Щелочной электролит для электроосаждения цинк-никелевых покрытий

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит содержит, г/л:оксид цинка 12-15, едкий натр 100-120, никель сернокислый 7-17, триэтаноламин 40-60, гексаметилендиамин-N,N,N',N'- тетрауксусную кислоту 0,5-2, диглицин 1-3, воду до 1 л. Технический результат - увеличение коррозионной стойкости цинк-никелевых покрытий, расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов. 2 табл., 4 пр.

 

Область техники

Изобретение относится к области получения гальванических покрытий цинк-никелевыми сплавами на сталях и может быть использовано в машиностроении, приборостроении, автомобильной промышленности и др.

Уровень техники

Известен электролит для осаждения светлых блестящих покрытий из сплава, содержащего 2% Ni [Гальванотехника: Справ. изд. Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. - М.: Металлургия, 1987. - 736 с], содержащий (г/л):

Цинк (в пересчете на металл) 30-35
Никель (в пересчете на металл) 0,15-0,75
Цианид натрия 85-100
Едкий натр 65-70

Недостатками аналога являются: высокая токсичность цианидов и связанные с этим большие затраты на охрану труда, технику безопасности и на обезвреживание сточных вод, а также невысокая коррозионная стойкость покрытий, связанная с очень низким содержанием никеля в сплаве.

Известен аммиакатный электролит для получения сплавов Zn-Ni с содержанием никеля в сплаве 23-27% [патент №2441107 ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРООСАЖДЕНИЯ СПЛАВА ЦИНК-НИКЕЛЬ], содержащий (г/л):

Оксид цинка 10-15
Хлорид никеля шестиводный 60-90
Хлорид аммония 230-250
Борная кислота 20
Препарат ОС-20 0,5-0,6
Продукт конденсации
диметилолтиомочевины и полиэтиленполиамина 0,003-0,005
pH 5,0-5,5
Катодная плотность тока, А/дм2 0,1-5,0
Температура, °C 18-25

Недостатком аналога являются снижение защитных свойств покрытий, при заявленном содержании никеля в сплаве 23-27%, за счет потери анодного по отношению к стали потенциала и трудности для последующей пассивации. Кроме того, в электролите используется токсичная борная кислота, у него узкий интервал рабочих концентраций органических добавок и высокая концентрация хлорида аммония.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату, то есть прототипом, является щелочной электролит для получения Zn-Ni сплавов с содержанием никеля в сплаве 10-11% [Chandrasekar M.S., S.Srinivasan, M.Pushpavanam Properties of Zink alloy electrodeposits produced from acid and alkaline electrolytes // J. Solid State Electrochem (2009). 13. P.782], содержащий (г/л):

Оксид цинка 9-12
Едкий натр 12-120
Сульфат никеля семиводный 1-7,5
Триэтаноламин 85-120
pH 13-14

Недостатками прототипа являются высокая скорость коррозии Zn-Ni сплавов с содержанием никеля в сплаве 10-11%, не обеспечивающая максимальную коррозионную защиту стальных изделий, узкий диапазон катодных плотностей тока от 2 до 5 А/дм2. Кроме того, использование высоких концентраций триэтаноламина в электролитах приведет к трудностям при очистке сточных вод гальванических производств и, как следствие, к плохим экологическим последствиям.

Сущность изобретения

Задача изобретения - снижение скорости коррозии цинк-никелевых покрытий, при сохранении покрытиями анодного характера защиты сталей (содержание никеля в покрытиях 15-16%), расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов.

Поставленная задача достигается путем создания щелочного электролита для электроосаждения цинк-никелевых покрытий, включающего оксид цинка, едкий натр, никель сернокислый семиводный, триэтаноламин, воду, гексаметилендиамин-N,N,N',N'-тетрауксусную кислоту и диглицин, при следующем соотношении компонентов, г/л:

Оксид цинка 12-15
Едкий натр 100-120
Никель сернокислый 7-17
Триэтаноламин 40-60
Гексаметилендиамин-N,N,N',N'-тетрауксусная 0,5-2
Кислота
Диглицин 1-3
Вода до 1 литра
pH 13-14
Температура, °C 18-25
Катодная плотность тока, А/дм2 0,5-5,0

Выход по току сплава 80%. Аноды никелевые.

Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемый электролит отличается от него введением новых компонентов, а именно гексаметилендиамин-N,N,N',N'-тетауксусной кислоты и диглицина.

Цинка оксид, ГОСТ 10262-73, ч, химическая формула ZnO, плотность 5,7 г/см3, растворимость в воде 0,00016 г/100 г при 20°С. Амфотерен - растворяется в избытке щелочей и аммиака с образованием цинкатов.

Натрия гидроксид, ГОСТ 4328-77, ч, химическая формула NaOH, плотность 2,13 г/см3, растворимость (% по массе) в воде 52,2 (20°С).

Никеля сульфат, 7-водный, ГОСТ 4465-74, ч, химическая формула NiSO4·7H2O, плотность 1,949 г/см3, растворимость 21,4 г в 100 г холодной и 43,42 в 100 г горячей воды.

Триэтаноламин ТУ 2423-168-00203335-2007 - бесцветная вязкая жидкость со слабым аммиачным запахом. Плотность 1,1242 (20°C, г/см3). Химическая формула (HOCH2CH2)3N, мол. вес 149,19. Неограниченно смешивается с водой в любых пропорциях.

Гексаметилендиамин-N,N,N',N'-тетрауксусная кислота (ГМДТА)

(HOOC-CH2)2N-(CH2)6-N(CH2-COOH)2

М=348.35 г/моль.

Белый кристаллический негигроскопический порошок. ГМДТА является четырехосновной кислотой, способной присоединять протоны с образованием катионов типа аммония. Относится к классу комплексонов алифатического ряда с третичной аминогруппой - производных этилендиамин- N,N,N',N'-тетрауксусной кислоты (ЭДТА).

Диглицин (глицил-глицин)

NH2-CH2-CO-NH-CH2-COOH

М=132.15 г/моль.

Порошок белого цвета. Разлагается при 113°C. Растворимость: 22.75 г в 100 г воды. Относится к классу дипептидов. В водном растворе обладает буферными свойствами в интервалах значений pH 2-4 и 7-9.

Сведения, подтверждающие возможность осуществления изобретения

Пример 1. Для приготовления 1 л электролита в 0,4 л воды растворяют 100 г NaOH. При перемешивании добавляют небольшими порциями 12 г оксида цинка в раствор щелочи до полного растворения (раствор №1). Растворяют в отдельной емкости сернокислый никель в количестве 7 г в 0,3 л воды и вводят в этот раствор триэтаноламин при перемешивании в количестве 40 мл. Добавляют в этот раствор предварительно растворенные в 100 мл воды ГМДТА в количестве 0,5 г и диглицин (глицил-глицин) в количестве 1 г (раствор №2). Смешивают растворы №1 и №2 и доводят водой объем электролита до 1 л. После введения в электролит всех компонентов его объем доводят водой до 1 л.

Приготовленный электролит имеет следующий состав, г/л:

Оксид цинка 12
Едкий натр 100
Никель сернокислый 7
Триэтаноламин 40
Гексаметилендиамин-N,N,N',N'-тетрауксусная
кислота 0,5
Диглицин 1
Вода до 1 литра
pH 13
Температура, °C 18-25
Катодная плотность тока, А/дм2 0,5-5,0

Примеры с другими значениями заявляемого электролита приведены в таблице 1.

Из приготовленных электролитов осаждали цинк-никелевые покрытия.

Полученные образцы испытывали с целью определения скорости коррозии в 3% NaCl. Вначале определяли ток коррозии Zn-Ni покрытие - сталь и пересчитывали на массовый показатель коррозии. При определении диапазона рабочей плотности тока устанавливали верхнюю и нижнюю границы катодной плотности тока. Для их определения на образцы из стали наносили цинк-никелевое покрытие толщиной 6 мкм. Полученные покрытия по внешнему виду соответствуют требованиям ГОСТа 9.301-86, а по сцеплению с основным металлом ГОСТу 9.302-88.

При всех испытаниях характеристик получаемого покрытия проводили не менее 4-5 параллельных опытов и брали среднеарифметические значения величин. Результаты испытаний представлены в таблице 2.

Из таблицы 2 видно, что предлагаемый электролит (примеры 1-3) позволяет получать цинк-никелевые покрытия с содержанием никеля 15-16%, обладающие скоростью коррозии, в 2 раза меньшей в отличие от прототипа.

Другим преимуществом заявляемого электролита является то, что электролит обладает более широким диапазоном рабочей плотности тока, а также в электролите снижены концентрации основных компонентов, поэтому он имеет более низкую стоимость и его использование с экологической точки зрения более выгодно, работает при температуре 18-25°C, то есть не требует затрат электроэнергии на подогрев.

Таблица 1
Концентрация, г/л Номера примеров
1 2 3 Прототип
Оксид цинка 12 13,5 15 9-12
Едкий натр 100 110 120 12-120
Никель сернокислый 7 12 17 1-7,5
Триэтаноламин 40 50 60 85-120
Гексаметилендиамин-N,N,N',N'-тетрауксусная кислота 0,5 1 2
Диглицин 1 2 3 -
pH 13 13,5 14,0 13-14
Температура, °C 18 22 25 -
Катодная плотность тока, А/дм2 0,5 3 5,0 2,0-5,0
Таблица 2
Номера примеров % Ni Скорость коррозии Zn-Ni покрытия, г/м2·ч при катодных плотностях тока
0,5 А/дм2 1 А/дм2 3 А/дм2 5 А/дм2
1 15-16 0,061 0,069 0,074 0,076
2 15-16 0,062 0,071 0,076 0,078
3 15-16 0,064 0,072 0,078 0,080
Прототип 10-11 - - 0,156 0,165

Щелочной электролит для электроосаждения цинк-никелевых покрытий, содержащий оксид цинка, едкий натр, никель сернокислый семиводный, триэтаноламин и воду, отличающийся тем, что он дополнительно содержит гексаметилендиамин-N,N,N',N'-тетрауксусную кислоту и диглицин, при следующем соотношении компонентов, г/л:

оксид цинка 12-15
едкий натр 100-120
никель сернокислый 7-17
триэтаноламин 40-60
гексаметилендиамин-N,N,N',N'-тетрауксусная
кислота 0,5-2
диглицин 1-3
вода до 1 литра



 

Похожие патенты:

Изобретение относится к области металлургии, в частности получению стального компонента с металлическим покрытием, который используют в качестве материала для кузовов транспортных средств.
Изобретение относится к области гальванотехники и может быть использовано для восстановления изношенных поверхностей деталей машин, в частности подшипников скольжения автомобильных двигателей.
Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Изобретение относится к способу нанесения покрытия из металлических сплавов с применением гальванической технологии. .
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения покрытий. .
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных гальванических градиентных покрытий на основе хрома в машиностроении и других отраслях промышленности при изготовлении или восстановлении деталей и инструментов с износостойкими антифрикционными покрытиями, в частности, для повышения стойкости деформирующих инструментов.
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения ровных, гладких покрытий с высокой коррозионной стойкостью.
Изобретение относится к области электрохимии, в частности к нанесению упрочняющих, твердых, износостойких и защитных покрытий на стальные изделия и может быть использовано для работы в узлах трения, упрочнения поверхностей деталей, радиоэлектронной и лакокрасочной промышленности.
Изобретение относится к области электрохимии, в частности к нанесению износостойких и защитных полимерных композиционных покрытий на стальные изделия и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности.

Изобретение относится к прикладной электрохимии, в частности к электролитическому нанесению сплава цинк-никель. .
Изобретение относится к области упрочнения электроосажденного на стальные детали железохромистого покрытия цементацией, применяемого для восстановленных поверхностей стальных деталей. Проводят цементацию электроосажденного слоя железохромистого покрытия с содержанием хрома 0,5-3,0% в течение 3-4 ч при температуре 800-900°С с использованием пасты следующего состава, мас.%: газовая сажа ДГ-100 - 40, углекислый барий ВаСО3 - 20, поливинилацетатная эмульсия (клей ПВА) - 40 и добавлением синтина в количестве 20 капель в минуту в течение всего времени цементации. Повышается микротвердость и износостойкость стальных деталей, восстановленных электроосажденным железохромистым покрытием.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, автомобилестроении и других отраслях промышленности. Электролит содержит, г/л: цинк сернокислый 15-30, кобальт сернокислый 14-17, калий хлористый 120-130, таурин 45-50 и воду до 1 литра. Техническим результатом изобретения является снижение скорости коррозии цинк-кобальтовых покрытий при сохранении покрытиями, содержащими 15-17% кобальта, анодного характера защиты сталей, снижение экологической нагрузки на очистку сточных вод за счет снижения токсичности. 2 табл., 4 пр.
Изобретение относится к области гальванотехники. Электролит содержит соль меди и соль никеля, вещество, образующее комплексы с металлами, множество обеспечивающих проводимость солей, отличающихся друг от друга, соединение, выбранное из группы, состоящей из дисульфидных соединений, серосодержащих аминокислот и их солей, соединение, выбранное из группы, состоящей из сульфоновых кислот, сульфимидных соединений, соединений сульфаминовых кислот, сульфонамидов и их солей, и продукт реакции простого глицидилового эфира и многоатомного спирта. Электролит имеет pH от 3 до 8. Способ включает нанесение покрытия на подложку, выбранную из металлической подложки, состоящей из меди, железа, никеля, серебра, золота и их сплавов, или из стеклянной, керамической, пластмассовой подложки, с модифицированной любым из указанных металлов или сплавов поверхностью. Покрытие наносят при плотности катодного тока от 0,01 до 5,0 А/дм2. Технический результат: повышение стабильности электролита с обеспечением устойчивого получения покрытий с однородным составом. 2 н. и 14 з.п. ф-лы, 6 табл., 7 пр.

Изобретение относится к области получения гальванических покрытий цинк-никелевыми сплавами на сталях и может быть использовано в машиностроении, приборостроении, автомобильной промышленности и других областях. Электролит содержит, г/л: цинк сернокислый 7-10; никель сернокислый 20-30; калий хлористый 120-130; таурин 45-50; вода до 1 литра. Технический результат - снижение скорости коррозии цинк-никелевых покрытий при сохранении покрытиями анодного характера защиты сталей (содержание никеля в покрытиях 12-15 ат.%) с одновременным снижением экологической нагрузки на очистку сточных вод за счет снижения токсичности электролита. 2 табл., 4 пр.

Изобретение относится к области гальванотехники. Способ включает подачу тока через щелочную ванну для электролитического осаждения цинкового сплава, содержащую катод и анод, причем катодная область, включающая катод, и анодная область, включающая анод, отделены друг от друга анионообменной мембраной, католит, содержащийся в катодной области, представляет собой щелочной электролит для электролитического осаждения цинкового сплава, содержащий хелатообразователь на основе амина, а анолит, содержащийся в анодной области, представляет собой водный щелочной раствор. Технический результат: повышение срока службы электролита при сохранении характеристик получаемых покрытий. 13 з.п. ф-лы, 1 табл., 5 ил., 1 пр.

Изобретение относится к области гальванотехники и может быть использовано для нанесения на изделия гальванических покрытий цинковым сплавом. Способ электролитического осаждения цинкового сплава в щелочной ванне включает подачу тока через щелочную ванну для электролитического осаждения цинкового сплава, содержащую катод и анод, причем катодная область, включающая катод, и анодная область, включающая анод, отделены друг от друга сепаратором, содержащим электропроводящий электролитный гель, при этом содержащийся в катодной области католит представляет собой щелочной электролит для электролитического осаждения никель-цинкового сплава, содержащий хелатообразователь на основе амина, а анолит, содержащийся в анодной области, представляет собой водный щелочной раствор. Технический результат: продление срока службы электролита при сохранении его характеристик. 21 з.п. ф-лы, 1 табл., 3 пр., 7 ил.

Изобретение относится к области гальваностегии, в частности к нанесению гальванических покрытий сплавом олово-цинк с содержанием цинка в сплаве 20-80%, и может быть использовано для нанесения защитных покрытий, в том числе в виде альтернативы кадмиевым покрытиям. Способ включает электроосаждение сплава из электролита, содержащего тетрахлорид олова, оксид цинка и воду, при катодной плотности тока 0,5-1,5 А/дм2, при этом электроосаждение проводят с использованием инертных анодов из электролита, содержащего тетрахлорид олова 30 г/л (в пересчете на олово), оксид цинка 2,5 г/л (в пересчете на цинк), молочную кислоту (80% раствор) 50 мл/л, при рН 2,5 и температуре электролита 20-25°C. Техническим результатом является получение равномерных, полублестящих, хорошо сцепленных с основой покрытий с высоким выходом по току. 5 табл.

Изобретение относится к области гальваностегии и может быть использовано в машиностроении, автомобилестроении, морском транспорте и других отраслях промышленности. Способ включает электролитическое осаждение антифрикционных покрытий из сплава на основе олова в электролите, содержащем, г/л: олово(II) борфтористое 10-40, медь(II) борфтористую 10-25, сурьму(III) борфтористую 5-10, кадмий борфтористый 5-15, цинк(II) борфтористый 5-15, индий(III) борфтористый 2-5, серебро(I) борфтористое 0,5-1,5, борфтористоводородную кислоту 105-130, борную кислоту 50-100, антиокислитель 1,5-5, поверхностно-активное вещество 7-20, при катодной плотности тока 2,0-5,0 А/дм2 и температуре электролита 18-25°С. Технический результат: повышение абразивной и коррозионной стойкости, прочности покрытий в агрессивных средах, снижение коэффициента трения, повышение твердости, износостойкости и термической стабильности покрытий при одновременном повышении пластичности. 2 з.п. ф-лы, 2 табл.
Изобретение относится к области гальваностегии и может найти применение в радиоэлектронной промышленности, машиностроении и других областях, требующих получения тонких защитных пленок либо нанесения подслоя никель-алюминий. Электролит содержит эвтектическую смесь холин-хлорида и мочевины, причем эвтектическая смесь приготовлена путем смешения компонентов в молярном соотношении, равном 1:2, в которой растворены хлорид никеля и хлорид алюминия в количестве, г/л раствора: хлорид никеля 3,2-33,0, хлорид алюминия 12,5-144,0. Технический результат - получение качественных тонких беспористых покрытий и снижение токсичности электролита за счет использования экологически безопасных компонентов.

Изобретение относится к области гальванотехники, в частности к осаждению сплава пермаллоя Ni81Fe19 для получения магнитомягкого материала элементов интегральных микросистем, концентрирующих или экранирующих магнитное поле. Способ включает электрохимическое осаждение пленок пермаллоя в гальванической ванне с вертикальным расположением электродов на постоянном токе при перемешивании хлоридного электролита, который содержит атомы никеля и железа при соотношении концентраций NNi/NFe = 4,26, соответствующему составу сплава, добавку соляной кислоты вводят для получения pH=1,7 ± 10 % в электролит с температурой 60-70°С, а осаждение проводят при плотности тока 20 ± 1,0 мА/см2 в локальных областях, ограниченных фоторезистивной маской на окисленной кремниевой пластине, поверхность которой металлизирована никелем с подслоем нихрома, при этом катодом и анодом служат листы никелевой фольги и катод контактирует с металлизированным слоем на краю пластины. Технический результат: получение пленок пермаллоя толщиной порядка 10 мкм при снижении механических напряжений в пленке и улучшении магнитных свойств без высокотемпературного отжига. 4 ил.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит содержит, гл:оксид цинка 12-15, едкий натр 100-120, никель сернокислый 7-17, триэтаноламин 40-60, гексаметилендиамин-N,N,N,N- тетрауксусную кислоту 0,5-2, диглицин 1-3, воду до 1 л. Технический результат - увеличение коррозионной стойкости цинк-никелевых покрытий, расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов. 2 табл., 4 пр.

Наверх