Электролит для электроосаждения сплава цинк-никель


 


Владельцы патента RU 2441107:

Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт") (RU)

Изобретение относится к прикладной электрохимии, в частности к электролитическому нанесению сплава цинк-никель. Электролит содержит, г/л: оксид цинка 10-15, хлорид аммония 230-250, хлорид никеля шестиводный 60-90, борную кислоту 20, препарат ОС-20 0,5-0,6, продукт конденсации диметилолтиомочевины и полиэтиленполиамина 0,003-0,005. Технический результат: повышение производительности электроосаждения, расширение диапазона рабочих плотностей тока, снижение энергозатрат. 1 табл.

 

Изобретение относится к прикладной электрохимии, в частности к электролитическому нанесению сплава цинк-никель.

Известен широко применяемый в промышленности электролит, который содержит, г/л: оксид цинка 15-17, хлорид никеля шестиводный 36-92, хлорид аммония 250-260, борную кислоту 20-25 /Грилихес С.Я., Тихонов К.И. Электролитические и химические покрытия. Теория и практика. - Л.: Химия, 1990. - C.125/.

Однако этот электролит требует подогрева до 30-40°С и работает при катодных плотностях тока 0,5-2,0 А/дм2. Расширить рабочий диапазон плотностей тока до 5 А/дм2 можно при добавлении гидроксида аммония до pH 9, что повышает экологическую опасность процесса и снижает стабильность работы электролита.

Наиболее близким к изобретению по технической сущности и достигаемому результату является электролит следующего состава, г/л: оксид цинка 15, хлорид никеля шестиводный 35-90, хлорид аммония 250, борная кислота 20 /Гальванотехника: справ, изд. Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. - М.: Металлургия, 1987. - С.167/.

Выход по току сплава цинк-никель в этом электролите составляет 93-96%, содержание никеля в сплаве 15-25%. Величина pH 6,5-6,8.

Недостатками этого электролита являются: небольшая производительность процесса, узкий диапазон рабочих плотностей тока (0,5-2,0 А/дм2) и высокая температура (40°С).

Задача данного изобретения - повышение производительности процесса электроосаждения сплава цинк-никель, расширение диапазона рабочих плотностей тока и снижение энергетических затрат на подогрев электролита.

Решение поставленной задачи достигается тем, что в электролит, содержащий оксид цинка, хлорид никеля шестиводный, хлорид аммония и борную кислоту, дополнительно вводят препарат ОС-20 и продукт конденсации диметилолтиомочевины и полиэтиленполиамина при следующем соотношении компонентов, г/л:

оксид цинка 10-15,
хлорид аммония 230-250,
хлорид никеля шестиводный 60-90,
борная кислота 20,
препарат ОС-20 0,5-0,6,
продукт конденсации
диметилолтиомочевины
и полиэтиленполиамина 0,003-0,005.

Режимы электролиза: диапазон рабочих плотностей тока 0,1-5,0 А/дм2, температура электролита 18-25°С, величина pH 5,0-5,5. Содержание никеля в сплаве 23-27%. Выход по току сплава 75-100%. Аноды никелевые.

Препарат ОС-20 (ГОСТ 10730-82) представляет собой смесь полиоксиэтиленгликолевых эфиров высших жирных спиртов и является эффективным поверхностно-активным веществом. Адсорбируясь на поверхности катода, препарат ОС-20 позволяет устранить питтингообразование на покрытиях сплавом цинк-никель при комнатной температуре и получать полублестящие покрытия сплавом при низких плотностях тока, расширяя диапазон рабочих плотностей тока.

Продукт конденсации диметилолтиомочевины и полиэтиленполиамина имеет следующую структурную формулу

,

где n=10-12. Это полимерное ПАВ за счет серосодержащих и аминогрупп обеспечивает агрегативную устойчивость и электрофоретический перенос коллоидных частиц гидроксидов и основных солей цинка и никеля, присутствующих в электролите и участвующих в формировании покрытия сплавом цинк-никель, что, в свою очередь, позволяет увеличить производительность процесса.

Введение в электролит продукта конденсации диметилолтиомочевины и полиэтиленполиамина совместно с препаратом ОС-20 позволяет повысить производительность процесса в 2,5 раза и получить полублестящие покрытия сплавом цинк-никель при комнатной температуре с более высоким выходом по току сплава и в более широком диапазоне плотностей тока, чем из электролита, используемого в промышленности.

Электролит работает при температуре 18-25°С, то есть не требует затрат электроэнергии на подогрев.

Продукт конденсации синтезировали аналогично методике, описанной в работе /Бобрикова И.Г. Разработка высокопроизводительных электролитов-коллоидов цинкования: Дис. … канд. техн. наук. - Новочеркасск, 1988. - 202 с./.

Для приготовления продукта конденсации берут 1 кг диметилолтиомочевины, растворяют в 2,5 л дистиллированной воды при температуре 50°С и перемешивании. После полного растворения в раствор небольшими порциями, непрерывно перемешивая, вводят полиэтиленполиамин из расчета 1 моль на 1 моль диметилолтиомочевины, pH реакционной смеси доводят раствором серной кислоты (1:1) до 7,5-8,0 и выдерживают смесь при температуре 50-60°С в течение 4-5 часов. После охлаждения смесь готова для введения в электролит.

Электролит для электроосаждения сплава цинк-никель готовят, используя реактивы марки "х.ч." и "ч.д.а." на дистиллированной воде.

Пример 1. Для приготовления 1 л электролита в 0,4 л воды при 70-80°С растворяют 230 г хлорида аммония. В нагретый раствор небольшими порциями при перемешивании вводят 10 г оксида цинка, а затем 60 г хлорида никеля шестиводного, предварительно растворенного в 0,1 л воды при температуре 70-80°С. В полученную смесь при перемешивании и нагревании добавляют 20 г борной кислоты, предварительно растворенной в 0,05 л воды при температуре 80-90°С. Электролит охлаждают до комнатной температуры и вводят 0,5 г ОС-20 и 0,003 г продукта конденсации диметилолтиомочевины и полиэтиленполиамина, которые предварительно растворяют в отдельных емкостях в небольшом количестве воды (0,05 л). После введения в электролит всех компонентов его объем доводят водой до 1 л.

Величину pH электролита доводят 50%-ным раствором соляной кислоты (плотность 1,19) до 5,0 и проводят электролиз при катодной плотности тока 0,1-1,5 А/дм2.

Пример 2. Для приготовления 1 л электролита берут 250 г хлорида аммония, 90 г хлорида никеля шестиводного, 15 г оксида цинка, 20 г борной кислоты, 0,6 г ОС-20 и 0,005 г продукта конденсации диметилолтиомочевины и полиэтиленполиамина. Методика приготовления электролита аналогична описанной в примере 1.

Величину pH электролита доводят 50%-ным раствором соляной кислоты (плотность 1,19) до 5,5 и проводят электролиз при катодной плотности тока 0,1-5,0 А/дм2.

Электролит стабилен в работе. Оксидом цинка, хлоридом аммония, хлоридом никеля шестиводного и борной кислотой электролит корректируется на основании его химического анализа. Добавками в количестве, равном половине рецептурного, его необходимо корректировать при получении плохого качества покрытия сплавом.

Примеры составов предлагаемого электролита, прототипа и их характеристики приведены в таблице. Примеры даны на предельные и запредельные значения компонентов.

Граничные концентрации компонентов электролита определены экспериментально. За пределами граничных концентраций (составы электролитов I и V) покрытия получаются неравномерные, серые, матовые.

Сравнение составов и эксплуатационных характеристик предлагаемого электролита и прототипа позволяет сделать следующее заключение: предлагаемый электролит обеспечивает повышение производительности процесса электроосаждения сплава цинк-никель в 2,5 раза, расширение диапазона рабочих плотностей тока (0,1-5,0 А/дм2), работает при температуре 18-25°С, то есть не требует затрат электроэнергии на подогрев, а также позволяет получить полублестящие покрытия сплавом цинк-никель с выходом по току сплава 75-100%. Содержание никеля в сплаве 23-27%.

Компоненты электролита и его характеристики Состав электролита (в г/л) и значения характеристик
заявляемого объекта прототипа
I II III IV V
Оксид цинка 9 10 13 15 16 15
Хлорид аммония 229 230 240 250 251 250
Хлорид никеля 59 60 75 90 91 35-90
шестиводный
Борная кислота 19 20 20 20 21 20
Препарат ОС-20 0,4 0,5 0,55 0,6 0,7 -
Продукт конден-
сации диметилол-
тиомочевины и 0,002 0,003 0,004 0,005 0,006 -
полиэтиленполиамина
Температура 18 18 20 25 25 40
электролита, °С
Катодная плотность тока, А/дм2 0,10 0,10 3,00 5,00 5,00 0,50-2,00
Величина pH 5,0 5,0 5,3 5,5 5,5 6,5-6,8
Выход по току 100 100 88 75 75 93-96
сплава, %
Содержание никеля 27,5 27,4 23,1 24,2 24,5 15-25
в сплаве, %
Внешний вид покрытия неравномер
ное, серое, матовое
полублестящее, равномерное полублестящее, равномерное полублестящее, равномерное неравномер
ное, серое, матовое
равномерное, серое, матовое

Исследования электролита, проведенные в лабораториях ЮРГТУ (НПИ), выявили его высокие технико-экономические показатели и эффективность применения для электроосаждения сплава цинк-никель.

Электролит для электроосаждения сплава цинк-никель, содержащий оксид цинка, хлорид никеля шестиводный, хлорид аммония и борную кислоту, отличающийся тем, что он дополнительно содержит препарат ОС-20 и продукт конденсации диметилолтиомочевины и полиэтиленполиамина при следующем соотношении компонентов, г/л:

оксид цинка 10-15
хлорид аммония 230-250
хлорид никеля шестиводный 60-90
борная кислота 20
препарат ОС-20 0,5-0,6
продукт конденсации диметилолтиомочевины
и полиэтиленполиамина 0,003-0,005


 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и авиационной промышленности. .
Изобретение относится к области гальваностегии, в частности, к электролитическому осаждению сплава висмут-галлий. .

Изобретение относится к области электролитического осаждения твердых износостойких покрытий, применяемых для восстановления и упрочнения поверхностей стальных деталей.
Изобретение относится к области электролитического осаждения твердых износостойких покрытий, применяемых для восстановления и упрочнения поверхностей стальных деталей.

Изобретение относится к области получения гальванических покрытий сплавом Co-Ni на сталях и алюминии и его сплавах и может быть использовано в машиностроении, приборостроении, авиационной промышленности и др.
Изобретение относится к области гальваностегии и может быть использовано в машиностроении. .
Изобретение относится к области гальваностегии. .

Изобретение относится к области гальваностегии и может быть использовано для получения коррозионностойких, твердых, термо- и износостойких, паяемых и свариваемых покрытий в машиностроении, приборостроении и электронной технике.
Изобретение относится к области гальванотехники. .
Изобретение относится к области электрохимии, в частности к нанесению износостойких и защитных полимерных композиционных покрытий на стальные изделия и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности
Изобретение относится к области электрохимии, в частности к нанесению упрочняющих, твердых, износостойких и защитных покрытий на стальные изделия и может быть использовано для работы в узлах трения, упрочнения поверхностей деталей, радиоэлектронной и лакокрасочной промышленности
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения ровных, гладких покрытий с высокой коррозионной стойкостью
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных гальванических градиентных покрытий на основе хрома в машиностроении и других отраслях промышленности при изготовлении или восстановлении деталей и инструментов с износостойкими антифрикционными покрытиями, в частности, для повышения стойкости деформирующих инструментов
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения покрытий

Изобретение относится к способу нанесения покрытия из металлических сплавов с применением гальванической технологии
Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей
Изобретение относится к области гальванотехники и может быть использовано для восстановления изношенных поверхностей деталей машин, в частности подшипников скольжения автомобильных двигателей

Изобретение относится к области металлургии, в частности получению стального компонента с металлическим покрытием, который используют в качестве материала для кузовов транспортных средств. Для обеспечения хорошего сцепления покрытия и надежной защиты от коррозии на плоский стальной продукт, выполненный из стали, содержащей 0,3-3 мас.% марганца, имеющий предел текучести 150-1100 МПа и прочность на разрыв 300-1200 МПа, наносят антикоррозионное покрытие из сплава ZnNi электролитическим методом, которое состоит из единственной фазы γ-ZnNi и содержит, наряду с цинком и неизбежными примесями, 7-15 мас.% никеля. Затем из плоского стального продукта получают заготовку и сразу нагревают, по меньшей мере, до 800°C, а затем формуют в стальной компонент, или сначала формуют в стальной компонент, который затем нагревают, по меньшей мере, до 800°C. Стальной компонент, полученный в соответственных случаях, окончательно закаляют достаточно быстрым охлаждением от довольно высокой температуры. 3 н. и 18 з.п. ф-лы, 6 табл., 5 ил., 3 пр.
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит содержит, г/л:оксид цинка 12-15, едкий натр 100-120, никель сернокислый 7-17, триэтаноламин 40-60, гексаметилендиамин-N,N,N',N'- тетрауксусную кислоту 0,5-2, диглицин 1-3, воду до 1 л. Технический результат - увеличение коррозионной стойкости цинк-никелевых покрытий, расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов. 2 табл., 4 пр.
Наверх