Комплексная экзотермическая смесь

Изобретение относится к литейному производству. Смесь содержит следующие компоненты, мас.%: металлический алюминий 25-38, фтористый кальций 18-35, окислы алюминия 6-13, ферротитан 12-22, силикобарий 8-17, угольная пыль 1-5. Обеспечивается повышение жидкотекучести, ударной вязкости, износостойкости и трещиностойкости. 2 табл.

 

Изобретение относится к области литейного производства, в частности к комплексным экзотермическим смесям, используемым для внепечной обработки антифрикционных чугунов при производстве ответственных литых деталей двигателей.

Известна комплексная экзотермическая смесь (Патент Франции №2 338 097, МПК B22D 7/00, 1977), содержащая, мас.%:

Металлический алюминий 10-40
Окислы алюминия, кальция и магния 10-80
Перлит и/или вермикулит 0-30
Древесная мука 5-30
Угольная пыль 0-5

Эта экзотермическая смесь не обладает достаточной интенсивностью протекания экзотермических реакций в железоуглеродистом расплаве, снижает упругопластические свойства и трещиностойкость чугунов в отливках, особенно, при высоком содержании древесной муки, перлита и окислов алюминия.

Известна также экзотермическая смесь с комплексным окислителем для литых деталей (Побежимов Г.Н., Маньков В.Г. - М.: Литейное производство, 1979, №2. - С.17-18), содержащая от 21 до 25% алюминия, фторсодержащие соединения, окислы железа и марганца. Эта экзотермическая смесь не обеспечивает стабильных результатов при обработке чугуна и снижает жидкотекучесть и износостойкость чугуна.

Наиболее близкой по технической сущности и достигаемому эффекту является экзотермическая смесь (Патент RU №2 376 101, МПК B22D 1/00, 2009, прототип), содержащая, мас.%:

Металлический алюминий 25-38
Фтористый кальций 18-35
Окислы алюминия 14-27
Силикокальций или ферротитан 12-25
Угольная пыль 1-5

При использовании этой экзотермической смеси при внепечной обработке чугуна в литых деталях достигаются следующие механические и технологические свойства:

Ударная вязкость, Дж/см2 11-13
Относительное удлинение, % 3,2-3,9
Дисперсность структуры, ПД 0,5-1,0
Склонность к трещинообразованию,
среднее количество трещин в технологической пробе 2,7-3,0
Износостойкость при сухом трении, мкм/км 0,31-0,45

Существенным недостатком этой смеси является то, что она не обеспечивает повышения упругопластических свойств, износостойкости и трещиностойкости антифрикционных чугунов в литых изделиях, что связано с недостаточной концентрацией в смеси модифицирующих компонентов и загрязнением расплава окислами.

Задачей данного технического решения является повышение трещиностойкости, износостойкости при сухом трении и упругопластических свойств обрабатываемых антифрикционных чугунов.

Поставленная задача решается тем, что комплексная экзотермическая смесь, содержащая металлический алюминий, фтористый кальций, окислы алюминия, ферротитан и угольную пыль, дополнительно содержит силикобарий при следующем соотношении компонентов, мас.%:

Металлический алюминий 25-38
Фтористый кальций 18-35
Окислы алюминия 6-13
Ферротитан 12-22
Силикобарий 8-17
Угольная пыль 1-5

Существенным отличием предложенной экзотермической смеси является введение в ее состав эффективной химически активной модифицирующей присадки - силикобария и снижение в составе смеси содержания окислов.

Проведенный анализ предложенного технического решения показал, что на данный момент не известны технические решения, в которых были бы отражены указанные отличия. Кроме того, указанные признаки являются необходимыми и достаточными для достижения положительного эффекта, указанного в задаче изобретения. Это позволяет сделать вывод о том, что данные отличия являются существенными.

Дополнительное введение силикобария обусловлено тем, что он является эффективным химически активным экзотермическим и модифицирующим компонентом, оказывающим положительное влияние на термодинамические, термические и технологические параметры железоуглеродистого расплава, их однородность, что способствует повышению дисперсности структуры, трещиностойкости и упругопластических свойств чугунов в отливках.

При увеличении концентрации силикобария более 17% усиливается интенсивность протекания экзотермических реакций и повышаются кинетические параметры железоуглеродистого расплава, что увеличивает угар и безвозвратные потери металла, снижение стабильности состава чугуна и его износостойкости. При концентрации силикобария менее 8% технологические и упругопластические свойства чугуна в отливках недостаточны.

Введение металлического алюминия в количестве 25-38% и фтористого кальция в количестве 18-35% связано с их высокими термическими реакциями в железоуглеродистых расплавах, способностью хорошо раскислять металл и повышать его однородность, трещиностойкость и упругопластические свойства. Их содержание соответствует общепринятым нормам их концентраций при производстве экзотермических смесей для высокоуглеродистых литейных сплавов.

Снижение в составе смеси ферротитана до количества 22% и окислов алюминия до количества 6-13% усиливает интенсивность протекания экзотермических реакций и кинематические параметры железоуглеродистого расплава. При этом количество ферротитана ниже 12% и окислов алюминия ниже 6% снижают стабильность структуры, а при повышении их содержания выше верхних пределов соответственно 22% и 13% увеличивает угар расплава, снижаются однородность расплава, характеристики упругопластических свойств, износостойкости и трещиностойкости.

Угольная пыль в количестве 1-5% оказывает графитизирующее влияние при внепечной обработке, повышает температуру расплава, стабильность упругопластических и технологических свойств чугуна в отливках. Ее эффективность начинает сказываться с содержания 1%. При концентрации угольной пыли более 5% снижаются характеристики износостойкости и упругопластических свойств.

Для сравнения эффективности использования известной и предложенной экзотермических смесей проведена апробация их в производственных условиях при производстве ответственных литых деталей двигателей из антифрикционных чугунов.

Опытные плавки антифрикционного чугуна марки АЧС-3 проводили в индукционных тигельных печах с использованием в качестве шихтовых материалов чугунного лома марки 17А, стального лома марки 1А, литейного чугуна марки Л3, углеродистого феррохрома ФХ200, ферромарганца ФМн78, никеля марки НП3, ферротитана и других ферросплавов.

Комплексную экзотермическую смесь в виде цилиндрических прессованных таблеток вводили в раздаточные ковши при выпуске чугуна из печи с температурой 1380-1450°С.

В таблице 1 приведены составы комплексных экзотермических смесей, используемых для внепечной обработки чугунов опытных плавок.

Таблица 1
Соста-вы смесей Содержание компонентов в экзотермических смесях, мас.%
Металлический алюминий Фтористый кальций Окислы алюминия Ферротитан Силикобарий Угольная пыль
1 (Изв.) 32 27 20 18 - 3
2 18 17 17 23 19 6
3 25 35 6 12 17 5
4 30 27 12 18 10 3
5 38 18 13 22 8 1
6 39 16 15 24 6 -

Для определения металлографической структуры, прочностных и технологических свойств чугунов отливали стандартные образцы для механических испытаний, спиральные технологические пробы, пробы трещиностойкость и отбел, а также детали двигателей.

Металлографические исследования и анализ дисперсности структуры чугуна проводили в соответствии с ГОСТ 3443-87, для определения ударной вязкости использовали образцы с размерами 10×10×55 мм. Определение трещиностойкости проводили на звездообразных технологических пробах диаметром 250 мм и высотой 140 мм.

Таблица 2
Смесь Жидкотекучесть, мм Дисперсность структуры, ПД Относительное удлинение, % Износостойкость, мкм/км Ударная вязкость, Дж/см2 Трещиностойкость, Среднее количество трещин в технологической пробе
1
(Изв.)
595 1,0 3,6 0,32 12 3,0
2 590 1,0 3,8 0,31 13 3,0
3 612 0,5 5,5 0,28 15 1,5
4 625 0,3 7,0 0,25 16 1,0
5 620 0,5 6,8 0,26 14 2,0
6 605 0,5 5,2 0,30 12 2,5

В таблице 2 приведены технологические и механические свойства чугунов, полученных после внепечной обработки экзотермическими смесями известного и предложенного состава, а также анализ структур и свойств чугунов в отливках.

Как видно из таблицы 2, предложенная экзотермическая смесь обеспечивает более высокие характеристики износостойкости, ударной вязкости, относительного удлинения и меньшую склонность к трещинообразованию, чем известная.

Комплексная экзотермическая смесь, содержащая металлический алюминий, фтористый кальций, окислы алюминия, ферротитан и угольную пыль, отличающаяся тем, что она дополнительно содержит силикобарий при следующем соотношении компонентов, мас.%:

Металлический алюминий 25-38
Фтористый кальций 18-35
Окислы алюминия 6-13
Ферротитан 12-22
Силикобарий 8-17
Угольная пыль 1-5



 

Похожие патенты:

Изобретение относится к металлургии и может быть использовано для получения заготовок для формообразования изделий в твердожидком состоянии, например, штамповкой.

Изобретение относится к металлургии и может быть использовано при внепечной обработке стали и сплавов в ковшах. .

Изобретение относится к области металлургии. .

Изобретение относится к области ковшевой металлургии для производства стали и разливки металла из ковша с донными разливочными стаканами. .
Изобретение относится к области литейного производства, в частности к экзотермическим смесям, используемым для внепечной обработки антифрикционных чугунов. .

Изобретение относится к области металлургии, в частности к способу и устройству индукционного перемешивания жидкого металла в ванне печи отражательного типа под действием бегущего магнитного поля частотой 50-60 Гц.
Изобретение относится к металлургии, в частности к получению отливок из белого чугуна, используемых в качестве деталей, стойких к истиранию, например мелющих тел шаровых мельниц, износостойкой футеровки, сменных деталей нефтегазодобывающего оборудования.

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии и может быть использовано для модифицирования серого чугуна или чугуна с шаровидным графитом. Способ включает создание плазменной дуги между поверхностью указанного сплава и катодом плазменной горелки прямого действия, установленной в литейном распределителе, находящемся перед линией литейных форм, причем указанная плазменная горелка прямого действия содержит анод, частично погруженный в упомянутый литейный чугунный сплав, и катод, находящийся на высоте от поверхности упомянутого сплава для создания плазменной дуги между катодом и поверхностью упомянутого сплава, причем анод, или катод, или они оба содержат графит, который предоставляет затравку кристаллизации для упомянутого сплава. Изобретение позволяет получить приемлемый уровень контроля металлургического качества в литейном распределите перед разливкой металла в литейные формы, а также минимально исключить образование шлака, возникающее из-за подачи твердых легирующих агентов на стадии заполнения литейных форм. 2 н. и 14 з.п. ф-лы, 2 пр., 6 ил.

Изобретение относится к литейному производству. Способ включает выплавку чугуна, разливку в ковш, в который предварительно введены предсфероидизирующий, сфероидизирующий и графитизирующий модификаторы в количестве соответственно 0,2-0,3, 0,4-0,5, 0,4-0,5 мас.% от массы жидкого чугуна в ковше. После усреднения по химическому составу чугун заливают в форму, в которой установлен холодильник с нанесенным на него слоем литейной краски на графитовой основе толщиной не менее 0,3 мм. Соотношение масс холодильника и отливки составляет 1:4. При остывании отливки в форме в течение не менее 60 минут до выбивки происходит самоотжиг отливки. Отливка имеет градиентную структуру. Рабочий слой содержит графит шаровидной формы, промежуточный слой - вермикулярный графит, а наружный слой - пластинчатый графит. Детали, полученные из чугуна, имеют высокую эксплуатационную стойкость.1 з.п. ф-лы, 2 ил., 5 табл., 1 пр.

Изобретение относится к литейному производству и может быть использовано для внепечной обработки антифрикционных чугунов. Экзотермическая смесь содержит, мас. %: металлический алюминий 25-38, фтористый кальций 18-35, ферротитан 12-22, силикобарий 8-17, церий 6-13, угольная пыль 1-5. Обеспечивается повышение упругопластических свойств и ударно-усталостной долговечности антифрикционных чугунов. 2 табл.

Изобретение относится к области металлургии. Устройство содержит металлоприемник 6, в дне которого выполнены отверстия, тонкостенный контейнер 1, втулку 3 с закрепленными на ней наклонными спиралеобразными желобами 2. Втулка размещена в контейнере, жестко связана с металлоприемником и выполнена с возможностью возвратно-поступательного осевого перемещения. В металлоприемник 6 подают мерную порцию расплава, перегретого над температурой ликвидуса. Одновременно с подачей расплава через полость втулки 3 пропускают жидкую или газообразную среду, которая обеспечивает поддержание равномерной температуры по сечению заготовки в процессе остывания. Через отверстия 7 в дне металлоприемника расплав в виде струй поступает на рабочие поверхности водоохлаждаемых желобов 2, которые обеспечивают сдвиговое течение расплава по ним и заполнение тонкостенного контейнера 1. Желоба извлекают из контейнера и при этом создают перемешивание потоков суспензии в однородном температурном поле. После извлечения желобов контейнер закрывают теплоизолирующей крышкой, охлаждают суспензию в контейнере с формированием тиксозаготовки. Обеспечивается возможность изготовления тиксозаготовок с мелкозернистой недендритной микроструктурой массой до 30-40 кг из алюминиевых сплавов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к полуфабрикатам из алюминиевого сплава, изготовленным полунепрерывной вертикальной разливкой с прямым охлаждением, которые могут быть использованы для изготовления конструкционных элементов для авиационно-космической промышленности. Способ изготовления недеформированного полуфабриката из алюминиевого сплава, такого как сляб под прокатку или заготовка для прессования, включает: приготовление ванны жидкого металла из сплава, содержащего, мас. %: Zn 0-12, Cu 0-6, Mg 0-6, Li 0-3, Ag 0-1, Si<0,5, Fe<0,5, необязательно по меньшей мере один из Cr, Zr, Mn, Hf, Ti, Sc, V, В, с содержанием <0,5, остальное - алюминий, обработку ультразвуком ванны жидкого металла в печи и/или сосуде с помощью погружного устройства, содержащего по меньшей мере один источник ультразвука, при температуре жидкого металла, по меньшей мере равной 690°С, перенос обработанной ванны жидкого металла в устройство кристаллизации в течение по меньшей мере трех минут с конца обработки ультразвуком и полунепрерывную вертикальную разливку с прямым охлаждением. Изобретение направлено на снижение микропор размером 90 мкм в недеформированном полуфабрикате из алюминиевого сплава. 2 н. и 11 з.п. ф-лы, 3 ил., 1 табл., 1 пр.

Изобретение относится к литейному производству и может быть использовано для изготовления отливок из чугуна, в том числе, отливок стеклоформующей оснастки. Способ включает выплавку чугуна, разливку в ковш, ковшовое модифицирование, заливку в формы и термическую обработку отливок. В ковш предварительно вводят предсфероидизирующий, сфероидизирующий и графитизирующий модификаторы в количестве, мас.%, 0,2-0,3, 0,4-0,5 и 0,4-0,5, соответственно, от массы жидкого чугуна в ковше. Заполнение формы осуществляют последовательно, причем до 30-50% высоты отливки форму заполняют модифицированным расплавом чугуна, а доливку - немодифицированным расплавом чугуна. Термическую обработку отливок осуществляют путем самоотжига в форме в течение не менее 60 минут до выбивки. Достигается повышение эксплуатационного ресурса литых деталей. 2 табл., 3 ил.

Изобретение относится к литейному производству и может быть использовано в металлургической обработке расплава сплавов МЛ5, МЛ5пч, ВМЛ18 и других. Способ включает расплавление магния, введение компонентов сплава в защитной газовой среде без применения флюса и продувку расплава модификатором при температуре 730-750°C. В качестве модификатора используют смесь хладона с аргоном в соотношении (1:1)-(1:3). Обеспечивается повышение механических свойств и коррозионной стойкости сплава. 2 табл., 1 пр.

Изобретение относится к области металлургии и может быть использовано при обработке металла газами в металлургическом ковше. Продувочная пробка (1) для газа содержит корпус (2) из огнеупорного материала с впускным отверстием (3а) для газа на впускном конце (2а), выпускным отверстием (3b) для газа на выпускном конце (2b), конечный визуальный индикатор (5) износа и промежуточный визуальный индикатор (4) износа. Индикатор (5) выполнен в виде удлиненного сердечника и расположен от первого впускного конца (2а) до расстояния h1 вдоль центральной продольной оси X1. Индикатор (4) частично вставлен в индикатор (5) и расположен на расстоянии h0 от впускного конца (2а) до конечного расстояния h2. Длина Н корпуса (2) и длины индикаторов (4, 5) связаны соотношением h0<h1<h2<H. Корпус (2), индикатор (5) и индикатор (4) выполнены из различных первого, второго и третьего огнеупорных материалов, внешний вид которых при температуре 800 – 1500°C визуально различается. Обеспечивается получение информации по меньшей мере о четырех уровнях эрозии продувочной пробки. 2 н. и 9 з.п. ф-лы, 4 ил.
Изобретение относится к литейному производству. Приготавливают шихту из алюминия и железа, плавят и нагревают расплав выше линии ликвидус. Перегретый расплав обрабатывают солью K2ZrF6 в количестве 0,5-1% от массы шихты и заливают в форму. При взаимодействии гексафторцирконата калия и алюминия происходит восстановление циркония, который обеспечивает модифицирование алюминидов железа. Обеспечивается повышение механических свойств алюминидов железа. 1 пр.
Наверх