Ферромагнитный полупроводниковый материал



Ферромагнитный полупроводниковый материал
Ферромагнитный полупроводниковый материал
Ферромагнитный полупроводниковый материал

 


Владельцы патента RU 2515426:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU)

Изобретение относится к области материалов полупроводниковой электроники и может быть использовано для создания элементов спинтронных устройств, сочетающих источник и приемник поляризованных спинов носителей заряда в тройной гетероструктуре ферромагнитный полупроводник/немагнитный полупроводник/ферромагнитный полупроводник. Техническим результатом изобретения является создание ферромагнитного полупроводникового материала, обладающего высокой намагниченностью при комнатной и выше температурах в отсутствие внешнего магнитного поля. Ферромагнитный полупроводниковый материал представляет собой ферромагнитную пленку полупроводникового диоксида титана, легированного ванадием в количестве от 3 до 5 % ат. по отношению к титану, имеющую кристаллическую структуру анатаза и выращенную на диэлектрической подложке. Пленка легированного диоксида титана дополнительно имплантирована при комнатной температуре ионами кобальта с дозой (1.3-1.6)·1017 см-2 и сохраняет при температурах не менее 300 К в отсутствие внешнего магнитного поля остаточную намагниченность не менее 70% от величины намагниченности насыщения. 2 н. и 1 з.п. ф-лы, 3 ил., 3 пр.

 

Изобретение относится к области материалов полупроводниковой спиновой электроники и может быть использовано для создания элементов соответствующих спинтронных приборов.

К настоящему времени в мире разработаны теоретические основы спиновой электроники и конкретные конструкции разнообразных спиновых магнитоэлектронных приборов, таких как спиновые полевые транзисторы, спиновые резонансные и светодиоды, спиновые вентили и т.д., а также перспективных элементов памяти с высокой компактностью и быстродействием, и низким энергопотреблением. Данное направление в настоящее время рассматривается как одно из наиболее перспективных для создания нового поколения приборов для хранения, передачи и обработки информации. Создание указанных материалов и приборов на их основе позволит реализовать огромные возможности полупроводниковой спиновой электроники.

Основным препятствием на пути создания спинтронных приборов в настоящее время является отсутствие полупроводниковых материалов, обладающих высокой намагниченностью в отсутствие внешнего магнитного поля для работы при комнатной и выше температурах. Задачей настоящего изобретения является создание такого материала на основе диоксида титана, легированного ванадием, что обеспечивает собственное ферромагнитное упорядочение в полупроводнике с высокой намагниченностью насыщения при комнатной температуре, в сочетании с дополнительной имплантацией ионов кобальта в материал, позволяющей сохранить намагниченность в отсутствие внешнего магнитного поля на уровне не менее 70% от намагниченности насыщения.

Известна полупроводниковая структура, ферромагнитная при комнатной и выше температурах, состоящая из ферромагнитной пленки Mn-Si, осаждаемой методом магнетронного распыления на подложке монокристаллического кремния (Патент CN 1885493 А, МПК: H01L 21/203; С23С 14/35; С23С 14/58; H01L 21/324).

Известен также способ получения такой структуры на основе ферромагнитного полупроводника Si-Mn путем имплантации ионов марганца в кремниевые пластины (M.Bolduc et al., Phys.Rev.B, v.71, p.033302, 2005; А.Ф.Орлов и др. ЖЭТФ, т.136, с.703, 2009).

Недостатком указанных структур является низкая намагниченность насыщения получаемого материала и дополнительное резкое ее уменьшение при снятии внешнего магнитного поля.

Известен способ получения ферромагнитной при комнатной температуре пленки на основе диоксида титана, легированной хромом (Патент CN 101211764 А от 02.07.2008, МПК H01L 21/203; H01L 21/02). Известен также способ получения ферромагнитной при комнатной температуре диэлектрической пленки на основе диоксида титана, легированной ванадием в количестве 5% ат. (N.H. Hong et al., Phys.Rev. В, v. 70, p.195204, 2004).

Недостатком указанных материалов является низкая намагниченность в отсутствие внешнего магнитного поля.

Наиболее близким к заявляемому изобретению является способ получения ферромагнитного при комнатной температуре полупроводникового материала путем имплантации ионов кобальта в пластины диоксида титана (Патент RU 2361320 С1, МПК: H01L 21/425).

Недостатками полученного таким способом материала является отсутствие в нем собственного ферромагнитного упорядочения. Намагниченность материала создается при этом введением в материал кластеров ферромагнитного кобальта.

Предлагаемое изобретение отличается от известных следующими элементами:

- в качестве основы предлагается использование эпитаксиальной пленки или пластины полупроводникового в широких пределах проводимости легированного диоксида титана в модификации анатаза, проявляющего собственное ферромагнитное упорядочение при комнатной и выше температурах с высокой величиной намагниченности насыщения; при этом легирование диоксида титана выполняется ванадием при концентрации от 3 до 5% ат. по отношению к титану,

- дополнительно выполняется имплантация указанного ферромагнитного материала ионами кобальта при комнатной температуре с дозами (1.3-1.6)·1017 см-2.

Отличительные признаки обеспечивают необходимые электрические и магнитные характеристики указанного материала.

Задачей настоящего изобретения является создание ферромагнитного полупроводникового материала, обладающего высокой намагниченностью при комнатной и выше температурах в отсутствие внешнего магнитного поля.

Технический результат заключается в получении материала на основе диоксида титана, легированного ванадием, что обеспечивает собственное ферромагнитное упорядочение в полупроводнике с высокой намагниченностью насыщения при комнатной температуре, в сочетании с дополнительной имплантацией ионов кобальта в материал, позволяющей сохранить намагниченность в отсутствие внешнего магнитного поля на уровне не менее 70% от намагниченности насыщения.

Поставленная задача решается тем, что ферромагнитный полупроводниковый материал представляет собой ферромагнитную при температурах не менее 300 К пленку на диэлектрической подложке или пластину легированного ванадием полупроводникового диоксида титана, дополнительно имплантированного ионами кобальта; согласно изобретению пленка или пластина диоксида титана легирована ванадием в количестве от 3 до 5% ат. по отношению к титану, дополнительно имплантирована ионами кобальта от 0,1 до 5% ат. при комнатной температуре с дозой (1.3-1.6)·1017 см-2 и имеет кристаллическую структуру анатаза и удельное электрическое сопротивление в широком диапазоне от 10-1 до 103 Ом·см.

Изобретение поясняется чертежами, демонстрирующими достижение заявляемым ферромагнитным полупроводниковым материалом (Примеры 1-3) указанного свойства, а именно: на фиг.1 представлена петля магнитного гистерезиса пленки TiO2:5% V, имплантированной ионами Со с дозой 1.5·1017 см-2 при комнатной температуре, коэрцитивное поле Hc=80 Э, остаточная намагниченность Mr=75% (результаты Примера 1); на фиг.2 - кривая магнитного гистерезиса пластины TiO2:5% V, имплантированной ионами Co с дозой 1·1017 см-2 при комнатной температуре, Hc=350 Э, Mr=55% (Пример 2); на фиг.3 - кривая магнитного гистерезиса пластины ТiO2: 5% V, имплантированной ионами Со с дозой 1.5·1017 см-2 при комнатной температуре, Нс=490 Э, Mr=89% (Пример 3).

Заявляемые составы легированного полупроводника на основе диоксида титана при его дополнительной имплантации ионами кобальта обеспечивают сохранение высокой остаточной намагниченности материала при температурах выше комнатной и изменение его удельного электрического сопротивления в широком диапазоне.

Обоснование заявленных параметров материала:

- для получения пленок ферромагнитного полупроводника используется металлическая мишень состава VxTi100-x, где 3≤x≤5% ат. Такая же величина легирования ванадием используется при выращивании кристаллов VxTi100-xО2-δ. Диапазон концентраций легирования обусловлен тем, что при содержании ванадия менее 3% ат. наблюдаются низкие значения намагниченности насыщения, а при содержании ванадия более 5% не гарантируется однофазный состав материала;

- процесс высокочастотного магнетронного распыления мишени для получения пленок диоксида титана проводится в смеси кислорода с аргоном с соотношением компонентов в диапазоне 1/150 - 1/200 при давлении в камере 10-2 Торр. При больших концентрациях кислорода в смеси получаемые пленки являются диэлектриком, а при меньших имеют металлическую проводимость;

- в качестве подложки при выращивании пленок используют монокристаллический алюминат лантана LaAlO3, что обеспечивает получение кристаллической модификации анатаза материала;

- при дозах имплантации ионов кобальта менее 1.3·1017 см-2 не обеспечивается высокая остаточная намагниченность материала, а при дозах выше 1.6·1017 см-2 наблюдается сильное распыление материала ферромагнитного полупроводника.

Параметры получаемых ферромагнитных полупроводников контролировались методом рентгеноструктурного анализа, локального рентгеноспектрального анализа (состав), методом фотоэлектронной спектроскопии (химическое состояние примеси ванадия), измерением удельного электросопротивления и измерением намагниченности методом индукционной магнитометрии.

Заявленные характеристики ферромагнитного полупроводникового материала иллюстрируются следующими примерами.

Пример №1.

Осаждение пленок проводилось при магнетронном распылении металлической мишени состава Ti0.95V0.05 в аргон-кислородной плазме при соотношении кислорода к аргону, равном 1/180, на подложку из алюмината лантана с ориентацией (001) при температуре 650°C. Полученные пленки имели ту же структуру и ориентацию, что и подложка. Результаты фотоэлектронной спектроскопии указывали на окисленное состояние примеси ванадия в пленке. После имплантации в пленку ионов кобальта с дозой 1.5·1017 см-2 величина остаточной намагниченности составляла 75% от намагниченности насыщения (фиг.1).

Пример №2.

Осаждение пленок проводилось при магнетронном распылении металлической мишени состава Ti0.95V0.05 в аргон-кислородной плазме при соотношении кислорода к аргону, равном 1/180, на подложку из алюмината лантана с ориентацией (001) при температуре 650°C. Полученные пленки имели ту же структуру и ориентацию, что и подложка. Результаты фотоэлектронной спектроскопии указывали на окисленное состояние примеси ванадия в пленке. Доза имплантации ионов кобальта в пластину состава Ti0.95V0.05O2-δ составляла 1·1017 см-2. В этом случае величина остаточной намагниченности составляла 55% от намагниченности насыщения (фиг.2).

Пример №3.

Осаждение пленок проводилось при магнетронном распылении металлической мишени состава Ti0.95V0.05 в аргон-кислородной плазме при соотношении кислорода к аргону, равном 1/180, на подложку из алюмината лантана с ориентацией (001) при температуре 650°C. Полученные пленки имели ту же структуру и ориентацию, что и подложка. Результаты фотоэлектронной спектроскопии указывали на окисленное состояние примеси ванадия в пленке. Доза имплантации ионов кобальта в пластину того же состава составляла 1.5·1017 см-2. Величина остаточной намагниченности составляла 89% от намагниченности насыщения (фиг.3).

Таким образом, заявляемое решение обеспечивает создание ферромагнитного полупроводникового материала с высокой остаточной намагниченностью в отсутствие внешнего магнитного поля при температурах выше комнатной и удельным электрическим сопротивлением в широком диапазоне. Такой материал может эффективно использоваться в качестве инжектора и приемника поляризованных носителей заряда в приборах и устройствах спиновой электроники.

1. Ферромагнитный полупроводниковый материал, представляющий собой ферромагнитную пленку полупроводникового диоксида титана, легированного ванадием в количестве от 3 до 5% ат. по отношению к титану, имеющую кристаллическую структуру анатаза, выращенную на диэлектрической подложке, имплантированную ионами кобальта в количестве от 0.1 до 5% ат. для формирования высокой остаточной намагниченности не менее 70% от намагниченности насыщения.

2. Ферромагнитный полупроводниковый материал по п.1, характеризующийся тем, что в качестве диэлектрической подложки использован алюминат лантана.

3. Способ получения ферромагнитного полупроводникового материала, включающий выращивание на диэлектрической подложке пленки диоксида титана, легированной ванадием в количестве от 3 до 5% ат. по отношению к титану, имеющей кристаллическую структуру анатаза, и имплантацию в полученную пленку при комнатной температуре атомов кобальта с дозой (1.3-1.6)·1017 см-2.



 

Похожие патенты:

Изобретение относится к технологии получения ферромагнитных полупроводниковых материалов. .

Изобретение относится к полупроводниковой технике, в частности к производству фотоприемных устройств, линеек, матриц, МДП-фотодиодов, приборов зарядовой связи и инжекции ИК-диапазона.

Изобретение относится к полупроводниковой технике, в частности к фотоэлектронике и может быть использовано для создания многоэлементных ИК-фотоприемников на основе n+/n-p- или n+/p-/p- и МДП-фотодиодов, а также приборов зарядовой связи (ПЗС) или инжекции (ПЗИ).
Изобретение относится к пигменту на основе диоксида титана с высокой непрозрачностью, а также - к способу его получения и применения для изготовления декоративной бумаги или декоративной фольги.

Изобретение относится к способу получения фотокаталитических покрытий диоксида титана на стекле, а также к составам, используемым для получения таких покрытий. .
Изобретение относится к получению диоксида титана, используемого в производстве фотоактивных катализаторов, кремнийорганических и тиоколовых герметиков. .

Изобретение относится к углеродсодержащему фотокатализатору на основе диоксида титана, который является фотоактивным в видимой области спектра, в дальнейшем называемому vlp-TiO2 .

Изобретение относится к получению титановых концентратов с низким содержанием радионуклидных элементов и может быть использовано в производстве пигментов на основе диоксида титана.
Изобретение относится к светоустойчивым полимерным композициям. .
Изобретение может быть использовано в производстве солнцезащитных продуктов. Частицы диоксида титана обладают медианным средневзвешенным диаметром частиц более 70 нм, а также Е524 менее 9 л/г/см, E360 от 25 до 50 л/г/см и отношением Е360/Е308 от 0,5 до 1,0. Способ получения указанных частиц диоксида титана включает получение частиц-прекурсора диоксида титана со средней длиной от 40 до 100 нм и/или средней шириной от 3 до 25 нм и обжиг частиц-прекурсора при температуре от 450 до 850°C. Изобретение позволяет получить частицы диоксида титана, обладающие свойствами эффективного поглощения ультрафиолетового излучения спектра В (УФВ) и высокой эффективностью в отношении ультрафиолетового излучения спектра А (УФА). 5 н. и 10 з.п. ф-лы, 9 пр.

Изобретение может быть использовано в химической промышленности. Для получения образцов наноразмерного диоксида титана со структурами рутила или смеси анатаза и рутила в разном соотношении получают реакционную смесь диспергированием порошкообразного гидратированного сульфата титанила с пероксосоединением. Затем продукт подвергают отжигу. В качестве пероксосоединения могут быть использованы пероксодисульфат аммония, аддукт карбамида с пероксидом водорода, 30%-ный водный раствор пероксида водорода. Изобретение позволяет упростить процесс получения наноразмерного диоксида титана, уменьшив количество стадий. 3 з. п. ф-лы, 13 ил., 1 табл.,16 пр.

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом. Композитный электрод представляет собой графитовый стержень с просверленной по центру полостью, которая заполнена спрессованной смесью порошков титана и графита. Весовое соотношение титан/графит составляет 1/2. В плазме электрического дугового разряда распыляют композитный электрод. Отжиг синтезированного материала проводят путем нагрева в кислородсодержащей среде при атмосферном давлении до температуры 900-1000°С и выдержки в течение 1 ч. Изобретение позволяет получить диоксид титана со структурой рутила с высокоразвитой поверхностью, без затрат на коррозионностойкое оборудование и высоких требований к качеству сырья. 1 з.п. ф-лы, 12 ил., 1 табл.

Изобретение может быть использовано в химической, добывающей, пищевой отраслях промышленности и в медицине. Для получения сверхвысокомолекулярного полиэтилена (СВМПЭ), модифицированного наноразмерными частицами оксида титана, к исходному СВМПЭ при интенсивном перемешивании добавляют тетрахлорметан-бензольную смесь. В образовавшуюся суспензию прикапывают бензиловый спирт. Реакционную массу интенсивно перемешивают, поддерживая температуру 180-210°C. К образовавшейся суспензии прикапывают тетрахлорметан-бензольный раствор тетрахлорида титана. Указанный раствор содержит тетрахлорид титана в количестве, соответствующем его мольному соотношению к бензиловому спирту, равному 1:4-4,2. Смесь перемешивают, поддерживая температуру 180-210°C. Полученную суспензию охлаждают, подвергают фильтрации, обработке хлороформом, отгонке растворителей и сушке. Изобретение позволяет получить модифицированный наночастицами оксида титана СВМПЭ в виде белого порошка с размером частиц 50 - 200 мкм с высокими физико-механическими свойствами, повысить прочность на разрыв и модуль упругости полученного материала. 1 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к оптике. Способ изготовления дифракционной решетки заключается в формировании на поверхности исходной подложки элементов заданной структуры дифракционной решетки путем ионной имплантации через поверхностную маску, при этом имплантацию осуществляют ионами металла с энергией 5-1100 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1022 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2с в оптически прозрачную диэлектрическую или полупроводниковую подложку. Изобретение обеспечивает возможность изготовления дифракционных решеток на поверхности оптически прозрачных диэлектрических или полупроводниковых материалов, характеризуемых повышенным контрастом в коэффициентах отражения между отдельными элементами решетки, что позволит улучшить их дифракционную эффективность и даст возможность использования как для отраженного, так и для проходящего света. 8 ил., 3 пр.
Наверх