьшения силы взаимодействия между ними, что создает в конечном счете более развитую поверхность продукта. После получения осадка следует стадия промывки осадка водой до тех пор, пока содержание сульфат ионов в осадке не будет находиться в пределах 0,2-1 мас.%. Содержание сульфат ионов ниже этого диапазона недостаточно эффективно стабилизирует при дальнейшем прокаливании процесс образования смеси оксида титана со структурой анатаз. При содержании сульфат ионов выше указанной границы происходит излишнее загрязнение конечного продукта нефункциональными примесями. Отмытый осадок смешивают с органическим соединением источником углерода и сушат. В качестве органического соединения - источника углерода может быть использована янтарная кислота, пентаэритрит, этиленгликоль, полиэтиленгликоль или глицин в соотношении, при котором в пересчете на чистый оксид титана и углерод верно соотношение ТiO2:С=100:(0,1-5,6). При содержании углерода меньше чем в приведенном соотношении не происходит существенного увеличения фотокаталитической активности. При содержании углерода больше чем в приведенном соотношении дальнейшего роста фотокаталитической активности не происходит, а время на нагрев полупродукта фотокатализатора возрастает. Далее полученную смесь подвергают сушке до достижения естественной влажности сухого остатка. Сухой остаток размалывают в ступке, шаровой мельнице или иным способом до нужного гранулометрического состава, как правило, на уровне 3-4 мкм. Полученный порошок нагревают в воздушной атмосфере до температуры не выше 400°С (при температуре выше 400°С возможен нежелательный переход анатазной формы оксида титана в менее фотокаталитически активную рутильную форму) в течение времени, при котором содержание углерода в фотокатализаторе становится равным 0,01-2 мас.%. Во время стадии нагрева, кроме процессов разложения органических соединений и образования углерода, происходит разложение оксалата меди. Оксалат меди разлагается с образованием ее оксида и монооксида углерода, который восстанавливает медь до металлического состояния и образует углекислый газ. При дальнейшем нагреве в условиях смешанной окислительно-востановительной атмосферы (окислитель - кислород воздуха, восстановитель - продукты разложения органических соединений) из металлической меди происходит образование преимущественно оксида меди I. Выделяющийся при разложении оксалата меди монооксид углерода и продукты разложения органических соединений также частично восстанавливают атомы титана в его оксиде с Ti+4 до Ti+3.

На основе предлагаемых решений был синтезирован ряд образцов фотокатализатора. Полученные образцы фотокатализатора были испытаны на относительную фотокаталитическую активность по нижеприведенной методике, кроме того, была определена удельная поверхность образцов фотокатализатора по методу БЭТ.

Методика испытаний фотокатализатора на относительную фотокаталитическую активность состоит в следующем. Фотокатализатор в количестве 15 мг диспергировали в 30 мл дистиллированной воды путем воздействия ультразвуковых колебаний. Полученную суспензию наносили на бумажный фильтр (ГОСТ 1202676, белая лента) диаметром 15 см и высушивали при нормальных условиях. Полученную фотокаталитическую систему помещали в круглодонную колбу, куда нагнетали воздух с парами формальдегида и фенола. Колбу плотно закрывали и выдерживали на свету (длина волны 450-700 нм, мощность излучения 10 Вт/м2) в течение 7 часов. В это время методами газовой хроматографии оценивалась суммарное содержание углерода в органических соединениях, находящихся в воздушной смеси. Относительная фотокаталитическая активность вычислялась по формуле:

Ф a = Δ m c i Δ m c max 100 % ,

где

Фа - относительная фотокаталитическая активность;

Δ m c i - разность массы углерода, содержащегося в органическом соединении до и после проведения испытания с i-м образцом фотокатализатора;

Δ m c max - максимальная разность массы углерода, содержащегося в органическом соединении до и после проведения испытания, для образца фотокатализатора с максимальной активностью.

Условия синтеза образцов предлагаемого фотокатализатора и результаты его испытаний приведены ниже.

№ образца фотокатализатора 1 2 3 43 53 63 73 83 93 103 113
Мольное соотношение в исходном сульфатном растворе титана и меди соответственно 100:0,1 100:3 100: 5,2 100:7 100: 0,1 100:0,1 100: 0,1 100: 0,1 100: 0,1 100:0,1 100:0,1
Концентрация сульфат ионов в прекурсоре после операции его отмывки, мас.% 0,2 0,2 1 0,2 0,1 2 0,2 0,2 0,2 0,2 0,2
Массовое соотношение прекурсора (гидратированного оксида титана) и органического вещества1 в пересчете на чистый оксид титана и углерод соответственно 100:0,1 100:3 100: 5,6 100:0,1 100:1 100:0,1 100: 0 100: 7 100:0,1 100:0,1 100:0,1
Значение температуры при операции нагрева, °С 400 400 400 400 400 400 400 400 500 400 400
Содержание углерода в фотокатализаторе, мас.% 0,01 0,8 2 0,01 0,01 0,01 0,01 0,01 0,01 0 3
Значения относительной фотокаталитической активности, % 96 (86)2 198 (89) 100 (87) 96 73 86 53 88 47 54 81
Удельная поверхность (по БЭТ), г/м2 246 (204) 180 (167) 201 (172) 243 246 245 246 246 244 244 243
Примечания к таблице
1В качестве органического вещества использовались: янтарная кислота, пентаэритрит, этиленгликоль, полиэтиленгликоль или глицин. Во всех случаях при соблюдении приведенного соотношения были получены идентичные характеристики получаемого фотокатализатора.
2В скобках приведены значения величин, измеренных для образцов фотокатализатора, полученных в условиях смешения сульфатного раствора с раствором осадителя без кавитационного воздействия.
3Контролъные образцы фотокатализатора, полученные при соотношении реагентов, выходящих за границы приведенных соотношений. В качестве базового образца для сравнения использован образец фотокатализатора №1, изменяемые параметры процесса его получения выделены подчеркиванием.
Образец фотокатализатора, изготовленный согласно примеру 1 способа-прототипа [10], имел относительную фотокаталитическую активность 84%.

Таким образом, вышеприведенные данные подтверждают достоверность заявленного технического результата.

Источники информации

1. Hokyong Shon, Sherub Phuntshoetal. Visible Light Responsive Titanium Dioxide (ТiO2). J.Korean Ind. Eng. Chem. Vol.19. No.1. 2008, 1-16.

2. Заявка на патент US №20100202960 A1 2010 г.

3. Патент US 7988947 B2 2011 г.

4. Заявка на патент US №20100311615 A1 2010 г.

5. Патент ЕР 1178011 А1 2006.

6. Патент ЕР 1254863 A1 2002.

7. Патент JP 11333304 А1 1999 г.

8. Патент ЕР 0997191 A1 2000.

9. S.Sakthivel, H.Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003).

10. Патент РФ 23803182010 г.(прототип).

1. Способ получения фотокатализатора, состоящий из осаждения прекурсора катализатора на основе оксида титана из сульфатного раствора титана, смешения полученного осадка с органическим соединением, сушки и последующего обжига, отличающийся тем, что сульфатный раствор титана дополнительно содержит раствор сульфата меди, а осаждение производят раствором гидрооксида натрия или калия, дополнительно содержащим раствор оксалата натрия, калия, аммония или их смеси, последующей отмывкой от сульфат ионов, смешением в условиях, обеспечивающих кавитацию жидкой фазы, с раствором органического вещества из перечня: янтарная кислота, пентаэритрит, этиленгликоль, полиэтиленгликоль или глицин, сушкой размолом в порошок продукта до необходимой фракции и нагревом до температуры не выше 400°С в течение времени, при котором содержание углерода в фотокатализаторе становится равным 0,01-2 мас.%.

2. Фотокатализатор по п.1 на основе оксида титана, модифицированного углеродом, получаемый путем нагрева смеси исходного оксида титана и органического вещества, отличающийся тем, что фотокатализатор дополнительно содержит в своей кристаллической структуре атомы меди.

3. Способ получения фотокатализатора по п.1, отличающийся тем, что осаждение прекурсора осуществляется из сульфатного раствора титана, дополнительно содержащего раствор сульфата меди, в мольном соотношении в пересчете на чистый титан и медь, равном 100:(0,1-5,2) соответственно.

4. Способ получения фотокатализатора по п.1, отличающийся тем, что для осаждения прекурсора используют раствор гидрооксида натрия или калия, дополнительно содержащий раствор оксалата натрия, калия, аммония или их смеси, при этом содержание оксалат ионов в растворе гидрооксида натрия или калия должно соответствовать стехиометрическому соотношению, необходимому для осаждения оксалата меди.

5. Способ получения фотокатализатора по п.1, отличающийся тем, что отмывка от сульфат ионов ведется до их содержания в прекурсоре в пределах 0,2-1 мас.%.

6. Способ получения фотокатализатора по п.1, отличающийся тем, что в пересчете на сухое вещество прекурсор смешивается с раствором органического вещества из перечня: янтарная кислота, пентаэритрит, этиленгликоль, полиэтиленгликоль или глицин, в соотношении, при котором в пересчете на чистый оксид титана и углерод верно массовое соотношение ТiO2:C=100:(0,1-5,6).



 

Похожие патенты:
Изобретение относится к области катализа. Описан способ приготовления катализатора для получения бензола из метана путем его конверсии, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с последующей прокалкой на воздухе при температуре 500-600°С, причем цеолит HZSM-5 предварительно подвергают деалюминированию путем его термопаровой обработки в токе воздуха с парциальным давлением паров воды 10-100 кПа при температуре 450-550°С.

Настоящее изобретение относится к способу получения SCR-активного цеолитного катализатора и к катализатору, полученному этим способом. Описан способ получения указанного катализатора, характеризующийся тем, что на Fe-ионообменный цеолит сначала воздействуют восстановительной углеводородной атмосферой для первой термической обработки (3) в диапазоне от 300 до 600°С, которая снижает степень окисления ионов Fe и/или повышает дисперсность ионов Fe в цеолите, затем на восстановленный цеолит воздействуют окислительной атмосферой для второй термической обработки (4) в диапазоне от 300 до 600°С, которая окислительно удаляет углеводородные остатки и/или остатки углерода, и цеолит обжигают (2) в ходе первой и второй термических обработок (3 и 4) с получением катализатора.

Настоящее изобретение относится к окислительному катализатору, способу его изготовления, способу обработки выбросов отработавших газов двигателей внутреннего сгорания, к системе выпуска отработавших газов и к транспортному средству.

Изобретение относится к области катализа. Описан способ получения кристаллов серебра с распределением среднего размера частиц от 0.15 мм до 2.5 мм и пористым покрытием оксидных материалов, в котором а) кристаллы серебра контактируют с золь-гелевым раствором материалов, о которых идет речь, в растворителе, который содержит органический растворитель и b) получающиеся в результате кристаллы серебра собирают, с) освобождают от органического растворителя и d) затем подвергают термической обработке при температуре между 50°С и точкой плавления серебра.

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную суспензию, включающую гидроксид алюминия - бемит (АlOOН), восстанавливающий дисахарид и растворимые соли Се, Zr, Y, La в виде солей азотной кислоты в пропорции, необходимой для образования в покрытии тетрагоналыюй фазы Zr0,5Ce0,5O2, стабильной в области температур 500-1000°C и соотношения в покрытии (Ме2O3+ZrO2+СеO2):γ-Аl2O3-1:1, где Me - Y, La, а также одну или несколько неорганических солей металлов платиновой группы, причем термообработку покрытия проводят одновременно с восстановлением при температуре 550-1000°C.

Изобретение относится к области катализа. Описаны катализаторы гидроизомеризации, содержащие носитель, являющийся экструдированным продуктом, полученным прокаливанием, имеющим термическую обработку, которая включает термическую обработку при 350°C или выше, и, по меньшей мере, один металл, нанесенный на носитель и выбранный из группы, состоящей из металлов, принадлежащих к группам 8-10 периодической системы элементов, молибдена и вольфрама, в котором носитель содержит прошедший ионообменную обработку в растворе, содержащем аммониевые ионы и/или протоны, цеолит, содержащий органический шаблон и имеющий 10-звенную кольцевую одноразмерную пористую структуру, и неорганический оксид.

Настоящее изобретение относится к технологии получения катализаторов, содержащих галогены; катализаторам, содержащим фториды, а именно к получению катализатора фторида цезия CsF, нанесенного на активированные угли.
Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы.

Изобретение относится к способам изготовления каталитически формованных изделий и их использованию. Описан способ изготовления каталитически активных геометрических формованных изделий К, содержащих в качестве активной массы многоэлементный оксид I общей стехиометрии (I): [ B i a Z b 1 O x ] p [ B i c M o 1 2 F e d Z e 2 Z f 3 Z g 4 Z h 5 Z i 6 O y ] 1   ( I ) , согласно которой Z1 означает вольфрам или вольфрам и молибден, при условии, что количество вольфрама составляет по меньшей мере 10% мол.

Изобретение относится к способам изготовления каталитических формованных изделий и их использованию. Описан способ изготовления каталитически активных геометрических формованных изделий К, содержащих в качестве активной массы многоэлементный оксид I общей стехиометрии (I): [Bi1WbOx]a[Mo12Z1 cZ2 dFeeZ3 fZ4gZ5 hOy]1 (I), в которой Z1 означает элемент или несколько элементов, выбранных из группы, включающей никель и кобальт, Z2 означает элемент или несколько элементов, выбранных из группы, включающей щелочные металлы, щелочноземельные металлы и таллий, Z3 означает элемент или несколько элементов, выбранных из группы, включающей цинк, фосфор, мышьяк, бор, сурьму, олово, церий, ванадий, хром и висмут, Z4 означает элемент или несколько элементов, выбранных из группы, включающей кремний, алюминий, титан, вольфрам и цирконий, Z5 означает элемент или несколько элементов, выбранных из группы, включающей медь, серебро, золото, иттрий, лантан и лантаноиды, а означает число от 0,1 до 3, b означает число от 0,1 до 10, с означает число от 1 до 10, d означает число от 0,01 до 2, е означает число от 0,01 до 5, f означает число от 0 до 5, g означает число от 0 до 10, h означает число от 0 до 1, и x, y соответственно означают числа, которые определяются валентностью и количеством отличающихся от кислорода атомов в формуле (I), причем формируют тонкодисперсный смешанный оксид Bi1WbOx в виде исходной массы А1, диаметр частиц которой d 50 A 1 удовлетворяет условию 1 мкм≤ d 50 A 1 ≤10 мкм, используя источники отличающихся от кислорода элементов составной части T=[Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 hOy]1 многоэлементного оксида I, в водной среде формируют однородную водную смесь М, причем каждый из используемых источников в процессе формирования водной смеси М проходит через степень дисперсности Q, которой соответствует диаметр частиц d 90 Q ≤5 мкм, и водная смесь М содержит молибден, Z1, Z2, железо, Z3, Z4 и Z5 в стехиометрии (I*): Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 h (I*), из водной смеси М путем сушки и регулирования степени дисперсности формируют тонкодисперсную исходную массу А2, диаметр частиц d 90 A 2 которой удовлетворяет условию 200 мкм≥ d 90 A 2 ≥20 мкм, исходную массу А1 смешивают с исходной массой А2 или смешивают друг с другом исходную массу А1, исходную массу А2 и тонкодисперсное вспомогательное средство для формования, получая тонкодисперсную исходную массу A3, которая содержит вводимые в нее через исходные массы А1 и А2, отличающиеся от кислорода элементы многоэлементного оксида I в стехиометрии (I**): [Bi1Wb]a[Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 h]1 (I**), используя тонкодисперсную исходную массу A3, формуют геометрические формованные изделия V и формованные изделия V подвергают термической обработке при повышенной температуре, получая каталитически активные формованные изделия К, причем произведение F : ( d 5 0 A 1 ) 0 , 7 ⋅ ( d 9 0 A 2 ) 1 , 5 ⋅ ( a − 1 ) составляет ≥820.
Изобретение относится к области катализа. Описан способ приготовления катализатора для получения бензола из метана путем его конверсии, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с последующей прокалкой на воздухе при температуре 500-600°С, причем цеолит HZSM-5 предварительно подвергают деалюминированию путем его термопаровой обработки в токе воздуха с парциальным давлением паров воды 10-100 кПа при температуре 450-550°С.

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или пропитки из раствора источника кремния - триметилсилоксисилсесквиоксана.

Изобретение относится к материалам для удерживания NOx. Описан катализатор для удерживания оксида азота, содержащий: субстрат; первый слой покрытия из пористого оксида на субстрате, где указанный первый слой покрытия из пористого оксида содержит удерживающий оксид азота материал, содержащий частицы подложки из оксида церия с нанесенным на них карбонатом бария; и второй слой покрытия из пористого оксида над первым слоем покрытия из пористого оксида, содержащий единственный металл платиновой группы, при этом второй слой покрытия из пористого оксида по существу не содержит платины, церия и бария, а указанный единственный металл платиновой группы представляет собой родий, нанесенный на частицы жаропрочного оксида металла, содержащие оксид алюминия, легированный оксидом циркония в количестве до 30%.

Изобретение относится к материалам для удерживания NOx. Описан катализатор для удерживания оксида азота, содержащий: субстрат; первый слой покрытия из пористого оксида на субстрате, где указанный первый слой покрытия из пористого оксида содержит удерживающий оксид азота материал, содержащий частицы подложки из оксида церия с нанесенным на них карбонатом бария; и второй слой покрытия из пористого оксида над первым слоем покрытия из пористого оксида, содержащий единственный металл платиновой группы, при этом второй слой покрытия из пористого оксида по существу не содержит платины, церия и бария, а указанный единственный металл платиновой группы представляет собой родий, нанесенный на частицы жаропрочного оксида металла, содержащие оксид алюминия, легированный оксидом циркония в количестве до 30%.

Изобретение относится к области катализа. Описан способ получения кристаллов серебра с распределением среднего размера частиц от 0.15 мм до 2.5 мм и пористым покрытием оксидных материалов, в котором а) кристаллы серебра контактируют с золь-гелевым раствором материалов, о которых идет речь, в растворителе, который содержит органический растворитель и b) получающиеся в результате кристаллы серебра собирают, с) освобождают от органического растворителя и d) затем подвергают термической обработке при температуре между 50°С и точкой плавления серебра.

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную суспензию, включающую гидроксид алюминия - бемит (АlOOН), восстанавливающий дисахарид и растворимые соли Се, Zr, Y, La в виде солей азотной кислоты в пропорции, необходимой для образования в покрытии тетрагоналыюй фазы Zr0,5Ce0,5O2, стабильной в области температур 500-1000°C и соотношения в покрытии (Ме2O3+ZrO2+СеO2):γ-Аl2O3-1:1, где Me - Y, La, а также одну или несколько неорганических солей металлов платиновой группы, причем термообработку покрытия проводят одновременно с восстановлением при температуре 550-1000°C.

Изобретение относится к области катализа. Описан способ получения оксидных каталитически активных слоев на поверхности, выполненной из вентильного металла или его сплава, включающий микродуговое оксидирование в водных растворах электролита, содержащих гидроксид и метасиликат щелочного металла, соли переходных металлов Mn, Cr или их смеси, отличающийся тем, что микродуговое оксидирование проводят в импульсном анодно-катодном режиме с длительностью пачек анодных импульсов 50 мс, катодных 40 мс, паузами между ними 10 мс, соотношением средних анодных и катодных токов 1,1:0,9 из водных растворов электролита, состоящего из трех растворов, которые дополнительно содержат тетраборат натрия, вальфромат натрия, молибдат натрия и метованадат натрия при последовательном оксидировании в каждом из них 10 мин.
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола.

Настоящее изобретение относится к технологии получения катализаторов, содержащих галогены; катализаторам, содержащим фториды, а именно к получению катализатора фторида цезия CsF, нанесенного на активированные угли.

Настоящее изобретение относится к катализаторам производства метилмеркаптана из оксидов углерода. Описан нанесенный катализатор для получения метилмеркаптана из оксида углерода, включающий: А) оксидные соединения, содержащие Мо и содержащие К, причем Мо и К могут быть составляющими одного соединения; Б) активное оксидное соединение АxОy, где А означает Re, a x и у представляют собой целые числа от 1 до 7.
Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы.
Наверх