Маркер для внутритрубной диагностики


 


Владельцы патента RU 2511787:

Открытое акционерное общество "Гипрогазцентр" (RU)

Изобретение относится к магнитной внутритрубной диагностике и может использоваться в нефтегазовой промышленности при определении координат дефектов металла труб подземных трубопроводов. Маркер состоит из двух маркерных накладок, выполненных из ферромагнитного материала, а именно из предварительно намагниченного композиционного материала с высокими пластическими свойствами, установленных на верх трубопровода с определенным расстоянием между ними. Маркер также содержит вехи с информационным указателем. Накладки фиксируют за счет силы магнитного взаимодействия между накладкой и стальной трубой, а веху с информационным указателем устанавливают в грунт при засыпке трубопровода. Техническим результатом является снижение массы маркера и трудоемкости его установки, а также повышение качества монтажа и надежности его работы.

 

Изобретение относится к магнитной внутритрубной диагностике и может найти применение в нефтегазовой промышленности при определении координат дефектов металла труб подземных трубопроводов.

Известно устройство сигнализации прохождения по трубопроводу магнитонесущего инспекционного снаряда, состоящее из выносного датчика магнитного поля и усилителя-формирователя сигнала (патент №2321027).

К недостаткам способа относят техническую сложность устройства и необходимость обеспечения устройства источником электрической энергии, что сложно реализуемо, например, при его монтаже на линейной части магистральных газонефтепроводов.

Наиболее близким к заявляемому изобретению является маркер, состоящий из двух фрагментов стальной трубы (накладок), аналогичной тем, из которых выполнен трубопровод и вехи с информационным указателем, приваренной к одной из накладок и выходящей на дневную поверхность. Накладки устанавливаются на верхнюю образующую трубопровода с обеспечением расстояния между ними порядка 100-110 мм. Крепление накладок на трубе осуществляется при помощи изоляционных материалов - термоусаживающихся манжет или липких полимерных лент. Маркер устанавливается, как правило, на расстоянии не более 10 м от контрольно-измерительной колонки системы электрохимической защиты по ходу движения продукта (Инструкция по изготовлению и установке накладок маркерных СПЕ 1.010.00.00-10.09 И (Редакция 2) - ЗАО «НПО «Спецнефтегаз», ЗАО «НПО «Спектр», г. Екатеринбург, 2006 г.).

К недостаткам известного технического решения относится:

- большая масса (масса двух накладок для трубопровода 1420 мм порядка 60 кг) и металлоемкость;

- необходимость изготовления накладок под определенный диаметр трубопровода и техническая сложность изготовления накладок для труб нестандартного диаметра;

- необходимость крепления и антикоррозионной изоляции накладок;

- высокая трудоемкость и, как следствие, стоимость монтажа маркера, обусловленная необходимостью полнопрофильного вскрытия трубы для крепления накладок изоляционными материалами;

- риск повреждения (продавливания) кромками накладок изоляционного покрытия трубопровода из-за несоответствия внутреннего радиуса накладок и внешнего радиуса трубопровода с учетом изоляционного покрытия, как следствие, риск развития коррозии металла труб.

- риск повреждения вехи при обратной механизированной засыпке участка трубопровода.

Решаемой технической задачей является создание маркера для внутритрубной диагностики, позволяющего уменьшить трудоемкость и повысить качество его монтажа, предотвращающего смещение от места первоначальной установки без дополнительных средств крепления, а также снижение массы маркера.

Достигаемый технический результат изобретения - снижение массы маркера, снижение трудоемкости и повышение качества монтажа маркера.

Поставленная задача решается тем, что в маркере для внутритрубной диагностики, состоящем из, по крайней мере, двух маркерных накладок, выполненных из ферромагнитного материала, устанавливаемых на верх трубопровода с определенным расстоянием между ними, вехи с информационным указателем, выходящей на дневную поверхность, накладки выполняют из предварительно намагниченного композиционного материала с высокими пластическими свойствами, откапывание трубопровода выполняют только до его верха, при этом накладки фиксируют за счет силы магнитного взаимодействия между накладкой и стальной трубой, а веху с информационным указателем, имеющую в нижней части приспособление, предотвращающее ее выдергивание из грунта, устанавливают в грунт при обратной засыпке трубопровода.

В качестве пояснения приводим следующее:

Применение для изготовления накладок из коррозионно-стойких композиционных пластических материалов с магнитными свойствами позволяет уменьшить массогабаритные показатели по сравнению с накладками, выполненными из фрагментов стальных труб, кроме этого исключает необходимость их пассивной защиты от коррозии и минимизирует риск повреждения изоляции трубы накладкой.

Сила притягивания магнитных накладок к стальному трубопроводу предотвращает смещение накладок от места первоначальной установки без дополнительных средств крепления, что позволяет откапывать трубопровод только до освобождения верха трубы и минимизировать затраты на монтаж, крепление и изоляцию накладок.

Высокие пластические свойства маркерных накладок из композиционных материалов позволяют применять одни и те же накладки для создания маркеров на трубопроводах различного диаметра.

Крепление вехи с информационным указателем непосредственно в грунт при обратной засыпке трубопровода позволяет исключить риск повреждения вехи и возможного смещения накладки.

Пример

На участке магистрального газопровода с координатой 102,351 км, выполненного из стальных труб диаметром 1420 мм и толщиной стенки 17 мм, необходимо установить маркер №9 (М9) для внутритрубной диагностики с целью последующей привязки дефектных мест на трубопроводе. Глубина заложения трубопровода до верхней образующей 0,9 м.

На участке газопровода вручную откапывают грунт до верхней образующей трубы. Очищают поверхность изоляции газопровода от частиц грунта. Вручную опускают в шурф накладки из коррозионно-стойкого магнитопласта, выполненного из резины с магнитным наполнителем - порошком анизотропным NdFeB-8A. Размеры накладок 350×350×10 мм. Масса каждой накладки - около 6 кг. Укладывают накладки на верхнюю образующую трубопровода, при этом обеспечивают расстояние между накладками 100 мм. За счет силы магнитного взаимодействия магнитопласта и стенки стальной трубы накладки плотно прилегают к трубе и повторяют ее форму. Присыпают накладки грунтом. На грунт над накладками устанавливают веху, изготовленную из полипропиленовой трубы диаметром 20 мм и толщиной стенки 3 мм. Веха имеет в нижней части полимерный диск диаметром 200 мм и толщиной 20 мм, закрепленный таким образом, что ось трубы совпадает с осью диска. Выполняют окончательную засыпку участка. На веху наносят указатель маркера «М9».

Маркер для внутритрубной диагностики, состоящий из, по меньшей мере, двух маркерных накладок, выполненных из ферромагнитного материала, устанавливаемых на верх трубопровода с определенным расстоянием между ними, вехи с информационным указателем, выходящей на дневную поверхность, отличающийся тем, что накладки выполняют из предварительно намагниченного композиционного материала с высокими пластическими свойствами, откапывание трубопровода выполняют только до его верха, при этом накладки фиксируют за счет силы магнитного взаимодействия между накладкой и стальной трубой, а веху с информационным указателем, имеющую в нижней части приспособление, предотвращающее ее выдергивание из грунта, устанавливают в грунт при обратной засыпке трубопровода.



 

Похожие патенты:

Изобретение относится к области контроля технологических процессов функционирования трубопроводов, а именно к контролю технического состояния трубопроводов, предназначенных для транспортировки вязких жидкостей.

Изобретение относится к трубопроводному транспорту и может быть использовано при испытании на герметичность затворов запорных арматур, установленных на линейной части эксплуатируемого магистрального нефтепровода.

Изобретение относится к трубопроводному транспорту и может быть использовано для автоматического контроля технологического процесса транспортировки жидкости и газа.

Изобретение относится к трубопроводному транспорту и может быть использовано при эксплуатации трубопроводов. .

Изобретение относится к магистральным трубопроводным системам транспорта газа, а более конкретно, к непрерывному контролю за обеспечением взрывопожаробезопасности при производстве ремонтных (огневых) работ на отключенном и выведенном в ремонт со стравливанием газа подземном или надземном участке действующего объекта магистрального трубопровода.

Изобретение относится к области приборостроения и может быть использовано для дистанционного контроля состояния магистральных газопроводов и хранилищ с помощью диагностической аппаратуры, установленной на носитель - дистанционно-пилотируемый летательный аппарат (ДПЛА).

Изобретение относится к области гидравлики и предназначено для контроля технических характеристик магистральных трубопроводов, проложенных как на суше, так и в водной среде.

Изобретение относится к дистанционному контролю технического состояния теплотрассы и может быть использовано при создании систем автоматизации теплоснабжения. .

Изобретение относится к стационарным системам мониторинга исправности морского трубопровода газоконденсата. .

Изобретение относится к трубопроводному транспорту и может быть использовано в системах определения места утечки нефтепродуктов в нефтепродуктопроводах, а также определения мест течи и разгерметизации в труднодоступных местах нефтепродуктопроводов.

Изобретение относится, преимущественно, к нефтяной и газовой промышленности и, в частности, к области трубопроводного транспорта углеводородов. В поврежденный трубопровод закачивают раствор пенообразующего вещества на пресной или морской воде с образованием устойчивой грубодисперсной газовой эмульсии с размером пузырьков, обеспечивающим постоянную скорость их всплывания с глубины размещения подводного трубопровода на водную поверхность и не подверженных коалесценции. Определяют координаты места порыва трубопровода по координатам появившейся на водной поверхности локальной зоны - «метки» с явно выраженными характеристиками водной поверхности, отличными от окружающей водной поверхности, с учетом придонных и поверхностных течений в зоне появления «метки» по аналитическим зависимостям. Техническим результатом является повышение точности обнаружения места порыва подводного трубопровода. 10 з.п. ф-лы, 3 табл., 7 ил.

Устройство и фильтр предназначены для обработки воды. Устройство (1) содержит регулятор (2) расхода для управления потоком воды, причем регулятор (2) включает в себя дроссель (6) и противоутечное устройство (12), последовательно сообщающееся по текучей среде с дросселем (6), для прерывания потока, когда перепад давлений между впускным и выпускным отверстиями дросселя (6) меньше заданной величины, фильтр (34) для воды и сумматор потока (28, 29) для прибавления потока воды, прошедшего сквозь фильтр (34) для воды, при этом фильтр (34) сообщается по текучей среде с дросселем (6, 36), чтобы ограничить расход воды максимальным количеством воды, протекающей через фильтр (34) в заданный промежуток времени. Технический результат - снижение расхода воды. 2 н. и 6 з.п. ф-лы, 12 ил.

Изобретение относится к области испытательной техники и, в частности, к технологии восстановления несущей способности трубопровода. Способ включает в себя лабораторные испытания на удар и растяжение-сжатие по схеме «стресс-теста» цилиндрических образцов с трещиноподобными дефектами, моделирование условий деформирования металла труб под действием внутреннего давления в направлении действия главного напряжения. По результатам испытаний определяют предельную величину деформации, обеспечивающую запас пластичности металла труб в условиях действия кольцевых напряжений, равных 110% предела текучести. С учетом результатов лабораторных испытаний осуществляют испытание участка трубопровода на удар методом «стресс-теста» и восстановление его несущей способности. Напряженно-деформированное состояние и прогнозируемый срок безопасной эксплуатации отремонтированного участка трубопровода определяют расчетным путем. Технический результат - повышение эффективности капитального ремонта трубопровода. 1 з.п. ф-лы, 3 ил., 2 табл.

Использование: для предотвращения чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода. Сущность изобретения заключается в том, что осуществляют возбуждение периодической последовательности виброакустических импульсов в заданном сечении трубы, регистрацию их в двух сечениях продуктопровода, удаленных примерно на одинаковые расстояния по обе стороны от сечения возбуждения, накопление суммы отсчетов интегралов от разностей регистрируемых сигналов, причем число накоплений в цикле определяют расчетным путем по задаваемой вероятности ложных решений для каждого предвестника чрезвычайной ситуации, оценке уровня ожидаемого сигнала в точках регистрации, среднеквадратическому отклонению регистрируемых отсчетов указанных интегралов, а решение о появлении предвестника чрезвычайной ситуации принимают при превышении накопленного за цикл результата одного из установленных эталонных уровней, причем решение о подготовке врезки трансформируется в сигнал тревоги через установленный на контролируемом участке громкоговоритель, а сигналы всех принимаемых решений передаются на мнемосхему в службе безопасности по каналам телемеханики. Технический результат: обеспечение возможности раннего обнаружения формирующейся чрезвычайной ситуации на линейной части подземного магистрального продуктопровода. 2 ил.

Предлагается способ, выполняемый в реальном времени, и динамическая логическая система для повышения эффективности работы трубопроводной сети. Система и способ осуществляют контроль работы трубопроводной сети, генерацию сигналов тревоги в ответ на различные уровни дестабилизирующих событий в трубопроводе, управляют генерацией сигналов тревоги на основе известных эксплуатационных событий и условий, диагностируют потенциальный источник обнаруженных дестабилизирующих событий и управляют работой трубопровода. 5 н. и 46 з.п. ф-лы, 5 ил., 1 табл.

Устройство аварийного перекрытия трубопровода содержит корпус 1, клапан 2, седло 3 клапана и механизм возврата клапана. Корпус оснащен подающим 4 и расходным 5 патрубками для подключения к подающему и расходному участкам трубопровода. Седло 3 клапана установлено поперек проточной части корпуса, а клапан связан штоком 6 с механизмом возврата. Клапан расположен со стороны подающего патрубка 4 и закреплен на штоке 6. Шток установлен подвижно в направляющих корпуса. Механизм возврата включает уплотнение 7, регулируемую опору 8, предохранитель 9 и опорный стакан 10. Уплотнение закреплено в корпусе. Регулируемая опора подвижно установлена в опорном стакане 9 на предохранителе 10 из твердого растворимого вещества. Предохранитель установлен на дне опорного стакана, в котором выполнены отверстия под разлившуюся жидкость. Опорный стакан установлен на полу контролируемого помещения. Корпус 1 выполнен в виде цилиндра, закрытого крышками 11, 12, с уплотнительными кольцами 13, которые стянуты шпильками 14 и гайками 15. Технический результат заключается в повышении надежности устройства. 4 з.п.ф., 4 ил.
Способ предназначен для совместной обработки данных диагностирования по результатам пропуска комбинированного внутритрубного инспекционного прибора. Способ включает определение дефектов ультразвуковым и магнитным методами, при котором, оператору в каждый момент времени предоставляют результаты инспекции на двух экранах мониторов одновременно, причем результаты инспекции приводят к точке отсчета, имеющей одну и ту же дистанцию и угловое положение отображения реальной точки трубопровода. Технический результат - уменьшение времени инспекции дефектов трубопровода.
Изобретение относится к области теплоэнергетики и касается вопросов контроля эксплуатационного состояния тепловых сетей, и решает задачу по формированию программ ремонтно-профилактических работ на участках тепловых сетей. Это достигается тем, что способ включает в себя инфракрасную аэросъемку обследуемого объекта, обработку материалов инфракрасной съемки, выделение температурных аномалий, зафиксированных на земной поверхности, расчет избыточного количества выделяемой тепловой энергии и отличается тем, что включает в себя заверочные наземные работы методами теплометрии и акустометрии для установления истинных причин возникновения зарегистрированных температурных аномалий, а именно осмотр и сопутствующие измерения в теплофикационных камерах, дренажных колодцах и на поверхности трассы подземного теплопровода, комплексную оценку состояния изоляционного покрытия труб по результатам обследования методом инфракрасной аэросъемки и наземных диагностических работ, адресную привязку участков тепловых сетей с температурными аномалиями, выполнение наземных инструментальных измерений методами электрометрии для определения коррозионного состояния труб, сбор и обработку статистической информации для определения степени агрессивного воздействия окружающей среды на основе расчета численного показателя фактора «Дефектность» и определения периода протекания деструктивных процессов на основе фактора «Срок эксплуатации», расчет для каждого участка тепловой сети значения обобщающего параметра «Вероятность отказа», ранжирование участков ТС по эксплуатационному состоянию на основании численных значений параметра «Вероятность отказа», классификацию обследованных участков тепловой сети по эксплуатационному состоянию с учетом ранжирования, используя которую выполняют формирование программы ремонтно-профилактических работ на участках тепловых сетей. Предлагаемый способ за счет применения дополнительных контролирующих факторов и ранжирования участков по расчетному значению вероятностного параметра «Вероятность отказа» позволяет более обосновано формировать программу ремонтно-профилактических работ на участках тепловых сетей, что выгодно отличает его от прототипа.

Изобретение относится к области теплоэнергетики и может быть использовано для определения фактической величины тепловых потерь в водяных и паровых тепловых сетях системы теплоснабжения подземной прокладки в режиме эксплуатации. Заявленный способ включает одновременное измерение линейной плотности теплового потока в специально оборудованных опорных участках действующей тепловой сети и проведение дистанционной тепловой инфракрасной аэросъемки территории, на которой расположены тепловые сети. По материалам тепловой аэросъемки определяют численные значения превышения величины тепловых потерь с каждого участка теплопровода относительно опорных участков и рассчитывают фактические значения величины тепловых потерь по всей обследуемой тепловой сети. Способ применим для магистральных, распределительных и квартальных подземных теплопроводов любого диаметра, предназначенных для транспортировки теплоносителя с температурой <300°C. Технический результат - повышение точности определения транспортных тепловых потерь в подземной сети теплоснабжения произвольной конструкции и размера в эксплуатационном режиме без отключения конечных потребителей.

Группа изобретений относится к жилищно-коммунальному хозяйству. Способ обнаружения протечек воды включает инициирование сигналом датчика процедуры отключения подачи воды в водопроводную сеть и водоразборную арматуру помещения в нештатной ситуации. Сигнал формируют и при штатной ситуации, при этом после инициирования оценивают фактическую ситуацию в течение процедуры, которую завершают в нештатной и прекращают в штатной ситуации. Сигнал формируют движением воды в сети. Устройство для осуществления способа содержит связанные между собой через блок обработки сигналов запорный кран, размещенный на трубопроводе, и датчики. Один из датчиков, который установлен на трубопроводе, является датчиком движения воды, другой датчик размещен на водоразборной арматуре и является датчиком открывания последней. Обеспечивается упрощение конструкции устройства и повышение эксплуатационных характеристик. 2 н. и 10 з.п. ф-лы, 4 ил.
Наверх