Сцинтилляционный материал и соответствующий спектральный фильтр



Сцинтилляционный материал и соответствующий спектральный фильтр
Сцинтилляционный материал и соответствующий спектральный фильтр
Сцинтилляционный материал и соответствующий спектральный фильтр
Сцинтилляционный материал и соответствующий спектральный фильтр
Сцинтилляционный материал и соответствующий спектральный фильтр

 


Владельцы патента RU 2519131:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Изобретение может быть использовано при изготовлении систем визуализации в компьютерных томографах. Сцинтилляционный материал содержит модифицированный оксисульфид гадолиния (GOS), в котором приблизительно от 25% до 75% гадолиния (Gd) замещено лантаном (La) или приблизительно не более 50% гадолиния (Gd) замещено лютецием (Lu). Часть гадолиния (Gd) дополнительно может быть замещена по меньшей мере одним элементом, выбранным из группы, состоящей из иттрия (Y) и лютеция (Lu). GOS дополнительно содержит цериий (Се) и/или празеодим (Pr) в качестве примеси. Керамический GOS является кристаллическим. Устройство визуализации содержит по меньшей мере, один радиационный источник и радиационный детектор, содержащий указанный сцинтилляционный материал, а также оптически связанный с ним фотодетектор. Между сцинтилляционным материалом и фотодетектором расположен спектральный фильтр для блокирования света с длиной волны, превышающей примерно 900 нм, или инфракрасный свет, испускаемый сцинтилляционным материалом. Изобретение позволяет уменьшить послесвечение сцинтилляционного материала. 6 н. и 20 з.п. ф-лы, 4 ил., 1 табл.

 

Настоящая заявка, в целом, относится к технике визуализации и, более конкретно, к сцинтилляционному материалу и спектральному фильтру для использования со сцинтилляционным материалом. Предмет заявки может найти применение, в частности, в рентгеновских системах визуализации, особенно в компьютерных томографических (CT) системах визуализации, и ниже описывается именно в связи с этими системами. Однако он также может использоваться для других систем визуализации, например для компьютерной томографии с однофотонной эмиссией (SPECT) или для визуализирующих систем позитронной эмиссионной томографии (PET).

Компьютерные томографические (CT) системы визуализации обычно используют рентгеновский источник, который производит рентгеновское излучение, проходящее через исследуемую область. Предмет, установленный в исследуемой области, взаимодействует с рентгеновским излучением и поглощает часть проходящих рентгеновских лучей. Радиационный детектор устанавливается напротив рентгеновского источника для детектирования и измерения интенсивности прошедших рентгеновских лучей. Радиационный детектор обычно включает несколько пикселей, причем каждый пиксель включает один или несколько блоков сцинтилляционного материала, оптически связанного с фотодетектором. Сцинтилляционный материал производит вспышки света, называемые сцинтилляционными актами, в ответ на рентгеновское облучение. Фотодетектор, например фотодиод или фотоумножитель, производит электрические сигналы, показательные для интенсивности сцинтилляционных актов.

Рабочие параметры сцинтилляционного материала зависят от многих свойств материала, включая, например, его тормозную способность, яркость и послесвечение. Что касается послесвечения, в частности, то послесвечение сцинтиллятора представляет собой инерционность возбуждаемого света, проявляющуюся помимо основной эмиссии. Послесвечение может возникать из-за дефектов в материале сцинтиллятора или примесей, или может иметь другие причины. Вообще говоря, желательно уменьшить послесвечение сцинтиллятора. То есть предпочтительнее послесвечение с коротким временем, чем то, которое более продолжительно. Точно так же послесвечение, имеющее более узкий спектр длин волн предпочтительнее, чем послесвечение, имеющее более широкий спектр длин волн. Меньшее послесвечение предпочтительнее, потому что оно увеличивает число сцинтилляционных актов, которые могут быть продетектированы за данный период времени, и оно также увеличивает временное разрешение детектора.

Как уже упомянуто, нежелательное послесвечение сцинтиллятора может возникать из-за примесей, присутствующих в материале сцинтиллятора. Производство подходящего сцинтиллятора для коммерческого использования в радиационном детекторе представляет собой сложный и дорогостоящий процесс. Этот процесс начинается с подбора или синтеза необходимых сырьевых материалов. Сырьевые материалы обычно обрабатываются, чтобы удалить примеси. К сожалению, какое-то количество примесей трудно удалить при коммерческом или экономически осуществимом варианте. После того, как сырьевые материалы подобраны и очищены до практически необходимого уровня, они комбинируются, чтобы сформировать сцинтиллятор. Кристаллические сцинтилляторы часто получают общим сплавлением сырьевых материалов в плавильной ванне и последующей кристаллизацией. Керамические сцинтилляторы часто получают посредством технологии прессования и высокотемпературной термообработки, без сплавления материала сцинтиллятора. Сцинтиллятор может также быть композитным материалом, содержащим смесь сцинтилляционного порошка, диспергированного в пределах основной среды, например в полимере, причем сцинтилляционный порошок и основная среда имеют подобные показатели преломления.

Обычно для детектирования рентгеновского излучения в CT системах в качестве сцинтилляционного материала использовался оксисульфид гадолиния (Gd2O2S) (далее "GOS"). Материал GOS имеет высокую светоотдачу и короткое послесвечение в ответ на рентгеновское излучение, относительно многих других сцинтилляционных материалов. Однако GOS часто содержит Yb3+, как примесь, что может привести к нежелательному послесвечению, что дополнительно рассматривается ниже.

Согласно одному объекту настоящего изобретения предоставляется сцинтилляционный материал c основной решеткой модифицированного GOS. Согласно другому объекту настоящего изобретения предоставляется способ использования сцинтилляционного материала c основной решеткой модифицированного GOS. Еще в дополнительных объектах настоящего изобретения предоставляется радиационный детектор и устройство визуализации, включающие сцинтилляционный материал c основной решеткой модифицированного GOS. Описываемый в данном случае сцинтилляционный материал c основной решеткой модифицированного GOS имеет более короткое послесвечение, чем обычный сцинтилляционный материал GOS при том, что обеспечивается относительно высокая светоотдача. Многочисленные дополнительные преимущества и достоинства станут очевидными специалистам в данной области техники после прочтения нижеследующего подробного описания предпочтительных вариантов реализации.

В соответствии с дополнительным объектом настоящего изобретения предоставляется спектральный фильтр, чтобы уменьшить, или по существу устранить, нежелательную часть света, произведенного сцинтиллятором. Такой фильтр может быть использован, чтобы уменьшить эффекты послесвечения сцинтиллятора, например, от вызывающего послесвечение Yb3+, присутствующего в обычном сцинтилляционном материале GOS или в сцинтилляционном материале GOS с модифицированной основной решеткой.

Изобретение может быть реализовано при различных химических составах, различных компонентах и наборах компонентов и при различных технологических режимах и последовательности технологических режимов. Чертежи приведены только для иллюстрации предпочтительных вариантов реализации и не должны рассматриваться как ограничение изобретения.

Фиг.1 изображает примерную CT систему визуализации, со срезанным участком стационарного гентри, чтобы показать вращающийся гентри, рентгеновский источник и радиационный детектор;

Фиг.2 - закрытый вид участка сцинтилляционного материала и одного фотодетектора CT системы визуализации на Фиг.1;

Фиг.3 - сравнение участка спектров эмиссии двух образцов GOS, причем один содержит Yb как примесь, а другой не имеет примеси Yb; и

Фиг.4 - закрытый вид участка сцинтилляционного материала и одного фотодетектора CT системы визуализации с дополнительным спектральным фильтром.

Медицинская система визуализации и аппарат настоящей заявки может быть любой медицинской системой визуализации, например CT, SPECT или PET системой визуализации. Более конкретно, в связи с Фиг.1 медицинская система визуализации 100 примерного варианта реализации представляет собой CT систему визуализации. Система 100 CT визуализации включает опору 110, например стол или кушетку, которая поддерживает и позиционирует исследуемый и/или визуализируемый предмет, например пациента. CT система 100 визуализации включает стационарную гентри 120 с вращающейся гентри 130, установленной внутри. Сканирующая трубка 140 проходит через стационарную гентри 120. Сканирующая трубка 140 определяет исследуемую область. Опора 110 предмета может линейно перемещаться вдоль оси Z относительно сканирующей трубки 140, таким образом позволяя опоре 110 предмета, и находящемуся на ней визуализируемому предмету перемещаться в пределах сканирующей трубки и удаляться из сканирующей трубки 140.

Вращающаяся гентри 130 приспособлена для вращения вокруг сканирующей трубы 140 (то есть вокруг оси Z) и визуализируемого предмета, когда он в ней располагается. Один или несколько рентгеновских источников 150 с коллиматором(-ами) 160 установлены на вращающейся гентри 130, чтобы произвести рентгеновский пучок, направленный через сканирующую трубку 140 и визуализируемый предмет, когда он в ней располагается.

Один или несколько блоков 170 радиационного детектора также установлены на вращающейся гентри 130. Обычно рентгеновский источник(-и) 150 и блок(-и) 170 радиационного детектора устанавливаются на противоположных сторонах вращающейся гентри 130 от одного к другому, и вращающаяся гентри 130 вращается, чтобы получить угловой диапазон проекционных видов визуализируемого предмета. Блок(-и) 170 радиационного детектора включает в себя сцинтилляционный материал 180. Сцинтилляционный материал 180 может быть, например, керамическим сцинтилляционным материалом. В некоторых вариантах реализации сцинтилляционный материал 180 представляет собой полупрозрачную керамику. В некоторых вариантах реализации сцинтилляционный материал 180 составлен из множества отдельных кристаллов, которые собираются вместе или вырезаются из общей пластины сцинтиллятора фототравлением или посредством некоторой другой технологии.

CT система 100 визуализации может включать в себя решетку 182, подобную противорассеивающей сетке, которая устанавливается на приемной стороне излучения сцинтилляционного материала 180. Матрица 190 из фотодетекторов 192, например из фотодиодов или фотоумножителей, предоставляется на противоположной стороне сцинтилляционного материала 180 от решетки 182. Каждый из фотодетекторов 192 независимо откликается на сцинтилляционные акты, которые происходят в соответствующей секции 184 сцинтилляционного материала 180.

Компьютер (не показан) управляет работой CT системы 100 визуализации, включая работу поддержки 110 предмета и вращение гентри 130. Данные, собираемые блоком(-ми) 170 детектора, восстанавливаются, чтобы сформировать изображение, которое может быть при необходимости отображено на компьютере, используя обычные способы.

На Фиг.2 показаны закрытый вид участка сцинтилляционного материала 180 и один фотодетектор 192. Сцинтилляционный материал 180 может быть материалом GOS с модификациями основной решетки. Модификации основной решетки сокращают длительность послесвечения по сравнению с обычным материалом GOS. Материал GOS настоящего изобретения также легируется примесью. Некоторые конкретные, неограничивающие примеры используемых примесей - это церий (Ce) и празеодим (Pr). Некоторые примерные варианты реализации материала GOS настоящего изобретения могут легироваться и церием, и празеодимом. Например, материал GOS может легироваться Pr3+ с концентрацией между 100 и 1000 молярных ppm и/или Ce3+ с концентрацией между 0 и 50 молярных ppm. Однако другие подходящие примеси также могут использоваться.

Материал GOS с модификациями основной решетки может быть произведен и использован таким же образом, как и обычный материал GOS. Изготовление вафли, болванки и матрицы может быть выполнено с использованием такого же оборудования, как и при изготовлении обычного GOS.

В различных вариантах реализации материала GOS настоящего изобретения основная решетка GOS модифицирована заменой части гадолиния на иттрий, лантан и/или лютеций или на их комбинации. Например, 25%, 50% или 75% или некоторый другой процент гадолиния может быть заменен либо на иттрий, лантан и/или лютеций или на их комбинацию. Ниже, в Таблице1 показаны результаты испытания на послесвечение таких образцов GOS с модифицированной основной решеткой, которые легировались празеодимом и церием. Каждый из указанных в Таблице1 различных модифицированных образцов GOS легирован приблизительно на 700 молярных ppm Pr3+ и приблизительно 10 молярных ppm Ce3+. Для сравнения, те же самые испытания были проведены с двумя обычными образцами GOS без каких-либо модификаций основной решетки, которые подобным образом легировались.

Как можно видеть, послесвечение образцов было отдельно измерено с фотодиодом и с фотоумножителем. Сначала испытуемый образец был проэкспонирован при стандартном рентгеновском источнике в течение стандартного интервала времени, чтобы вызвать люминесценцию образца. Затем рентгеновский источник был отключен или удален. Яркость образца или интенсивность были затем измерены через 5 миллисекунд, 500 миллисекунд и 2,1 секунды после удаления рентгеновского источника. Значения интенсивности в таблице приведены как миллионные части относительно единицы, которая отображает начальную интенсивность излучения образца, когда источник рентгена удален.

Таким образом, например, после 5 миллисекунд интенсивность (Gd0,75Y0,25)2O2S:Pr; Ce, измеренная с фотодиодом, была уменьшена до приблизительно 0,000648 от его первоначального значения. Напротив, после 5 миллисекунд интенсивности двух обычных образцов GOS, измеренных с фотодиодом, были, соответственно, уменьшены только до приблизительно 0,001495 и 0,001119 от их первоначальных значений. Таким образом, послесвечение этого модифицированного образца GOS было по существу меньше, чем послесвечение обычного GOS после 5 миллисекунд.

Таким образом, приведенная выше Таблица 1 иллюстрирует снижение интенсивности послесвечения различных составов материала GOS с модификациями основной решетки, по сравнению с обычным материалом GOS. Каждый из образцов GOS с модифицированной основной решеткой показал более короткое время послесвечения, чем обычный материал GOS, за исключением образцов GOS с лютецием, измеренных фотодиодом. Предполагается, что неравнозначность этих образцов обусловлена включением Lu2O3 с Yb2O3 в исходном материале, используемом для создания модифицированного GOS. Это включение обуславливает примеси иттербия (Yb3+) в образуемом модифицированном сцинтилляторе GOS, и эта примесь может увеличить послесвечение в обычном GOS, так же как и в GOS с модифицированной основной решеткой.

Например, на Фиг.3 приводится сравнение спектров эмиссии первого обычного образца 302 GOS, содержащего примеси Yb3+ порядка нескольких частей на миллион, и второго обычного образца 304 GOS, из которого по существу все примеси Yb3+ были удалены. Главный, и желательный, спектр представляет собой зелено-красный видимый свет, и он присутствует для обоих образцов. Однако, как можно видеть, примеси Yb3+ приводят к значительно большей эмиссии первого обычного образца 302 GOS в инфракрасной области, приблизительно между 940 и 1100 нм. К сожалению, изготовление образца GOS, столь же чистого как и второй образец 304, отображенный на Фиг.3, может оказаться дорогостоящим, особенно для коммерчески значительных количеств.

Возвращаясь снова к Таблице 1, можно видеть, что фотоумножитель был значительно менее чувствителен к более длительному послесвечению модифицированных лютецием образцов GOS, чем фотодиод. Для фотоумножителя граничная длина волны составляла 800 нм в качестве верхнего предела и, таким образом, с ним измерялись только длины волн, меньшие инфракрасного света. Фотодиод, с другой стороны, также измерял инфракрасный свет. Таким образом, послесвечение в инфракрасной области, обусловленное примесью Yb3+, объясняет неравнозначность результатов для фотоумножителя (который не измерял инфракрасный свет) и результатов для фотодиода (который измерял инфракрасный свет).

Для улучшения рабочих характеристик GOS, например характеристик модифицированного лютецием GOS, измеренных с фотодиодом, может быть использован спектральный фильтр. Как показано на Фиг.4, спектральный фильтр 194 может быть помещен на пути оптического луча между материалом сцинтиллятора 180 и фотодетектором 192. Спектральный фильтр 194 предназначен для удаления нежелательной части эмиссии материала сцинтиллятора при передаче желаемой части эмиссии материала сцинтиллятора. Например, когда материал сцинтиллятора представляет собой GOS, спектральный фильтр 194 может пропустить длины волн, меньшие приблизительно 900 нм (включая желаемый зелено-красный свет), при блокировке больших длин волн (включая не желаемый инфракрасный свет). Такие коротковолновые фильтры пропускания могут быть изготовлены нанесением прозрачных слоев с чередующимися малыми и большими показателями преломления.

Спектральный фильтр 194 может быть вставлен в оптический путь между материалом сцинтиллятора 180 и фотодетектором 192 разнообразным образом, например, как в следующих характерных примерах. Обычные детекторы часто имеют слой оптической склейки, расположенной между материалом сцинтиллятора 180 и фотодетектором 192, чтобы жестко соединить между собой эти два компонента и пропустить свет от сцинтиллятора 180 на фотодетектор 192. Спектральный фильтр 194 может быть помещен в пределах такого слоя оптической склейки. В качестве другой альтернативы обычные системы также часто имеют оптическое покрытие на фотодетекторе 192, чтобы расширить спектр чувствительности фотодетектора 192. Спектральный фильтр 194 может быть сформирован из дополнительного покрытия(-й), помещенного на фотодетекторе 192.

В качестве еще одной альтернативы, особенно подходящей для композитного материала сцинтиллятора, малое количество растворенного поглотителя света, или красителя, может быть введено внутрь основной среды. Поглотитель света действует как фильтр, поглощая нежелательные компоненты спектра и не поглощая желаемые компоненты спектра. Предпочтительно, поглотитель света обладает достаточной радиационной стойкостью.

Спектральный фильтр 194 может быть в различных вариантах. Например, это может быть поглощающий фильтр, который поглощает нежелательный свет послесвечения. В другом случае спектральный фильтр 194 может быть отражающим фильтром, который отражает нежелательный свет послесвечения. Известны многие типы фильтров, которые могут быть подходящими для этого применения, например стеклянные фильтры, интерференционные фильтры, решеточные дифракционные фильтры, призмы и т.п.

Изобретение было описано в связи с предпочтительными вариантами реализации. Очевидно, что после прочтения и понимания приведенного подробного описания будут очевидны возможные модификации и вариации. Предполагается, что изобретение рассматривается как включающее все такие модификации и вариации, поскольку они находятся в объеме притязаний приложенной формулы или ее эквивалентов. Изобретение может реализоваться при различных химических составах, компонентах и установках, комбинациях и субкомбинациях элементов раскрытых вариантов реализации.

1. Сцинтилляционный материал, содержащий:
модифицированный материал GOS для использования с устройством визуализации, в котором по меньшей мере приблизительно 25% и не более чем приблизительно 75% гадолиния (Gd) материала GOS замещены лантаном (La).

2. Сцинтилляционный материал по п.1, в котором по меньшей мере приблизительно 50% гадолиния (Gd) замещены лантаном (La).

3. Сцинтилляционный материал, содержащий
модифицированный материал GOS для использования с устройством визуализации, в котором самое большее приблизительно 50% гадолиния (Gd) материала GOS замещены лютецием (Lu).

4. Сцинтилляционный материал по п.3, в котором самое большее приблизительно 25% гадолиния (Gd) замещены лютецием (Lu).

5. Сцинтилляционный материал по п.1, в котором часть гадолиния (Gd) материала GOS замещена по меньшей мере одним элементом, выбранным из группы, состоящей из иттрия (Y) и лютеция (Lu).

6. Радиационный детектор, содержащий сцинтилляционный материал по п.1 и фотодетектор, оптически связанный со сцинтилляционным материалом.

7. Радиационный детектор по п.6, дополнительно содержащий спектральный фильтр, расположенный на оптическом пути между сцинтилляционным материалом и фотодетектором.

8. Устройство визуализации, содержащее радиационный детектор по п.6 и по меньшей мере один радиационный источник.

9. Устройство визуализации по п.8, в котором устройство визуализации включает СТ устройство визуализации.

10. Сцинтилляционный материал по п.1, в котором модифицированный материал GOS является кристаллическим.

11. Сцинтилляционный материал по п.1, в котором модифицированный материал GOS является керамическим.

12. Сцинтилляционный материал по п.1, дополнительно содержащий по меньшей мере один из церия (Се) и празеодима (Pr) в качестве примеси.

13. Сцинтилляционный материал по п.12, в котором примесь включает церий (Се) в количестве между 0 и 50 ч.млн.молярных.

14. Сцинтилляционный материал по п.12, в котором примесь включает празеодим (Pr) в количестве между 100 и 1000 ч.млн.молярных.

15. Сцинтилляционный материал по п.3, в котором часть гадолиния (Gd) материала GOS замещена по меньшей мере одним элементом, выбранным из группы, состоящей из иттрия (Y) и лантана (La).

16. Радиационный детектор, содержащий сцинтилляционный материал по п.3 и фотодетектор, оптически связанный со сцинтилляционным материалом.

17. Радиационный детектор по п.16, дополнительно содержащий спектральный фильтр, расположенный на оптическом пути между сцинтилляционным материалом и фотодетектором.

18. Радиационный детектор по п.17, в котором спектральный фильтр приспособлен, чтобы по существу блокировать инфракрасный свет, испускаемый сцинтилляционным материалом.

19. Радиационный детектор по п.17, в котором спектральный фильтр приспособлен, чтобы по существу блокировать свет с длиной волны больше чем примерно 900 нм.

20. Устройство визуализации, содержащее радиационный детектор по п.16 и по меньшей мере один радиационный источник.

21. Устройство визуализации по п.20, в котором устройство визуализации включает СТ устройство визуализации.

22. Сцинтилляционный материал по п.3, в котором модифицированный материал GOS является кристаллическим.

23. Сцинтилляционный материал по п.3, в котором модифицированный материал GOS является керамическим.

24. Сцинтилляционный материал по п.3, дополнительно содержащий по меньшей мере один из церия (Се) и празеодима (Pr) в качестве примеси.

25. Сцинтилляционный материал по п.24, в котором примесь включает церий (Се) в количестве между 0 и 50 ч.млн.молярных.

26. Сцинтилляционный материал по п.24, в котором примесь включает празеодим (Pr) в количестве между 100 и 1000 ч.млн.молярных.



 

Похожие патенты:

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно, тепловых нейтронов, содержащему по меньшей мере одну первую секцию (102) с высокой способностью к поглощению нейтронов и по меньшей мере одну вторую секцию (101) с низкой способностью к поглощению нейтронов, причем вторая секция содержит гамма-лучевой сцинтиллятор, материал гамма-лучевого сцинтиллятора содержит неорганический материал с длиной ослабления менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-лучей для энергичных гамма-лучей во второй секции, где материал первой секции выбран из группы материалов, высвобождающих энергию, сообщаемую первой секции за счет захвата нейтрона, в основном, посредством гамма-излучения, и где вторая секция окружает первую секцию таким образом, что существенный участок первой секции покрыт второй секцией, устройство дополнительно содержит детектор света (103) 1, оптически соединенный со второй секцией для детектирования количества света во второй секции, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем это приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением второй секции, где оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная энергия гамма-кванта E (sum) выше 2,614 МэВ.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно тепловых нейтронов, содержащему гамма-лучевой сцинтиллятор, упомянутый сцинтиллятор содержит неорганический материал с длиной ослабления Lg менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-излучения для энергичных гамма-лучей в гамма-лучевом сцинтилляторе, причем гамма-лучевой сцинтиллятор дополнительно содержит компоненты, для которых умножение сечения захвата нейтрона на концентрацию дает длину поглощения Ln для тепловых нейтронов, которая больше 0,5 см, но меньше пятикратной длины ослабления Lg, предпочтительно, меньше двукратной длины ослабления Lg для гамма-лучей с энергией 5 МэВ в сцинтилляторе, причем нейтронпоглощающие компоненты гамма-лучевого сцинтиллятора высвобождают энергию, сообщенную возбужденным ядрам после захвата нейтрона, в основном посредством гамма-излучения, причем гамма-лучевой сцинтиллятор имеет диаметр или длину края по меньшей мере 50% Lg, предпочтительно, по меньшей мере Lg, для поглощения существенной части энергии гамма-лучей, выделяемой после захвата нейтрона в сцинтилляторе, устройство дополнительно содержит детектор света, оптически соединенный с гамма-лучевым сцинтиллятором для детектирования количества света в гамма-лучевом сцинтилляторе, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением в гамма-лучевом сцинтилляторе, причем оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная гамма-энергия Esum выше 2,614 МэВ.

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий.

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте. .

Изобретение относится к сцинтилляционным детекторам для регистрации ионизирующих излучений, обнаружения источников излучений, определения направления на них и их идентификации, для измерения спектра быстрых нейтронов.

Годоскоп // 2416112
Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения радиоактивных материалов и источников. .

Изобретение относится к детектору нейтронов для детектирования нейтронов в областях с существенным - или -излучением, содержащему чувствительный к нейтронам кристалл-сцинтиллятор (10), обеспечивающий сигнал захвата нейтрона, который сильнее сигнала захвата -излучения, с энергией 3 МэВ, полупроводниковый фотодетектор, оптически соединенный с кристаллом-сцинтиллятором, причем кристалл-сцинтиллятор и полупроводниковый фотодетектор (20) выбирают таким образом, чтобы время сбора полного заряда для сигналов сцинтиллятора в полупроводниковом фотодетекторе превышало время сбора полного заряда для сигналов, генерируемых непосредственно детектированием ионизирующего излучения в полупроводниковом фотодетекторе, детектор нейтронов также содержит устройство сэмплирования сигналов детектора, устройство (35) обработки цифровых сигналов, средство, которое отличает сигналы непосредственно из полупроводникового фотодетектора, индуцированные - или -излучением и по меньшей мере частично поглощаемые полупроводниковым фотодетектором, от сигналов света, поступающих в полупроводниковый фотодетектор, испускаемые кристаллом-сцинтиллятором после захвата по меньшей мере одного нейтрона, путем разделения по форме импульса, используя различие между временем сбора полного заряда для сигналов сцинтиллятора от времени сбора полного заряда для сигналов, генерируемых прямым детектированием ионизирующего излучения в полупроводниковом фотодетекторе, и средство, которое отличает индуцированные нейтронами сигналы от индуцированных -излучением сигналов в кристалле-сцинтилляторе путем разделения разных сигналов по высоте их импульса, используя различие между количеством фотонов, сгенерированных нейтроном и -излучением, в интересующей области.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения и идентификации опасных материалов как активными, так и пассивными методами на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, пунктах таможенного досмотра, публичных местах и т.д.

Изобретение относится к средствам спектрометрических измерений и может быть использовано в атомной энергетике для измерения активности радионуклидов в высокоактивных газообразных средах.

Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов.

Изобретение относится к радиационному приборостроению и экспериментальной ядерной физике. Сущность изобретения заключается в том, что излучение регистрируют в N>2 смежных каналах, расположенных так, чтобы включать в себя реперный пик, определяют средние значения частот следования импульсов FN во всех каналах, сравнивают между собой полученные в двух заранее выбранных двух ближайших к вершине реперного пика смежных каналах значения FN и по результатам сравнения формируют основной управляющий сигнал коррекции коэффициента передачи детектирующего тракта, при этом значения границ смежных каналов выбирают пропорциональными членам возрастающей геометрической прогрессии со знаменателем Q, вычисляют нормированные значения средних частот следования импульсов во всех каналах FN(норм)=FN/QN-1, определяют канал, в котором значение FN(норм) максимально, и, если этот канал не окажется одним из заранее выбранных двух ближайших к вершине реперного пика смежных каналов, вырабатывают предварительно установленный для каждого прочего канала дополнительный сигнал коррекции коэффициента передачи детектирующего тракта.
Изобретение относится к технике регистрации ионизирующего излучения, в частности к детекторам рентгеновского излучения. .

Изобретение относится к технике регистрации ядерного излучения с использованием газовых координатно-чувствительных детекторов, работающих в лавинном режиме, и может быть использовано в ядерной физике.

Изобретение относится к области войсковой дозиметрии и обеспечения радиационной безопасности военнослужащих и гражданского персонала ВС РФ в мирное и военное время.

Изобретение относится к электронным кассетам для получения рентгеновского изображения. .

Изобретение относится к области позитронной визуализации и реконструкции данных, собираемых в процессе позитронной эмиссионной томографии (PET). .

Изобретение относится к устройству формирования изображения с помощью излучения и, более конкретно, к приемнику для регистрации рентгеновских изображений. .

Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных меток и регистрации быстропротекающих процессов. Быстрокинетирующий инфракрасный люминофор на основе оксисульфида иттрия или лантана обладает гексагональной структурой и имеет химический состав, отвечающий следующей эмпирической формуле: (Ln1-x-yNdxPry)2O2S, где Ln=Y, La; 2,5·10-3≤х≤2·10-2; 1·10-5≤у≤5·10-3.
Наверх