Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре



Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре
Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре
Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре
Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре
Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре
Способ управления судном при выполнении им швартовной операции к борту судна партнера, стоящего на якоре
B63H25/00 - Управление судами: уменьшение скорости хода, осуществляемое иными средствами, чем движители (использование подвижно установленных движителей для управления судном B63H 5/14; использование подвижно установленных забортных двигательно-движительных агрегатов B63H 20/00); динамическая постановка на якорь, т.е. расположение судов с помощью основных или вспомогательных движителей (постановка судов на якорь, кроме динамической, B63B 21/00; устройства для уменьшения килевой и бортовой качки или подобных нежелательных движений судов с помощью реактивных струй или гребных винтов B63B 39/08)

Владельцы патента RU 2509031:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГБОУВПО "МГТУ") (RU)

Изобретение относится к водному транспорту. Способ управления заключается в том, что текущее положение траектории сближения определяют в виде прямой линии, которая проходит через две заданные точки на плоскости, текущее положение которых на плоскости в любой заданный момент времени рассчитывают с использованием значений текущих координат носовой и кормовой точек судна-партнера, стоящего на якоре, заданного расстояния между бортами швартующихся судов, заданного положения швартующегося судна относительно судна-партнера, стоящего на якоре, в конечной стадии швартовки и текущего значения длины тормозного пути швартующегося судна, необходимого для перехода его от исходной скорости движения к скорости, равной скорости течения в районе места якорной стоянки судна-партнера в конкретных условиях плавания. Для обеспечения безопасности швартовной операции сближение выполняют в три этапа. На первом этапе сближения швартующееся судно выходит в первую условную точку, на втором этапе - во вторую условную точку, а на третьем этапе сближается с судном-партнером, стоящим на якоре, на расстояние, позволяющее крепить швартовные тросы. Повышается безопасность выполнения судном швартовной операции. 4 ил.

 

Изобретение относится к водному транспорту и касается управления швартующимся судном при выполнении им швартовной операции к борту судна, стоящего на якоре.

Известен способ управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера (Пат.РФ №2422326, опубл.27.06.2011), когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An(судно-партнер), другая - в корме В (швартующееся судно), Bn(судно-партнер) (фиг.1, 2) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна А(Х, Y0A), В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(XA, YA), В(ХВ, YB) и судном-партнером An(XAn YAn), Bn(XBn, YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G(Xg, Yg) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между ЦТ швартующихся судов m рассчитывают:

- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A'n(XA'n,YA'n) и B'n(XB'ny,YB'n), расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G'n(X0G'n, Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A'n и B'n;

- координаты второй заданной точки Р2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, С1, С2, С3,…),

где υ - текущее значение скорости швартующегося судна;

S - путь;

С1 С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υn, т.е.

где υн - начальная скорость швартующегося судна; υn - скорость судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1, С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [2], [3];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ швартующегося судна G (X0G, Y0g). После этого определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kB - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G (X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G=X0P1, Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n, YA'n) и B'n(XB'n, YB'n), координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки Р2(X0P2, Y0P2), лежащей на линии A'nB'n, вычисляют также непрерывно.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A'n и B'n, ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A'nB'n.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A'nB'n.

Моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

После выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту». С этой целью заданное текущее положение траектории сближения швартующихся судов, т.е. линия A'nB'n, постепенно смещается параллельно ДП судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд. Скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера. Параллельное смещение линии A'nB'n в сторону судна-партнера обусловлено смещением точек A'n и B'n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов. Постепенное уменьшение значения h в соответствии с законом

dh/dt=f(υд, h, h0,…)

приводит к изменению значения задаваемого расчетным способом расстояния между ДП швартующихся судов h0=h+0,5×(Bn+В) (здесь Bn - ширина судна-партнера, В - ширина швартующегося судна), что, в свою очередь, изменяет координаты точек A'n и B'n и в конечном итоге линия A'nB'n смещается в сторону судна-партнера, оставаясь параллельной его ДП.

Смещение линии A'nB'n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно. Формируется сигнал управления α=-kA×dA+kB×dB, и ДП швартующегося судна приводится к новому положению линии A'nB'n до их полного совпадения. Далее процесс смещения линии A'nB'n по указанному алгоритму в сторону судна-партнера будет повторяться многократно, также многократно будут образовываться смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A'nB'n. Смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A'nB'n будет приводить к формированию управляющего сигнала средства управления швартующимся судном. Работа средства управления вернет ДП швартующегося судна на линию, совпадающую с текущим положением линии A'nB'n.

Смещение линии A'nB'n сторону судна-партнера будет происходить до тех пор, пока расстояние h0 между ДП швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), т.е. в этот момент расстояние между бортами швартующихся судов будет равно нулю h=0. Указанный момент в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера считается моментом окончания швартовной операции.

Однако в этом способе управления судном, выполняющим швартовную операцию к борту судна-партнера, есть определенный недостаток, не позволяющий безопасно сблизиться швартующемуся судну с судном-партнером, если оно стоит на якоре, т.к. движение судна, стоящего на якоре, относительно воды в продольном направлении либо отсутствует вообще, либо имеет значение, близкое к нулю, поэтому в момент выхода швартующегося судна к борту судна-партнера, стоящего на якоре, и при дальнейшем их сближении скорость швартующегося судна должна быть равна скорости течения υst в районе места якорной стоянки.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в соблюдении условия движения швартующегося судна в конечной стадии швартовки со скоростью, равной скорости течения υst в районе якорной стоянки судна-партнера.

Для достижения указанного технического результата в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера, когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An(судно-партнер), другая - в корме В (швартующееся судно), Bn(судно-партнер) (фиг.1-4) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна А(X0A, Y0A)>В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(XA YA), В(XB, YB) и судном-партнером An(XAn, YAn), Bn(XBn,YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G(XG,YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между ЦТ швартующихся судов m рассчитывают:

- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A'n(XA'n,YA'n) и B'n(XB'n,YB'n), расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G'n{X0G'n, Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A'n и B'n;

- координаты второй заданной точки Р20Р2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, C1, С2, С3,…),

где υ - текущее значение скорости швартующегося судна;

S - путь;

С1, С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Отличительным признаком предлагаемого способа от указанного выше известного, наиболее близкого к нему, является следующий:

дополнительно текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υst, т.е.

где υst - скорость течения в районе места якорной стоянки судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1 С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [2], [3];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ швартующегося судна G (X0G, Y0G). После этого определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kв - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки Р1 (фиг.2).

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G0Р1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2 (фиг.2), при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n,YA'n) и B'n(XB'n,YB'n), координаты которых рассчитываются непрерывно. Текущие координаты второй заданной точки Р2 (X0P2, Y0P2), лежащей на линии A'nB'n, вычисляются непрерывно.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A'n и B'n, ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A'nB'n.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A'nB'n.

Моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

После выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту». С этой целью заданное текущее положение траектории сближения швартующихся судов, т.е. линия A'nB'n, постепенно смещается параллельно ДП судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд. Скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера. Параллельное смещение линии A'nB'n в сторону судна-партнера обусловлено смещением точек A'n и B'n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов. Постепенное уменьшение значения h в соответствии с законом

dh/dt=f(υд, h, h0,…)

приводит к изменению значения задаваемого расчетным способом расстояния между ДП швартующихся судов h0=h+0,5×(Bn+В) (здесь Bn - ширина судна-партнера, В - ширина швартующегося судна), что, в свою очередь, изменяет координаты точек A'n и B'n и в конечном итоге линия A'nB'n смещается в сторону судна-партнера, оставаясь параллельной его ДП.

Смещение линии A'nB'n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно. Формируют сигнал управления α=-kA×dA+kB×dB, и ДП швартующегося судна приводится к новому положению линии A'nB'n до их полного совпадения. Далее процесс смещения линии A'nB'n по указанному алгоритму в сторону судна-партнера будет повторяться многократно, также многократно будут образовываться смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A'nB'n. Смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A'nB'n будет приводить к формированию управляющего сигнала средства управления швартующимся судном. Работа средства управления вернет ДП швартующегося судна на линию, совпадающую с текущим положением линии A'nB'n.

Смещение линии A'nB'n в сторону судна-партнера будет происходить до тех пор, пока расстояние h0 между ДП швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), т.е. в этот момент расстояние между бортами швартующихся судов будет равно нулю h=0. Указанный момент в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, считается моментом окончания швартовной операции.

Предлагаемый способ управления судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, осуществляется следующим образом.

В пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An(судно-партнер), другая - в корме В(швартующееся судно), Bn(судно-партнер) (фиг.1-4) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна А(X0A, Y0A), В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(ХА, Ya), В(Хв, YB) и судном-партнером An(XAn, YAn), Bn(XBn,YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G(XG,YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между ЦТ швартующихся судов m рассчитывают:

- координаты центра тяжести швартующегося судна G(X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A'n(XA'n,YA'n) и B'n(XB'n,YB'n), расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G'n(X0G'n>Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A'n и B'n;

- координаты второй заданной точки Р2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения

dυ/dS=f(υ, C1, С2, С3,…),

где υ - текущее значение скорости швартующегося судна;

S - путь;

С1, С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υst, т.е.

где υst - скорость течения в районе места якорной стоянки судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1, С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [2], [3];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ G швартующегося судна (X0G, Y0G). После этого определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты ЦТ G швартующегося судна, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kв - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G=X0P1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n,YA'n) u B'n(XB'n,YB'n), координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки Р2(X0P2, Y0P2), лежащей на линии A'nB'n, вычисляют непрерывно.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A'n и B'n, ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A'nB'n.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A'nB'n.

Моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

После выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту». С этой целью заданное текущее положение траектории сближения швартующихся судов, т.е. линия A'nB'n, постепенно смещается параллельно ДП судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд. Скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера. Параллельное смещение линии A'nB'n в сторону судна-партнера обусловлено смещением точек A'n и B'n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов. Постепенное уменьшение значения h в соответствии с законом

dh/dt=f(υд, h, h0,…)

приводит к изменению значения задаваемого расчетным способом расстояния между ДП швартующихся судов h0=h+0,5×(Bn+В) (здесь Bn - ширина судна-партнера, В - ширина швартующегося судна), что, в свою очередь, изменяет координаты точек A'n и B'n и в конечном итоге линия A'nB'n смещается в сторону судна-партнера, оставаясь параллельной его ДП.

Смещение линии A'nB'n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно. Формируется сигнал управления α=-kA×dA+kB×dB, и ДП швартующегося судна приводится к новому положению линии A'nB'n до их полного совпадения. Далее процесс смещения линии A'nB'n по указанному алгоритму в сторону судна-партнера будет повторяться многократно, также многократно будут образовываться смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A'nB'n. Смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A'nB'n будут приводить к формированию управляющего сигнала средства управления швартующимся судном. Работа средства управления вернет ДП швартующегося судна на линию, совпадающую с текущим положением линии A'nB'n.

Смещение линии A'nB'n в сторону судна-партнера будет происходить до тех пор, пока расстояние h0 между ДП швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), т.е. в этот момент расстояние между бортами швартующихся судов будет равно нулю h=0. Указанный момент в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера считается моментом окончания швартовной операции.

В результате применения данного изобретения достигается возможность получения технического результата - соблюдение безопасности выполнения швартовной операции к борту судна-партнера, стоящего на якоре, таким образом, предлагаемый способ управления судном при выполнении им швартовной операции к борту судна-партнера соответствует критерию патентоспособности «промышленная применимость».

Список литературы

1. Пат. №2422326 Российская Федерация, опубл. 27.06.2011.

2. Юдин Ю.И. Синтез моделей механизма предвидения для экспертных систем, обеспечивающих безопасную эксплуатацию судна: монография/Ю.И.Юдин. - Мурманск: Изд-во МГТУ, 2007. -198 с: ил.

3. Юдин Ю. И. Теоретические основы безопасных способов маневрирования при выполнении точечной швартовки: монография / Ю.И.Юдин, С.В.Пашенцев, Г.И.Мартюк, А.Ю.Юдин. -Мурманск: Изд-во МГТУ, 2009. - 152 с.: ил.

1. Способ управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу швартующегося судна А и судна-партнера An, другая - в корме швартующегося судна В и судна-партнера Bn относительно мидель-шпангоута соответствующего судна, координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м), используя значения координат точек швартующегося судна А(X0A, Y0A), В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(ХА, YA), В(ХВ, YB) и судном-партнером An(XAn, YAn), Bn(XBn, YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G (XG, YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между центром тяжести швартующихся судов m рассчитывают:
- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;
- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;
- координаты точек A′n(XA'n, YA'n) и B′n(XB'n, YB'n), расположенных на перпендикулярах к диаметральной плоскости судна-партнера, восстановленных в точки An и Bn;
- координаты проекции центра тяжести судна-партнера G′n(X0G'n, Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно диаметральной плоскости судна-партнера через точки A'n и B'n;
- координаты второй заданной точки Р2 (X0P2, Y0P2) в неподвижной координатной системе;
- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения
dυ/dS=f(υ, C1, С2, С3,…),
где υ - текущее значение скорости швартующегося судна;
S - путь;
С1, С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции), отличающийся тем, что текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υst

где υst - скорость течения в районе места якорной стоянки судна-партнера, при этом текущие значения параметров уравнения движения швартующегося судна С1, С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют;
- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе;
зная координаты первой заданной точки и координаты центра тяжести швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и центр тяжести швартующегося судна G (X0G, Y0G), затем определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения;
непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты центра тяжести швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути Sт и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения; возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:
α=-kA×dA+kB×dB,
где kA, kB - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения, швартующееся судно движется по линии GP1 в направлении точки P1; моменту выхода швартующегося судна в первую заданную точку соответствует равенство координат центра тяжести швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G=X0P1, Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n,YA'n) и B′n(XB'n,YB'n), координаты которых рассчитывают непрерывно; текущие координаты второй заданной точки Р2 (X0P2, Y0P2), лежащей на линии A′n B′n, вычисляют непрерывно; определяемые непрерывно значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A′n и B′n, центра тяжести G швартующегося судна и центра тяжести Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A′n B′n, возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа и швартующееся судно движется в точку Р2 по линии A′nB′n;
моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат центра тяжести швартующегося судна и второй заданной точки, то есть X0G0Р2, Y0G=Y0P2;
после выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту», для этого заданное текущее положение траектории сближения швартующихся судов, т.е. линию A′nB′n, постепенно смещают параллельно диаметральной плоскости судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд, скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера; параллельное смещение линии A′nB′n в сторону судна-партнера обусловлено смещением точек A′n и B′n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов, постепенное уменьшение значения h в соответствии с законом
dh/dt=f(υд, h, h0,…)
приводит к изменению значения задаваемого расчетным способом расстояния между диаметральными плоскостями швартующихся судов h0=h+0,5×(Bn+В), где Bn - ширина судна-партнера, В - ширина швартующегося судна, что, в свою очередь, изменяет координаты точек A′n и B′n и в конечном итоге линия A′nB′n смещается в сторону судна-партнера, оставаясь параллельной его диаметральной плоскости; смещение линии A′nB′n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно, формируют сигнал управления α=-kA×dA+kB×dB, и диаметральную плоскость швартующегося судна приводят к новому положению линии A′nB′n до их полного совпадения; далее процесс смещения линии A′nB′n по указанному алгоритму в сторону судна-партнера повторяют многократно, при этом происходят многократные смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A′nB′n, смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A′nB′n приводят к формированию управляющего сигнала средства управления швартующимся судном, в результате диаметральная плоскость швартующегося судна выходит на линию, совпадающую с текущим положением линии A′nB′n; смещение линии A′nB′n в сторону судна-партнера осуществляют до тех пор, пока расстояние h0 между диаметральными плоскостями швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), в этот момент расстояние между бортами швартующихся судов равно нулю h=0, что соответствует окончанию швартовной операции.



 

Похожие патенты:

Изобретение относится к управлению движущимся судном при его позиционировании в заданной точке плоскости в заданном направлении. Используют поперечные смещения двух разнесенных по длине объекта точек и продольные отклонения условной точки.

Изобретение относится к водному транспорту и касается управления движением швартующегося судна при выполнении им швартовной операции к судну-партнеру, лежащему в дрейфе.

Изобретение относится к водному транспорту и может быть использовано при управлении траекторией движения судна, выполняющего сложное маневрирование. Способ определения демпфирующих составляющих нормальной гидродинамической силы и момента включает определение текущего значения абсциссы центра вращения, угловой скорости судна, демпфирующих составляющих нормальной гидродинамической силы и ее момента.

Изобретение относится к судовождению. Способ включает измерение параметров движения и угловой скорости, их последующее сравнение с программными значениями данных параметров движения и формирование управляющего сигнала на рулевой привод в функции данных рассогласований и скорости судна.

Используют кормовую А и носовую F точки в диаметральной плоскости судна. В точки А и F устанавливают акселерометры и измеряют продольные и поперечные ускорения точек А и F.

Изобретение относится к области судовождения, в частности к системам автоматического управления движением судна. .

Изобретение относится к области судостроения и касается средств активного управления судном, а более конкретно - подруливающих устройств. .

Изобретение относится к технике управления движением подводных аппаратов. .

Изобретение относится к водному транспорту и может быть использовано для стабилизации положения танкера при погрузке нефтепродуктов относительно нефтяного терминала в открытом море.

Изобретение относится к судовым установкам, оборудованным газотурбинными агрегатами. .

Изобретение относится к управлению судном при следовании по заданной траектории и касается автоматического управления рулём или другим рулевым средством управления, которым оборудовано судно. Управление осуществляют по величинам поперечных смещений носовой А и кормовой В точек. Точки А и В разнесены по длине судна в его диаметральной плоскости (ДП). Производят выработку управляющего сигнала и в зависимости от его величины определяют скорость перекладки руля. При этом необходимо соблюдать ограничение - угол перекладки руля не должен превышать его максимальное значение, характерное для конкретного рулевого устройства. Повышена точность удержания судна на заданной траектории, улучшено качество управления и исключена вероятность потери управляемости. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области судовождения, в частности к системам автоматического управления движением судна. Устройство для формирования траектории перевода судна на параллельный курс содержит: задатчик абсолютной величины максимально допустимого сигнала управления, датчик продольной скорости, вычислитель критических параметров траектории перевода судна на параллельный курс, задатчик расстояния смещения параллельного курса от текущего курса, вычислитель изменения путевого угла Δϕ, минимального радиуса Rm допустимого оптимального полиноминального отрезка (ДОЭПО), длины L прямого отрезка между двумя ДОЭПО, датчик координат центра масс судна, вычислитель набора параметров граничных точек первого ДОЭПО, датчик путевого угла, вычислитель выходных параметров элементарных отрезков, задатчик абсолютной величины максимально допустимого сигнала управления, вычислитель набора параметров граничных точек первого ДОЭПО, вычислитель выходных параметров элементарных отрезков. На выходе вычислителя выходных параметров элементарных отрезков формируется траектория перевода судна на параллельный курс, состоящая из двух ДОЭПО или состоящая из трех элементарных отрезков. Достигается повышение безопасности перевода судна на параллельный курс. 12 ил.

Изобретение относится к системам управления движением подводных аппаратов. Устройство содержит движители вертикального и горизонтального перемещений, телекамеру, установленную с возможностью поворота, датчики угла поворота, сумматоры, источники опорного сигнала, пороговые элементы, синусные и косинусные функциональные преобразователи, блоки умножения и деления, усилители, ключи, логические элементы, датчики расстояния и команд, многоуровневый релейный элемент, блоки взятия модуля. Достигаемый технический результат заключается в автоматическом выборе требуемой скорости вращения движителей подводных аппаратов с учетом направлений этих вращений, при которых ни один из движителей не входит в режим насыщения независимо от направления их вращения. 1 ил.

Группа изобретений относится к способу автоматического управления судном по курсу и интеллектуальной системе автоматического управления судном по курсу. Способ заключается в том, что в качестве модели объекта управления используют нейросетевую модель объекта управления. Для настройки настраиваемых параметров алгоритма нечеткой логики получают и идентифицируют данные движения судна по курсу и данные управляющих воздействий, определяют данные критериальных признаков движения судна по идентифицированным данным движения судна по курсу и данным управляющих воздействий с использованием базы знаний поведения судна по курсу, выбирают нейросетевую модель объекта управления на базе определенных данных критериальных признаков движения судна, определяют данные настраиваемых параметров алгоритма нечеткой логики в соответствии с выбранной нейросетевой моделью объекта управления. Интеллектуальная система содержит регулятор на нечеткой логике, эмулятор для корректировки управляющего воздействия, прямые и обратные связи между объектом управления, регулятором на нечеткой логике и эмулятором. Эмулятор выполнен в виде нейросетевого эмулятора. Нейросетевой эмулятор включает нейросетевой классификатор, блок нейросетевой модели объекта управления и блок оптимизации. Нейросетевой классификатор содержит базу знаний поведения судна по курсу. Технический результат заключается в обеспечении высокого быстродействия процессов управления и эффективной фильтрации случайных возмущений системы. 2 н. и 12 з.п. ф-лы, 6 ил., 3 табл.

Изобретение относится к судостроению, а именно к подруливающим устройствам судов. Подруливающее устройство содержит два винта, установленные в гондоле на стойке обтекателей в сквозном канале, и приводной двигатель, а также снабжено дополнительными стойками, расположенными на обтекателях по краям гондолы. Достигается повышение эффективности работы в проточной части подруливающего устройства, увеличение КПД устройства, уменьшение расхода энергии, затрачиваемой на приведение в движение винтов подруливающего устройства. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла курса, сумматор, рулевой привод. Датчик руля подключен к первому входу сумматора, ко второму входу которого подключен задатчик угла курса. Выход сумматора подключен к входу рулевого привода. Также система дополнительно имеет датчик угла курса, два фильтра оценки угла курса и два фильтра оценок угловой скорости, блок среднего значения оценки угловой скорости и блок среднего значения угла курса, два датчика поперечной скорости судна и два фильтра оценки поперечной скорости судна, блок среднего значения оценки поперечной скорости судна, датчик оборотов подруливающего устройства, регулятор, привод подруливающего устройства и датчик угловой скорости. Достигается формирование отказоустойчивого автоматического управления движением судна. 1 ил.

Изобретение относится к системам управления движением подводных аппаратов. Устройство содержит установленные на подводном аппарате (1) движители вертикального (2) и горизонтального (3) перемещений, телекамеру (4), выполненную с возможностью поворота, датчик (5) положения угла поворота телекамеры, первый (6), второй (7) и третий (8) нелинейные функциональные преобразователи, блок (9) управления движителями, датчик (10) расстояния, вручную коммутируемый ключ (11), пороговый элемент (12), электронно-управляемый переключатель (13). Повышается надежность и точность подхода подводного аппарата к обнаруженному объекту. 1 ил.

Изобретение относится к системам управления и может быть использовано при разработке систем управления подводными аппаратами, обеспечивающими их ориентацию и перемещение по заданной траектории с заданной траекторией скоростью, или в заданную точку по требуемой траектории без предъявления требований к траекторией скорости, или в заданную точку с нулевой конечной скоростью. Технический результат заключается в обеспечении возможности управления движением подводного аппарата. Технический результат достигается за счет того, что в устройство управления подвижным объектом дополнительно введены судовой пункт управления, два приемопередатчика с антеннами, гидролокатор с антенной и блок пересчета координат, при этом объектом управления является подводный аппарат, большая часть оборудования установлена на судовом пункте управления. 1 ил.

Способ сжатия информации для автоматизированного проектирования систем управления движения корабля для устройства, состоящего из блока измеряемой информации, локальных сетей, регуляторов, исполнительных средств, динамической модели движения корабля, блока представления информации и записи результатов, блока управления и оптимизации режимов, блока сжатия информации, содержащий регистры полученного значения и времени его прихода, первый блок сравнения, регистр регистрации времени передачи, логические блоки ИЛИ и И, таймер, второй блок сравнения, регистр переданного значения, формирователь сетевых пакетов. Способ заключается в том, что производят задержку по времени передачи измеряемой информации в локальную сеть на заданную величину C1. Обеспечивается сжатие информации путем прореживания с отсеиванием всех промежуточных значений. 7 ил.

Изобретение относится к области судовождения, а именно к системам автоматического управления движением судна. Для задания траектории и режима движения судна представляют сигмоподобные функции с изменяемыми коэффициентами кривизны и задаваемыми выражениями. Сигмоподобные функции аппроксимируют градиенты и изменения компонентов вектора, перемещения точки управления судна в зависимости от пройденного судном расстояния по траектории. В аппроксимирующих выражениях радиус кривизны задается суммой экспоненциальных зависимостей и позволяет учитывать изменения кинематических параметров движения судна и их градиентов вследствие изменения величины силового воздействия. Достигается повышение безопасности судовождения в стесненных портовых водах. 7 ил.
Наверх