Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий



Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий
Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий

 


Владельцы патента RU 2516276:

Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (RU)

Изобретение относится к области электротехники, в частности к контролю качества пропитанной изоляции электротехнических изделий, и может быть использовано для контроля процесса отверждения пропитанной изоляции обмоток электротехнических изделий. Согласно изобретению, предварительно подготавливают партию образцов пропиточного состава, с различными, отличающимися от образца к образцу, степенями высушенности, и у каждого из упомянутых образцов снимают зависимость диэлектрической проницаемости от частоты электромагнитного поля. По снятым зависимостям выбирают две частоты измерения, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая - f2 в оптической области не отвержденного изоляционного пропиточного состава. Затем, используя снятые для образцов частотные зависимости, строят график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) , где εпс(f1) εпс(f2) - диэлектрические проницаемости пропиточного состава, измеренные на частотах f1 и f2 электромагнитного поля соответственно. После этого у каждой из контролируемых обмоток измеряют на выбранных двух частотах емкости относительно корпуса до пропитки Cдп(f1) и Cдп(f2), и емкости у тех же обмоток после их пропитки и сушки Cпп(f1) и Cпп(f2), и по результатам измерений вычисляют отношение lgε пс ( f 2 ) lgε пс ( f 1 ) = lnC пп (f 2 ) + ln[C экв ( f 2 ) C дп ( f 2 ) ] lnC дп ( f 2 ) ln[C экв ( f 2 ) C пп ( f 2 ) ] lnC пп (f 1 ) + ln[C экв ( f 1 ) C дп ( f 1 ) ] lnC дп ( f 1 ) ln[C экв ( f 1 ) C пп ( f 1 ) ] , где C экв ( f 1 ) = 2pSε 0 ε э ( f 1 ) ε к ( f 1 ) 3[d э ε к ( f 1 ) + d к ε э ( f 1 ) , C экв ( f 2 ) = 2pSε 0 ε э ( f 2 ) ε к ( f 2 ) 3[d э ε к ( f 2 ) + d к ε э ( f 2 ) - эквивалентные емкости последовательно соединенных емкостей эмали и корпусной изоляции контролируемой обмотки на частотах f1 и f2 электромагнитного поля соответственно, p - количество пазов в магнитном сердечнике, в которые всыпана контролируемая часть обмотки; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; εэ(f1), εэ(f2), - диэлектрические проницаемости эмалевой пленки провода обмотки на частотах f1 и f2 электромагнитного поля соответственно; εк(f1), εк(f2) - диэлектрические проницаемости корпусной изоляции на частотах f1 и f2 электромагнитного поля, соответственно; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции, после чего по вычисленной по результатам измерения величине lg ε п с ( f 2 ) lg ε п с ( f 1 ) определяют из графика зависимости степени высушенности пропиточного состава степень высушенности пропиточного состава в каждой контролируемой обмотке. Предлагаемый способ обеспечивает достижение технического результата, состоящего в исключении необходимости измерения собственной емкости обмоток на трех частотах с применением эталонной индуктивности при одновременном обеспечении существенного упрощения его (способа) осуществления (реализации) за счет исключения необходимости изготовления и использования для контроля таких элементов, как стабилизатор тока, измеритель времени разогрева и измеритель приращения температуры обмоток в процессе их разогрева. 1 табл., 4 ил.

 

Изобретение относится к электротехнике, в частности к контролю качества пропитанной изоляции электротехнических изделий, и может быть использовано для контроля процесса отверждения пропитанной изоляции обмоток электротехнических изделий.

Известен способ контроля степени высыхания лакокрасочных материалов [1]. В соответствии с указанным способом контроль производят на специально подготовленных плоских образцах лакокрасочного материала. В соответствии с упомянутым ГОСТ 19007-73 выделяют 7 степеней высыхания.

Недостатком упомянутого способа является то, что он применим только на плоских, специально приготовленных образцах контролируемого лакокрасочного материала. В обмотках же электротехнических изделий, например в пропитанных обмотках электрических машин степень высыхания (отверждения) пропиточного лака или компаунда указанным способом определить невозможно. Между тем от степени отверждения пропиточного состава в обмотках зависят все качественные характеристики обмоток: их монолитность, механические и изоляционные свойства, теплоотвод из обмоток и их влагостойкость. Поэтому контроль степени отверждения пропиточного изоляционного состава в обмотках имеет важную практическую ценность.

Известен способ контроля степени отверждения пропиточного состава в обмотках [2].

Упомянутый способ контроля отверждения пропитанной изоляции обмоток электрических машин, при котором проводят периодическое измерение электрических параметров обмотки и по их. взаимосвязи определяют степень отверждения, при этом в качестве электрических параметров используют резонансную частоту f1 собственно обмотки, резонансную частоту f2 обмотки с включенной последовательно эталонной катушкой индуктивности и резонансную частоту f3 обмотки с включенной параллельно той же эталонной катушкой, величину индуктивности которой определяют из выражения

L э = L C 2 f 1 2 C 1 f 2 2

где L - индуктивность обмотки;

C1 - собственная емкость обмотки на частоте f1;

f2 - частота, выбираемая в дисперсной области не отвержденного изоляционного пропиточного состава;

C2 - собственная емкость обмотки на частоте f2. Степень отверждения определяют пропиточной изоляции, вычисляемого по формуле, в которой использую значения упомянутых трех частот.

Недостатком указанного способа является то, что собственная емкость обмоток, а, следовательно, и значения всех трех измеренных частот зависят не только от того, насколько высох пропиточный состав в контролируемых обмотках, но и т степени насыщенности полостей обмотки пропиточным составом, определяемой коэффициентом пропитки, а также от расположения витков в обмотке. Поэтому точность определения степени отверждения указанным способом низка.

Известен также способ контроля отверждения пропитанной изоляции, описанный в [3].

Способ-прототип заключается в измерении электрического параметра контролируемой обмотки на двух частотах, одна из которых лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая - в оптической области не отвержденного изоляционного пропиточного состава, причем в процессе контроля, через пропитанную обмотку пропускают стабилизированный ток, производят измерение напряжения на ней в момент подключения источника стабилизированного тока к обмотке и повторно, по истечении заданного времени, затем по результатам измерений определяют массу пропиточного состава в обмотке по соответствующему выражению, причем в качестве электрического параметра изоляции используют собственную емкость обмотки C, измеряемую на частоте, лежащей в оптической области не отвержденного изоляционного состава, и собственную емкость той же обмотки C - на частоте, лежащей в дисперсионной области не отвержденного изоляционного состава. По результатам проведенных измерений определяют коэффициент К, по которому определяют степень отверждения по выражению К = ( С 1 Э С 2 э ) d 1 V 0 m , где Vo - объем полостей непропитанной обмотки, d1 - плотность сухого изоляционного пропиточного состава., m - масса пропиточного состава в обмотке.

Недостатком способа прототипа является его сложность, связанная с необходимостью разогрева обмотки стабилизированным источником тока, с измерением изменения напряжения на обмотке в процессе ее разогрева, с измерением времени разогрева обмотки, а также с измерением собственных емкостей контролируемых обмоток.

Технической задачей, на которую направлено изобретение, является упрощение способа.

Поставленная техническая задача решается тем, что в способе контроля отверждения пропитанной изоляции обмоток электротехнических изделий, заключающимся в измерении электрического параметра контролируемой обмотки на двух частотах, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая частота f2 - в оптической области не отвержденного изоляционного пропиточного состава, предварительно подготавливают партию образцов пропиточного состава, с различными, отличающимися от образца к образцу, степенями высушенности, и у каждого из упомянутых образцов снимают зависимость диэлектрической проницаемости от частоты электромагнитного поля, затем после выбора двух частот измерения, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая f2 в оптической области не отвержденного изоляционного пропиточного состава, используя снятые для образцов частотные зависимости, строят график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) , где εпс(f1) εпс(f2) - диэлектрические проницаемости пропиточного состава, измеренные на частотах f1 и f2 электромагнитного поля соответственно, затем у каждой из контролируемых обмоток измеряют на выбранных двух частотах емкости относительно корпуса до пропитки Cдп(f1) и Cдп(f2) и емкости у тех же обмоток после их пропитки и сушки Спп(f1) и Спп(f2), затем по результатам измерений вычисляют отношение lg ε п с ( f 2 ) lg ε п с ( f 1 ) , по формуле

lg ε п с ( f 2 ) lg ε п с ( f 1 ) = ln C п п ( f 2 ) + ln [ C э к в ( f 2 ) C д п ( f 2 ) ] ln C д п ( f 2 ) ln [ C э к в ( f 2 ) C п п ( f 2 ) ] ln C п п ( f 1 ) + ln [ C э к в ( f 1 ) C д п ( f 1 ) ] ln C д п ( f 1 ) ln [ C э к в ( f 1 ) C п п ( f 1 ) ] .

где C э к в ( f 1 ) = 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 [ d э ε к ( f 1 ) + d к ε э ( f 1 ) , C э к в ( f 2 ) = 2 p S ε 0 ε э ( f 2 ) ε к ( f 2 ) 3 [ d э ε к ( f 2 ) + d к ε э ( f 2 ) - эквивалентные емкости последовательно соединенных емкостей эмали и корпусной изоляции контролируемой обмотки на частотах f1 и f2 электромагнитного поля соответственно, p - количество пазов в магнитном сердечнике, в которые всыпана контролируемая часть обмотки; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; S - площадь паза; εэ(f1), εэ(f2) - диэлектрические проницаемости эмалевой пленки провода обмотки на частотах f1 и f2 электромагнитного поля соответственно; εк(f1), εк(f2) - диэлектрические проницаемости корпусной изоляции на частотах f1 и f2 электромагнитного поля соответственно; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции, после чего по вычисленной по результатам измерения величине lg ε п с ( f 2 ) lg ε п с ( f 1 ) определяют из графика зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) степень высушенности пропиточного состава в каждой контролируемой обмотке.

На фиг.1 представлено сечение обмотки в одном из пазов. Сечение обмотки состоит из проводов обмотки 1, покрытых слоем эмали 2, корпусной изоляции 3, поверхности паза 4, воздушных полостей между поверхностью - обмотки и корпусной изоляцией 5 и воздушных полостей между корпусной изоляцией и поверхностью паза 6, магнитный сердечник (корпус) 7.

На фиг.2 изображены емкости обмотки относительно корпуса, которым является магнитный сердечник статора электрической машины, представленные в виде слоистого плоского конденсатора до пропитки (фиг.2А) и после нее (фиг.2Б). На фиг.2А и фиг.2Б введены те же обозначения, что и на фиг.1., только на фиг.2Б вместо позиций 5 и 6 введены позиции 8 и 9, так как воздушные полости обмотки 5 и 6, после пропитки и сушки частично заполняются пропиточным составом. В связи с этим позициями 8 и 9 обозначены те же полости 5 и 6, но заполненные статистически распределенными по этим полостям частицами пропиточного состава.

На фиг.3 представлены зависимости диэлектрической проницаемости образцов пропиточного состава КП-34 с различными степенями высушенности, снятые при температуре 20°C, от частоты электромагнитного поля.. На фиг.4. представлен график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей ε 2 ( f 2 ) ε 1 ( f 1 ) , измеренных на выбранных частотах измерения f2 и f1 соответственно. Фиг.1 и фиг.2, фиг.3, фиг.4 служат для пояснения сущности изобретения.

Сущность способа заключается в следующем.

Обмотка электрической машины, размещенная в пазы магнитного сердечника представляет собой слоистую систему (см. фиг.1). Так как толщина dэ эмалевой изоляции 2 провода 1, толщина dк корпусной изоляции 3, и суммарная толщина dв воздушных полостей между поверхностью - обмотки и корпусной изоляцией 5 и воздушных полостей между корпусной изоляцией и поверхностью паза 6 пренебрежительно малы и составляет несколько микрон, то емкость обмотки относительно корпуса можно с пренебрежительно малой погрешностью представить в виде слоистого плоского конденсатора (см. фиг.2).

Покажем, как по измерениям емкостей обмотки относительно корпуса до пропитки и после нее моно определить степень высушенности пропиточной изоляции обмотки.

В соответствии с ГОСТ 19007-73 различают семь степеней высушенности, которые определяют по прилипанию промокательной бумаги к плоскому, специально подготовленному образцу. Недостатком упомянутого способа является то, что он применим только на плоских, специально приготовленных образцах контролируемого лакокрасочного материала. В обмотках же электротехнических изделий, например в пропитанных обмотках электрических машин степень высыхания (отверждения) пропиточного лака или компаунда указанным способом определить невозможно. Поэтому для реализации контроля степени отверждения пропиточного состава в обмотках необходимо было найти взаимосвязь между степенью высушенности пропиточного состава, определяемыми по ГОСТ 19007-73, с электрическими параметрами, которые можно было бы измерять непосредственно в контролируемых обмотках. Как показали исследования таким параметром, по которому можно судить о степени высушенности пропиточного состава в обмотках является диэлектрическая проницаемость пропиточного состава.

На фиг.3. приведены зависимости диэлектрической проницаемости образцов пропиточного изоляционного состава от степени высушенности специально подготовленных по ГОСТ 19007-73 образцов пропиточного состава, от частоты электромагнитного поля, снятые при температуре 20°C. Как следует из фиг.3. частотные зависимости пропиточного состава имеют две характерные области: область А, в которой наблюдается явно выраженная зависимость диэлектрической проницаемости от частоты, и область Б, где зависимость диэлектрической проницаемости от частоты электромагнитного поля отсутствует. Область А обычно условно называется дисперсионной, а область Б - оптической. При отверждении (сушке) компаундов частотная зависимость диэлектрической проницаемости выполаживается, а затем практически исчезает. Если выбрать две частоты измерения диэлектрической проницаемости пропиточного состава, одна из которых f1 лежит в дисперсионной области, а другая частота f2 - в оптической области, то используя зависимости, приведенные на фиг.3., можно представить график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) , измеренных на выбранных частотах измерения f2 и f1 соответственно (см. фиг.4). При этом, если каким-то образом измерить lg ε п с ( f 2 ) lg ε п с ( f 1 ) , в контролируемой обмотке, то можно, используя график, представленный на фиг.4. определить степень высушенности пропиточной изоляции в упомянутой контролируемой обмотке.

Рассмотрим, как найти отношение lg ε п с ( f 2 ) lg ε п с ( f 1 ) , в контролируемой обмотке.

Если до пропитки измерить емкость Cдп(f1) обмотки относительно магнитного сердечника на частоте f1, в соответствии с фиг.2, в эту емкость можно представит в виде суммы трех емкостей, соединенных последовательно

1 C д п ( f 1 ) = 1 C э ( f 1 ) + 1 C к ( f 1 ) + 1 C в ,                       ( 1 )

где Cэ(f1) - емкость слоя эмальизоляции на частоте f1; Cк (f1) - емкость слоя корпусной изоляции на частоте f1; Cв(f1) - суммарные емкости воздушных слоев 5 и 6 (фиг.2А). В общем случае, диэлектрическая проницаемость эмали и диэлектрическая проницаемость корпусной изоляции может иметь зависимость от частоты. Поэтому обозначим диэлектрические проницаемости эмали и корпусной изоляции на частоте f1 соответственно εэ(f1) и εк(f1).

С учетом введенных обозначений для плоского конденсатора можно записать

C э ( f 1 ) = 2 3 p × ε 0 ε э ( f 1 ) S d э                                       ( 2 ) ,

C к ( f 1 ) = 2 3 p × ε 0 ε ( f 1 ) к S d к                                       ( 3 ) ,

C в = 2 3 p × ε 0 ε э S d в 12                                                ( 4 ) ,

где p - количество пазов в магнитном сердечнике статора; 2 3 p - количество пазов в магнитном сердечнике статора, в которые всыпана контролируемая обмотка εв - диэлектрические проницаемость воздуха, ε0=8,854187817·10-12 электрическая постоянная; Cв - суммарная емкость воздушных слоев 5 и 6 (фиг.2). Подставив выражения (2), (3), (4), в формулу (1), и учитывая, что диэлектрическая проницаемость воздуха εв=1, можно записать

1 C д п ( f 1 ) = 3 d э 2 p ε э ( f 1 ) ε 0 S + 3 d к 2 p ε 0 ε к ( f 1 ) S + 3 d в 2 p ε 0 S ,                           ( 5 )

Из выражения (5) следует

d в = 2 3 p S ε 0 [ 1 C д п ( f 1 ) 3 d э 2 p ε 0 ε э ( f 1 ) S 3 d к 2 p ε 0 ε к ( f 1 ) S ] = 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 C д п [ d э ε к ( f 1 ) + d к ε э ( f 1 ) ] 3 ε э ( f 1 ) ε к ( f 1 ) С д п ( f 1 ) ,                               ( 6 )

После пропитки и сушки обмоток объемы полостей 5 и 6 частично заполняются пропиточным составом, имеющим измеренную на частоте f1 диэлектрическую проницаемость εп (f1) (см. фиг.2Б). Так как пропиточный состав не полностью заполняет объемы полостей 8 и 9, а статистически распределен по этим полостям, то в упомянутых полостях образуется бинарная статистическая смесь, состоящую из частиц пропиточного состава и частиц воздуха, с диэлектрической проницаемостью ε*(f1). Диэлектрическая проницаемость бинарной смеси ε*(f1) подчиняется распределению Лихтенеккера-Ротера [3], в соответствии с которым можно записать

ln ε * ( f 1 ) = V п с V 0 ln ε п ( f 1 ) + V 0 V п с V 0 ln ε в                                       ( 7 ) ,

где V0 - объем полостей 5 и 6 в обмотке (фиг.2 A) Vпс - объем, который занимают частицы пропиточного состава в слоях 8 и 9; VO-Vпс - объем воздуха в слоях 8 и 9; ε*(f1) - диэлектрическая проницаемость статистической смеси в слоях 8 и 9.

Учитывая, что диэлектрическая проницаемость воздуха εв=1, выражение, a lnεв=0, выражение (7) можно записать в виде

ln ε * ( f 1 ) = V п с V 0 ln ε п ( f 1 ) = К п р ln ε п ( f 1 )                                               ( 8 ) .

В выражении (8) отношение V п с V 0 есть не что иное, как коэффициент пропитки Кпр объемов полостей 8 и 9, характеризующий степень заполнения объема полостей V0 пропиточным составом.

Если после пропитки и сушки измерить на частоте f1 емкость у той же контролируемой обмотки относительно корпуса Cпп(f1) и учесть, что пропиточный состав, диэлектрическая проницаемость которого εп(f1) статистически распределился по объемам полостей 8 и 9 (фиг.2Б), то емкость Спс(f1) слоев 8 и 9 можно представить выражением

C п с ( f 1 ) = 2 3 p × ε 0 ε * ( f 1 ) S d в                                         ( 9 ) ,

Подставив в уравнение (5) вместо Cв, величину Cпс(f1) можно записать выражение для емкости обмотки относительно корпуса после пропитки и сушки Спп(f1) в виде

1 C п п = 3 d э 2 p ε 0 ε э ( f 1 ) S + 3 d к 2 p ε 0 ε к ( f 1 ) S + 3 d в 2 p ε 0 ε * ( f 1 ) S ,                           ( 10 )

Из соотношения (10) найдем выражение для величины зазора зазоры dв

d в = ε * ( f 1 ) [ 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 С п п ( f 1 ) [ d э ε к ( f 1 ) + d к ε э ( f 1 ) ] 3 ε э ( f 1 ) ε к ( f 1 ) С п п ( f 1 ) ]               ( 11 ) .

Так как после пропитки и сушки зазоры 8 и 9 (фиг.2Б) в контролируемой обмотке не изменились, и остались равны зазором 5 и 6 (фиг.2А) в непропитанной обмотке, то можно приравнять правую часть выражения (6), к правой части выражения (11), получим

ε * ( f 1 ) [ 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 С п п ( f 1 ) [ d э ε к ( f 1 ) + d к ε э ( f 1 ) ] 3 ε э ( f 1 ) ε к ( f 1 ) С п п ( f 1 ) ] = = 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 С д п [ d э ε к ( f 1 ) + d к ε э ( f 1 ) ] 3 ε э ( f 1 ) ε к ( f 1 ) С д п ( f 1 )                        ( 12 ) ,

Из соотношения (12), ε*(f1) и, преобразовав полученное выражение, запишем

ε * ( f 1 ) = С п п ( f 1 ) [ С э к в ( f 1 ) С д п ( f 1 ) ] С д п ( f 1 ) [ С э к в ( f 1 ) С п п ( f 1 ) ]                                              ( 13 ) ,

где С э к в = 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 [ d э ε к ( f 1 ) + d к ε э ( f 1 )         ( 14 ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции на частоте f1.

Выразим из соотношения (8) коэффициент пропитки Кпр, получим

К п р = ln ε * ( f 1 ) ln ε * ( f 1 )                                     ( 15 ) ,

Подставив в выражение (15) значение ε*(f1) из соотношения (13) получим

К п р = 1 ln ε п с ( f 1 ) × ln C п п ( f 1 ) [ С э к в ( f 1 ) С д п ( f 1 ) ] С д п ( f 1 ) [ С э к в ( f 1 ) С п п ( f 1 ) ]                               ( 16 ) .

Произведя аналогичные преобразования для емкостей контролируемой обмотки на частоте электромагнитного поля f2 можно показать, что

К п р = 1 ln ε п с ( f 2 ) × ln C п п ( f 2 ) [ С э к в ( f 2 ) С д п ( f 2 ) ] С д п ( f 2 ) [ С э к в ( f 2 ) С п п ( f 2 ) ]                               ( 17 )

Так как значение коэффициента пропитки должно оставаться неизменным, независимо от того на какой частоте измерения производились измерения соответствующих параметров обмотки, то можно приравнять правые и левые части выражений (16) и (17), получим

1 ln ε п с ( f 1 ) × ln C п п ( f 1 ) [ С э к в ( f 1 ) С д п ( f 1 ) ] С д п ( f 1 ) [ С э к в ( f 1 ) С п п ( f 1 ) ] = 1 ln ε п с ( f 2 ) × ln C п п ( f 2 ) [ С э к в ( f 2 ) С д п ( f 2 ) ] С д п ( f 2 ) [ С э к в ( f 2 ) С п п ( f 2 ) ]        ( 18 )

Из формулы (18) следует

ln ε ( f 2 ) ln ε ( f 1 ) { ln C п п ( f 1 ) + ln [ C э к в ( f 1 ) С д п ( f 1 ) ] ln С д п ( f 1 ) ln [ C э к в ( f 1 ) С п п ( f 1 ) ] } = = ln C п п ( f 2 ) + ln [ C э к в ( f 2 ) С д п ( f 2 ) ] ln С д п ( f 2 ) ln [ C э к в ( f 2 ) С п п ( f 2 ) ] .                    ( 19 )

Так как натуральный логарифм связан с десятичным логарифмом соотношением lnN=a×lgN, где а≅2,30259 - постоянная величина, то справедливо равенство ln ε п с ( f 2 ) ln ε п с ( f 1 ) = lg ε п с ( f 2 ) lg ε п с ( f 1 )      ( 20 ) .

Выразим из формулы (19) с учетом формулы (20) отношение lg ε п с ( f 2 ) lg ε п с ( f 1 )

lg ε п с ( f 2 ) lg ε п с ( f 1 ) = ln C п п ( f 2 ) + ln [ C э к в ( f 2 ) C д п ( f 2 ) ] ln C д п ( f 2 ) ln [ C э к в ( f 2 ) C п п ( f 2 ) ] ln C п п ( f 1 ) + ln [ C э к в ( f 1 ) C д п ( f 1 ) ] ln C д п ( f 1 ) ln [ C э к в ( f 1 ) C п п ( f 1 ) ]       ( 21 ) .

Таким образом, измерив емкость контролируемой обмотки относительно корпуса на двух выбранных частотах f1 и f2 до пропитки Cдп(f1), Cдп(f2) и после пропитки и сушки Cпп(f1) Cпп(f2), а также измерив значения диэлектрических проницаемостей эмалевой εэ(f1), εэ(f2) корпусной изоляции εк(f1), εк(f2) на тех же упомянутых частотах f1 и f2, и вычислив из конструктивных обмоточных данных величины Сэкв(f1) и Сэкв(f2) можно рассчитать по выражению (21) отношение lg ε п с ( f 2 ) lg ε п с ( f 1 ) и по графику, приведенному на фиг.4 определить степень высушенности каждой контролируемой обмотки.

Следует отметить, что при контроле любых однотипных обмоток однотипных обмоток величины εэ(f1), εэ(f2), εк(f1), εк(f2) измеряются лишь один раз на тех же упомянутых частотах f1 и f2, и также один раз рассчитываются из конструктивных обмоточных данных величины Cэкв. После этого у всех контролируемых обмоток измеряются емкости относительно корпуса на двух выбранных частотах до пропитки и после нее, и затем, используя соотношение (21) и график, приведенный на фиг.4, определяют степень высушенности пропиточного состава в каждой контролируемой обмотке.

Если значения диэлектрических проницаемостей эмали и корпусной изоляции на двух выбранных частотах f1 и f2 одинаковы, т.е. εэ(f1)=εэ(f2)=εэ, εк(f1)=εк(f2)=εк, что наиболее часто распространено на практике, тогда также равны друг другу величины емкости обмоток относительно корпуса до пропитки, измеренные на упомянутых частотах Сдп(f1)=Сдп(f2)=Сдп, и равны друг другу величины Сэкв(f1)=Сэкв(f2)=Сэкв.

В этом случае отпадает необходимость измерять емкость каждой контролируемой обмотки до пропитки дважды на каждой из выбранных частот f1 и f2, а достаточно измерить упомянутую емкость только на одной из выбранных частот. При равенстве εэ(f1)=εэ(f2)=εэ, εк(f1)=εк(f2)=εк существенно упрощается и формула (21) Которую можно записать в виде

lg ε п с ( f 2 ) lg ε п с ( f 1 ) = ln C п п ( f 2 ) + ln ( C э к в C д п ) ln C д п ) ln [ C э к в C п п ( f 2 ) ] ln C п п ( f 1 ) + ln ( C э к в C д п ) ln C д п ) ln [ C э к в C п п ( f 1 ) ] = = ln C п п ( f 2 ) ln [ C э к в C п п ( f 2 ) ] + A ln C п п ( f 1 ) ln [ C э к в C п п ( f 1 ) ] + A                                                  ( 22 ) ,

где A = ln ( C э к в С д п ) ln C д п = ln C э к в С д п С д п

Пример. По заявляемому способу осуществлялся контроль степени отверждения пропиточного состава в 3-х пропитанных обмотках статоров двигателя типа 4А112М. Обмотки статоров пропитывались струйным методом компаундом КП-34, и после пропитки сушились.

Предварительно перед контролем подготавливали партию образцов компаунда КП-34 по ГОСТ 19007-73, с различными, отличающимися от образца к образцу, степенями высушенности, и у каждого из упомянутых образцов снимали зависимость диэлектрической проницаемости от частоты электромагнитного поля. Снятые зависимости приведены на фиг.3. Выбирали две частоты измерения: одну частоту f1=1000 Гц, лежащую в дисперсионной области частотной зависимости компаунда КП-34, а вторую частоту f2=10 кГц - в оптической области не отвержденного изоляционного пропиточного состава КП-34. Затем, после выбора двух частоты измерения, используя снятые для образцов частотные зависимости, строили график зависимости (фиг.4) степени высушенности пропиточного компаунда КП-34 от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) , где εпс(f1) εпс(f2) диэлектрические проницаемости пропиточного состава, измеренные на частотах f1 и f2 электромагнитного поля соответственно.

Затем у непропитанных обмоток измеряли емкости относительно корпуса на двух выбранных частотах Cдп(f1) и Cдп(f2), во всех случаях для каждой контролируемой обмотки одинаковыми, т.е. Cдп(f1)=Cдп(f2)=Cдп. Выявленное равенство послужило основанием для того, чтобы считать, что для всех контролируемых обмоток справедливы равенства: εэ(f1)=εэ(f2)=εэ, εк(f1)=εк(f2)=εк, и Сэкв(f1)=Сэкв(f2)=Сэкв. Полученные результаты показали, что для оценки степени отверждения пропиточного состава в каждой из контролируемых обмоток можно использовать формулу (22).

Затем у каждой из контролируемых обмоток измеряли на выбранных двух частотах емкости относительно корпуса после их пропитки и сушки Cпп(f1) и Cпп(f2), и по результатам измерений вычисляли отношение lg ε п с ( f 2 ) lg ε п с ( f 1 ) по формуле lg ε п с ( f 2 ) lg ε п с ( f 1 ) = ln C п п ( f 2 ) ln [ C э к в C п п ( f 2 ) ] + A ln C п п ( f 1 ) ln [ C э к в C п п ( f 1 ) ] + A              ( 22 ) ,

где C э к в ( f 1 ) = C э к в ( f 2 ) = C э к в = 2 p S ε 0 ε э ε к 3 [ d э ε к + d к ε э ] , - эквивалентные емкости последовательно соединенных емкостей эмали и корпусной изоляции контролируемой обмотки на частотах f1 и f2 электромагнитного поля соответственно, p=36 - количество пазов в магнитном сердечнике, в которые всыпана контролируемая часть обмотки; S=0,5375×10-2 м2 - площадь паза; ε0=8,854187·10-12 электрическая постоянная; εэ=3,85 - диэлектрическая проницаемость эмалевой пленки провода обмотки на частотах f1 и f2 электромагнитного поля; εк=5,92 - диэлектрические проницаемости корпусной изоляции на частотах f1 и f2 электромагнитного поля соответственно; dэ=0,7×10-3 м - толщина эмалевой изоляции провода; dк=1×10-3 м - толщина корпусной изоляции. Расчетная постоянная величина Cэкв, которую использовали для оценки степени отверждения всех контролируемых обмоток, была равна С э к в = 2 p S ε 0 ε э ε к 3 ( d э ε к + d к ε э ) = 2 × 36 × 1,402 × 10 2 × 8,854187817 10 12 × 3,85 × 5,92 23,982 × 10 3 = 8493,73 п Ф

После чего по вычисленной величине lg ε п с ( f 2 ) lg ε п с ( f 1 ) определяли из графика зависимости (фиг.4) степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) степень высушенности пропиточного состава в каждой контролируемой обмотке.

lg ε п с ( f 2 ) lg ε п с ( f 1 ) = ln C п п ( f 2 ) ln [ C э к в C п п ( f 2 ) ] + A ln C п п ( f 1 ) ln [ C э к в C п п ( f 1 ) ] + A

Результаты измерений и расчетов сведены в таблицу 1.

Таблица 1
Сдп, пФ Спп(f1), пФ Спп(f2), пФ А lg ε п с ( f 2 ) lg ε п с ( f 1 ) Степень высушенности
1 1660 2410 2241,9 1,415 0,796 5
2 1590 2380 2160,4 1,468 0,73 4
3 1630 2425 2255,3 1,438 0,8 5

Как следует из таблицы 1 все три обмотки имеют 4 или 5 степень высушенности, т.е. являются недосушенными, что является показателем их низкого качества. Поэтому для повышения качества обмоток нужно пересмотреть режимы и время их сушки.

Таким образом, заявляемый способ по сравнению со способом-прототипом существенно упрощен в реализации, так как не требует изготовления и применения для контроля стабилизатора тока, измерителя времени разогрева и измерителя приращения температуры обмоток в процессе их разогрева, а также исключает необходимость измерения собственной емкости обмоток на трех частотах с применением эталонной индуктивности.

Список использованной литературы

1. Материалы лакокрасочные. Метод определения времени и степени высыхания. ГОСТ 19007-73. Госстандарт России..

2. А.с. №1647473. Способ контроля отверждения пропитанной изоляции обмоток электрических машин. / Г.Б. Смирнов, С.Ш. Щерб, В.Ф. Дунаф. - Опубл. 07.05.91. Бюл. №17.

3. А.с. №1647776. Способ контроля отверждения пропитанной изоляции и устройство для его осуществления. / Г.В. Смирнов, В.Ф. Дунаф, А.Ю. Гладырев. - Опубл. 07.05.91. Бюл. №17. - (прототип).

Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий, заключающийся в измерении электрического параметра контролируемой обмотки на двух частотах, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая частота f2 - в оптической области не отвержденного изоляционного пропиточного состава, отличающийся тем, что предварительно подготавливают партию образцов пропиточного состава, с различными, отличающимися от образца к образцу, степенями высушенности, и у каждого из упомянутых образцов снимают зависимость диэлектрической проницаемости от частоты электромагнитного поля, затем после выбора двух частоты измерения, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая f2 - в оптической области не отвержденного изоляционного пропиточного состава, используя снятые для образцов частотные зависимости, строят график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lgε пс ( f 2 ) lgε пс ( f 1 ) , где εпс(f1) εпс(f2) - диэлектрические проницаемости пропиточного состава, измеренные на частотах f1 и f2 электромагнитного поля соответственно, затем у каждой из контролируемых обмоток измеряют на выбранных двух частотах емкости относительно корпуса до пропитки Cдп(f1) и Cдп(f2), и емкости у тех же обмоток после их пропитки и сушки Cпп(f1) и Cпп(f2), затем по результатам измерений вычисляют отношение lg ε п с ( f 2 ) lg ε п с ( f 1 ) = ln C п п ( f 2 ) + ln [ C э к в ( f 2 ) C д п ( f 2 ) ] ln C д п ( f 2 ) ln [ C э к в ( f 2 ) C п п ( f 2 ) ] ln C п п ( f 1 ) + ln [ C э к в ( f 1 ) C д п ( f 1 ) ] ln C д п ( f 1 ) ln [ C э к в ( f 1 ) C п п ( f 1 ) ] , где C э к в ( f 1 ) = 2 p S ε 0 ε э ( f 1 ) ε к ( f 1 ) 3 [ d э ε к ( f 1 ) + d к ε э ( f 1 ) , C э к в ( f 2 ) = 2 p S ε 0 ε э ( f 2 ) ε к ( f 2 ) 3 [ d э ε к ( f 2 ) + d к ε э ( f 2 ) - эквивалентные емкости последовательно соединенных емкостей эмали и корпусной изоляции контролируемой обмотки на частотах f1 и f2 электромагнитного поля соответственно, p - количество пазов в магнитном сердечнике, в которые всыпана контролируемая часть обмотки; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; S - площадь паза; εэ(f1), εэ(f2), - диэлектрические проницаемости эмалевой пленки провода обмотки на частотах f1 и f2 электромагнитного поля соответственно; εк(f1), εк(f2) - диэлектрические проницаемости корпусной изоляции на частотах f1 и f2 электромагнитного поля соответственно; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции, после чего по вычисленной по результатам измерения величине lg ε п с ( f 2 ) lg ε п с ( f 1 ) определяют из графика зависимости степени высушенности пропиточного состава степень высушенности пропиточного состава в каждой контролируемой обмотке.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано, например, в производстве статоров электрических машин. Согласно данному изобретению после разогрева обмотки перед пропиткой до заданной температуры подают в нее импульсы тока, амплитуда которых лежит в диапазоне (10-50)А, а длительность (0,5-10) с, при этом частота следования импульсов тока лежит в диапазоне (5-10) Гц.

Изобретение относится к области электротехники и электромашиностроения, в частности, к технологии электрических машин, например обмоток вращающихся электрических машин тягового подвижного состава.

Изобретение относится к электротехнике, а именно к способу определения коэффициента пропитки обмоток электрических машин, соединенных в звезду с изолированной нейтралью.

Изобретение относится к электротехнике и может быть использовано, например, в производстве статоров электрических машин. Способ пропитки многовитковой обмотки электрической машины заключается в подаче на лобовые части обмотки тонкой струи пропиточного состава из сопла на нагретую лобовую часть обмотки и во вращении струи вдоль лобовой части обмотки.

Изобретение относится к электромашиностроению и может быть использовано при изготовлении обмоток статоров электрических машин, трансформаторов, дросселей. Способ заключается в том, что пропиточный состав из емкости подают в виде вращающейся вдоль лобовых частей обмотки струи, при этом струю пропиточного состава заряжают электростатическим зарядом путем пропускания ее вдоль поверхности высоковольтного электрода, заземляют провод обмотки, а вращение струи осуществляют путем пропускания ее через индуктор, создающий вращающееся магнитное поле.
Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и касается к способа изготовления обмоток электрических машин постоянного тока тягового электродвигателя.
Изобретение относится к способу изготовления изоляции обмоток электрических машин. Способ изготовления заключается в том, что вначале осуществляют пропитку стеклослюдоленты первым компаундом.

Изобретение относится к области электротехники и может использоваться, в частности, для контроля качества пропитки изоляционным составом обмоток электродвигателей, катушек трансформаторов и дросселей.

Изобретение относится к области электротехники и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин и аппаратов.
Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин. .

Изобретение относится к области электротехники, а именно к неразрушающим способам контроля качества технологических процессов производства электротехнических изделий, в частности пропитки обмоток электрических машин. Согласно предлагаемому способу определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин у каждой обмотки из данной партии до пропитки и после пропитки полимерным составом и сушки измеряют емкости Скдп и Скпп относительно корпуса. Затем после пропитки и сушки обмоток измеряют температуру у каждой обмотки Т1пп и через провод каждой контролируемой обмотки пропускают постоянный стабилизированный ток I0, величину которого выбирают в зависимости от площади сечения S жилы провода обмотки в интервале предельно допустимых для материала провода обмотки плотностей тока от jmin до jmax в диапазоне значений jminS ≤ I0 ≤ jmaxS. При этом упомянутый выбранный ток I0 пропускают через обмотку в течение определенного времени t0 и измеряют падение напряжения на обмотке U1п в момент подвода к ней стабилизированного тока и падение напряжения на обмотке U2п в момент упомянутого времени t0. После упомянутых выше операций у каждой контролируемой обмотки по результатам измерений определяют коэффициент пропитки прикорпусных полостей Кки обмотки и коэффициент пропитки Кмв межвитковых полостей обмотки по формулам К к и = 1 ln ε п с × ln С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) ,                                        ( 4 ) К м в = 1 m 0 м в с с { I 0 × t о [ U 1 п ( U 1 п + U 2 п ) α 2 ( U 2 п − U 1 п ) [ 1 + α ( Т 1 − 20 ] ] − [ 1 + α ( Т 1 − 20 ) ] B 2 U 1 п + B 1 } ,       ( 5 ) где С э к в = р S п ε 0 ε э ε к ( d э ε к + d к ε э ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции обмотки; р - количество пазов в магнитном сердечнике, в которые всыпается контролируемая часть обмотки; Sп - площадь поверхности паза; ε0=8,854187·10-12 - электрическая постоянная; εэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; εк - диэлектрическая проницаемость корпусной изоляции; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода; cс - удельная теплоемкость высохшего пропиточного состава; m 0 м в = d c S c l w ( 1 − р 4 К з ) × р 2 − р S п 2 ε 0 ( С э к в − С д п С д п С э к в ) - предельная масса сухого пропиточного состава, которую можно разместить в межвитковых полостях обмотки при их 100% заполнении; dc - плотность высохшего пропиточного состава; Sс - площадь сечения паза; lw - длина витка обмотки; Кз - коэффициент заполнения паза; α - температурный коэффициент сопротивления провода обмотки; B1 = Сээм + Сэк - эквивалентная теплоемкость слоев теплоемкостей эмали С э э м = с э π ( D э 2 − D п р 2 ) 4 1 п р ρ э м и корпусной изоляции Сэк = Ски × П × dки × L × р × ски; сэ - удельная теплоемкость эмали; Dэ - диаметр эмалированного провода обмотки; Dпр - диаметр жилы провода обмотки; lпр - номинальная длина провода контролируемой части обмотки; ρэм - плотность эмали; ски - удельная теплоемкость корпусной изоляции; П - периметр паза; dки - толщина корпусной изоляции; L - длина паза; ρки - плотность корпусной изоляции; В 2 = с п р × ρ 2 0 × I 0 2 ρ п р l п р 2 - постоянный коэффициент; спр - удельная теплоемкость материала жилы провода обмотки; ρ20 - удельное сопротивление материала жилы провода обмотки при 20°С. Технический результат - упрощение способа за счет исключения необходимости у одной из произвольно выбранных обмоток измерять емкость относительно корпуса и собственную емкость до пропитки, затем погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью и вновь измерять емкость этой обмотки относительно корпуса и собственную емкость обмотки, не вынимая обмотку из пропиточной жидкости, а также исключения необходимости у каждой из контролируемых обмоток дважды измерять собственные емкости: до пропитки и после нее, повышение точности, так как значение коэффициента пропитки не зависит от взаимного расположения витков в пазу, а также повышение информативности контроля, так как данный способ позволяет определить, как пропиточный состав распределился внутри обмотки и каковы коэффициенты пропитки прикорпусных и межвитковых полостей обмоток. 1 табл., 2 ил.

Изобретение относится к области электротехники и электромашиностроения, в частности к производству и ремонту электрических машин, например обмоток тяговых электрических машин (ТЭМ) локомотивов и мотор-вагонного подвижного состава. Согласно предлагаемому селективному способу сушки увлажненной и пропитанной изоляции сушка изоляции обмоток равномерно вращающегося якоря ТЭМ осуществляется длинноволновыми импульсными керамическими инфракрасными (ИК) излучателями, расположенными по длине активной части якоря, а также со стороны его лобовой части. Предлагаемое устройство для реализации данного способа состоит из станины (1) с пристроенным частотно-регулируемым асинхронным электроприводом (3) и стойки (2), на которой располагаются длинноволновые импульсные керамические ИК-излучатели. Якорь ТЭМ приводится во вращение , и одновременно увлажненная или пропитанная лаком (компаундом) изоляция лобовой и активной частей обмотки якоря вращающейся ТЭМ нагревается до температуры 100 … 120° С при помощи указанных ИК-излучателей, что обеспечивает сушку изоляции. Технический результат, достигаемый при использовании предлагаемого изобретения, состоит в обеспечении равномерности нагрева изоляции обмоток по всей площади якоря, что повышает качество сушки изоляции обмоток якоря ТЭМ при одновременном сокращении энергозатрат и времени на технологический процесс сушки изоляции. 2 н. и 2 з.п. ф-лы, 2 ил.
Изобретение относится к области электротехники и касается технологии изготовления обмоток электрических машин, преимущественно якорей тяговых электродвигателей - машин постоянного тока. Технический результат, достигаемый при использовании данного изобретения, состоит в повышении электрофизических характеристик изоляции, водо- и влагостойкости обмоток. При пропитке компаундом, вязкость которого составляет 70-100 секунд по В3-4, на бандаже возникают вмятины и неровности. Это явление связано с тем, что при глубоком вакууме ≤1 мбар после вакуумирования, заполнения компаундом и создания избыточного давления, компаунд не успевает проникнуть в обмотку под бандаж, в результате чего создается перепад давления между внешней поверхностью бандажа и внутренней обмоткой, происходит доопрессовка вылетов катушек, что влечет возникновение вмятин и неровностей на поверхности бандажа. Неровности на бандаже недопустимы, так как они являются местом скопления пыли, грязи, влаги и т.п. Согласно предлагаемому способу разогретый до температуры пропитки якорь помещают в пропиточный котел, вакуумируют, затем под вакуумом подают пропиточный компаунд. При этом согласно данному изобретению для устранения перечисленных недостатков и достижения указанного технического результата подачу давления осуществляют постепенно до 6-8 бар в течение не менее 15 минут.1 з.п. ф-лы,1 табл.

Композиция для получения покрытия для снижения механических потерь высокоскоростного ротора электрической машины относится к гибридным органо-неорганическим нанокомпозиционным покрытиям, способным снижать механические потери высокоскоростного ротора электрической машины в охлаждающей газообразной среде. Композиция включает золь с силикатной составляющей на основе водно-спиртового раствора тетраэтоксилана или метилтриэтоксилана и дополнительно содержит модифицирующую добавку в виде соединения, обладающего пиро- и/или пьезоэлектрическими свойствами с размером частиц и их агрегатов 50-100 нм, при следующем соотношении компонентов (вес.%): золь с силикатной составляющей - 96-99; модифицирующая добавка - 1-4. Использование в составе золя метилтриэтоксилана обеспечивает адгезию с нержавеющей сталью без высокотемпературной обработки и 11-12 класс шероховатости поверхности. Использование в качестве модифицирующей добавки кристаллов пьезоэлектрика турмалина в виде спиртовой суспензии или порошка кристалла обеспечивает антифрикционные свойства покрытия. 1 ил., 3 пр.
Изобретение относится к электротехнике и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин. Техническим результатом является создание наиболее оптимального режима сушки изоляции, обеспечивающего увеличение ресурса электрических машин. Способ сушки изоляции электрических машин включает пять ступеней. На первой ступени поверхностные слои изоляции сушат методом электроосмотической сушки изоляции. На второй ступени поверхностные слои изоляции сушат воздушным потоком. На третьей ступени сушку осуществляют воздушным потоком без подогрева. На четвертой ступени сушка осуществляется на открытом воздухе во время сборки электрической машины. На пятой ступени сушка осуществляется путем пропускании электрического тока через обмотку электрической машины.

Изобретение относится к электротехнике и может быть использовано преимущественно при техническом обслуживании и ремонте тяговых электрических машин. Анализ статистических данных о надежности узлов и деталей оборудования электровозов в условиях эксплуатации показал, что большая доля отказов приходится на тяговые электрические машины из-за выхода из строя по пробою изоляции. Технический результат заключается в проведении технологического процесса сушки изоляции обмоток тяговых электрических машин ступенями и обеспечении своевременного отключения системы нагрева и подачи воздуха в корпус тяговой электрической машины. Установка для сушки изоляции обмотки тяговых электрических машин содержит узел для нагрева воздуха, узел контроля за состоянием изоляции по ее сопротивлению и узел для подачи нагретого воздуха. Узел для нагрева воздуха снабжен трубчатыми электронагревателями, управляемыми программируемым терморегулятором с контуром обратной связи по датчику температуры, подключенным к сети. Узел контроля за состоянием изоляции по ее сопротивлению содержит мегаомметр, подключенный измерительными проводами к обмотке тяговой электрической машины, с подачей сигнала на терморегулятор для переключения программы и ее шага. Узел подачи нагретого воздуха снабжен электродвигателем с вентилятором, который управляется программируемым преобразователем частоты с контуром обратной связи по датчику температуры, гибкой трубой, на конце которой устанавливается насадка с отражателем. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, а именно к сушке обмоток, например, электрических машин. Технический результат - упрощение сушильного устройства обмоток, снижение веса, возможность использования в малых ремонтных мастерских, снижение трудоемкости процесса усушки, экономия электроэнергии при сушке. В способе сушки обмотки электрической машины нагревают обмотки источником токов высокой частоты с подключенным к нему нагревателем, выполненным в виде индуктора, а питание и управление источника токов высокой частоты осуществляют силовым блоком с системой управления индуктором. Индуктор выполняют в виде спирали и в процессе сушки вводят внутрь электродвигателя соосно с отклонением ±1.5 мм, располагая спираль индуктора в осевом направлении равномерно относительно статора электродвигателя таким образом, чтобы магнитные силовые линии, создаваемые индуктором, были направлены перпендикулярно шихтовке магнитопровода; затем через силовой блок с системой управления включают источник токов высокой частоты, прогревают обмотку статора до требуемой температуры и удерживают до состояния усушки лака. После окончания прогрева источник токов отключают, индуктор извлекают из электродвигателя. 1 ил.

Изобретение относится к области электротехники и может быть использовано в электрической машине, обмотки которой соединены в звезду с изолированной нейтралью. Техническим результатом является повышение точности определения коэффициента пропитки обмоток. В способе определение коэффициента пропитки осуществляют так, как указано в материалах заявки. 4 ил., 2 табл., 1 пр.

Изобретение относится к электромашиностроению, в частности к производству и ремонту электрических машин, например обмоток тяговых электрических машин (ТЭМ) локомотивов и мотор-вагонного подвижного состава. Согласно инфракрасно-конвективно-вакуумному способу и устройству для его реализации, сушка изоляции обмоток магнитной системы равномерно вращающегося остова ТЭМ осуществляется комбинацией трех способов сушки: за счет инфракрасного (ИК) излучения, конвекции и вакуума. Установка состоит из основания (3), в которое монтируется стойка (2) с инфракрасными (ИК) излучателями. Остов (1) кран-балкой устанавливается на основание и через редуктор (5) и ведущий опорный ролик (4) приводится во вращение пристроенным частотно-регулируемым асинхронным электродвигателем (6). Техническим результатом является повышение качества сушки изоляции обмоток магнитной системы остова ТЭМ, сокращение энергозатрат и времени на технологический процесс сушки. 2 н. и 3 з.п. ф-лы, 1 ил.
Изобретение относится к области электротехники и может быть использовано при сушке твердой изоляции, в частности, обмоток трансформатора, которая увлажняется в процессе его эксплуатации. Технический результат, достигаемый при использовании настоящего изобретения, состоит в том, что предлагаемый способ сушки твердой изоляции обмоток трансформатора, осуществляемый в герметичной емкости с помощью охладительного устройства, позволяет ускорить процесс сушки твердой изоляции обмоток трансформатора, исключить использование затратных веществ при вымораживании влаги из паровоздушной смеси в процессе сушки твердой изоляции обмоток трансформатора, повысить надежность сушки твердой изоляции обмоток трансформатора, а также позволяет увеличить точность измерения объема влаги, которая выделилась и наморозилась из твердой изоляции обмоток трансформатора. Указанный технический результат достигается тем, что при вымораживании влаги из паровоздушной смеси с помощью охладительного устройства обеспечивают температуру не выше минус 70°С на поверхности охладительного устройства, которая контактирует с паровоздушной смесью, при общей площади контактной поверхности охладительного устройства, что способна контактировать с паровоздушной смесью, не меньше 5 м2, при этом с помощью контактной поверхности охладительного устройства, и/или используя саму контактную поверхность охладительного устройства, устанавливают искусственные преграды на пути движения паровоздушной смеси, которые могут быть частями контактной поверхности охладительного устройства, и с помощью искусственных преград уменьшают скорость движения паровоздушной смеси, и, используя эффект Коанда, создают вихревые потоки паровоздушной смеси, стимулируя при этом конденсацию паров из паровоздушной смеси согласно эффекту Ранка-Хилша, а через установленный промежуток времени осуществляют размораживание охладительного устройства, нагревая поверхность, которая контактирует с пластом намерзших веществ из паровоздушной смеси, при атмосферном давлении, причем для вымораживания влаги из паровоздушной смеси используют двухконтурное охладительное устройство с общим теплообменником.1 н. и 4 з.п. ф-лы.
Наверх