Способ газификации углеродосодержащих твердых видов топлива



Способ газификации углеродосодержащих твердых видов топлива
Способ газификации углеродосодержащих твердых видов топлива
Способ газификации углеродосодержащих твердых видов топлива
Способ газификации углеродосодержащих твердых видов топлива
Способ газификации углеродосодержащих твердых видов топлива
Способ газификации углеродосодержащих твердых видов топлива

 


Владельцы патента RU 2521638:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" (RU)

Изобретение относится к способам газификации твердых видов углеродсодержащего топлива: бурых и каменных углей, сланцев и торфа. При газификации углеродсодержащих твердых видов топлива, включающей нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи твердого углеродного топлива при пропускании через расплавленный шлак с твердым углеродным топливом газифицирующих агентов, а также пропускании электрического тока с помощью сформированной электрической цепи, включающей электроды, введенный в ванну электропечи и подину электропечи, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, через расплавленный шлак с твердым углеродным топливом пропускают трехфазный электрический ток, величина которого определяется в соответствии с расходом твердого топлива и с учетом необходимой мощности, определяемой из выражения: P a = G w э л 3600 , М В т , где G - расход твердого топлива в электропечи, кг/ч, wэл - удельный расход электроэнергии. Техническим результатом заявляемого изобретения является повышение эффективности использования электрической энергии при осуществлении способа и повышение стабильности технологического процесса. 1 ил., 1 табл.

 

Изобретение относится к способам газификации твердых видов углеродного топлива: бурых и каменных углей, сланцев и торфа. Изобретение может быть использовано в энергетике, химической и металлургической промышленности.

Использование способов прямого сжигания твердых видов топлива для его газификации имеет низкую эффективность в силу неполного сгорания топлива и низкого коэффициента полезного действия топок, дороговизны транспортировки и экологического загрязнения окружающей среды. Твердые виды топлива принципиально не могут быть использованы в наиболее современных технологиях энергетической генерации (газотурбинные установки, парогазовые установки, газопоршневые установки) без предварительного перевода твердого топлива в газообразное или жидкое состояние. Использование твердых видов топлива в традиционной генерации в паровом цикле имеет неудовлетворительную энергетическую эффективность, а также наносящие ощутимый вред окружающей среде выбросы в атмосферу оксидов серы, частиц золы и отвалы, содержащие тяжелые металлы. Одним из приоритетных направлений технического перевооружения ТЭС является внедрение высокоэффективных экологически чистых технологий для производства электрической и тепловой энергии с использованием газификации твердого топлива (Дьяков А.Ф. и др. Новые подходы к технологии использования твердого топлива в электроэнергетике. - "Теплоэнергетика", 1998, N 2).

Химические реакции термохимической переработки твердого топлива в газогенераторах протекают с выделением и поглощениям тепла, МДж/кмоль (Высокотемпературные теплотехнологические процессы и установки./ И.И Перелетов, Л.А.Бровкин, И.Ю.Розенгарт и др.; под ред. А.Д.Ключникова. - М.: Энергоатомиздат, 1989. 336 с.)

C + O 2 = C O 2 + 407 ; ( 1 )

C + 0,5 O 2 = C O + 123 ; ( 2 )

C + H 2 O = C O + H 2 118,7 ; ( 3 )

C + 2 H 2 O = C O 2 + 2 H 2 75,5 ; ( 4 )

C + C O 2 = 2 C O 161,5 ; ( 5 )

C O + 0,5 O 2 = C O 2 + 284 ; ( 6 )

C O 2 + H 2 = C O + H 2 O 43,6 ; ( 7 )

В автотермических газогенераторах тепловую энергию, необходимую для проведения процессов газификации, получают за счет окисления части твердого топлива.

Известен способ газификации твердого топлива в шлаковом расплаве, барботируемом кислородным дутьем (патент RU 2181861, МПК F23C 3/00. Способ ступенчатой газификации и сжигания твердого топлива в аэрошлаковом расплаве. Мадоян А.А.; Ефимов Н.Н., Свердлов В.И, опубл. 27.04.2002).

Способ включает сжигание твердого топлива в ванне с жидким расплавом шлака при подаче в него под давлением газифицирующего агента с образованием и выведением из ванны газа, а также минеральных компонентов из жидкой фазы расплава. При этом ванну заполняют жидким шлаком, загружают твердое топливо, например уголь, и подают газифицирующий агент (кислород или водяной пар). Топливо, попадая в объем жидкого шлака, разогревается, его кусочки растрескиваются и плавятся. В камере начинается процесс интенсивной газификации топлива в объеме расплава под воздействием газифицирующего агента. При использовании в качестве газифицирующего агента кислорода газификация происходит в соответствии с реакцией (2), водяного пара в соответствии с реакцией (3) и (4)). Газифицирующие агенты и выделяющиеся по реакциям (2,3,4) газы барботируют расплавленный шлак. При этом бурлящий шлак играет роль теплоносителя, который обеспечивает идеальные условия тепломассообмена всех компонентов расплава, в том числе топлива с окислителем. При этом топливно-шлаковая смесь разогревается, происходит термическое дробление и плавление всех ее компонентов, кроме углерода, который ведет себя как несмачиваемое вещество. В результате "несмачиваемый легкий углерод" поднимается в верхнюю часть расплава, происходит деминерализация углерода топлива путем отделения (плавления) минеральных компонентов в жидкой фазе расплава с образованием несмачиваемого углерода высокой концентрации.

Полученный синтез-газ направляется в газоотводящий тракт. В верхней части расплава скапливается легкий шлак, являющийся ценным сырьем для получения строительной продукции, а в нижней части концентрируется жидкая металлическая фаза, имеющая промышленное значение.

Технология газификации угля в шлаковом расплаве, барботируемом кислородным дутьем, имеет следующие основные преимущества:

- возможность использования любых низкосортных и непроектных углей независимо от их марки и качества;

- возможность полезного использования минеральной части топлива с восстановлением и выводом из расплава черных и цветных металлов;

- высокая экологическая чистота процессов (выбросы в атмосферу твердых частиц - не более 50 мкг/м3, оксидов азота - не более 100 мг/м3, снижение на 30% выбросов SO2 и на 10% выбросов CO2;

- отсутствие громоздких систем топливоприготовления, пылеподачи и золоочистки, отсутствие золоотвала.

Недостатком является то, что при автотермических технологиях, какой является и способ газификации твердого топлива по патенту №2181861, до 40% топлива затрачивается на поддержание температуры процесса. Причем, при использовании топлива с высоким содержанием минеральной составляющей (каменный уголь и сланец) и низкой теплотворной способностью используемого топлива, температуры шлакового расплава недостаточно для обеспечения высокопроизводительного процесса газификации, а получение газа, энергетическая ценность которого превышала бы 70% энергетической ценности используемого топлива, невозможно. При этом жидкотекучесть шлака в таком процессе не достаточна для выведения минеральной части топлива из ванны.

Кроме того, недостатками технологии на основе автотермической плавки в жидкой ванне являются также:

ограниченность устойчивых технологических режимов автогенного процесса;

сложность пуска и остановки установки.

Сохранить все преимущества газификации в шлаковом расплаве и избавиться от недостатков автотермического процесса плавки в жидкой ванне позволяют основанные на преобразовании электрической энергии в тепловую. Электротехнологические процессы, проводимые в электродных печах, позволяют проводить газификацию любых видов твердого топлива при полном использовании сырья с получением высококалорийного газа, металлического сплава и строительных материалов из шлака. Газификация в электротехнологических установках позволяет получить из различных видов твердого топлива синтез-газ с высоким содержанием водорода и оксида углерода, который может быть использован в качестве топлива в любых установках, а также в качестве сырья в химической промышленности.

Наиболее близким техническим решением к заявляемому изобретению является способ газификации углеродсодержащих твердых видов топлив (SU №878774 A1, C10J 3/18, опубл. 07.11.1981). Этот способ предусматривает нагрев, пиролиз подаваемого в ванну с расплавленным шлаком электродной электропечи твердого углеродного топлива при пропускании через шлаковый расплав газифицирующего агента, в качестве которого используют смесь водяного пара и кислорода при следующем соотношении компонентов на углеродную массу угля, вес.%:

Водяной пар 15-45
Кислород 55-85

и электрического тока.

Для этого в электротехнологическую установку подаются твердое топливо, газифицирующие агенты (кислород и водяной пар), минеральные добавки. В рабочем пространстве установки происходит преобразование электрической энергии в энергию. Протекают процессы нагрева, сушки, пиролиза, полукоксования и газификации коксового остатка кислородом и водяным паром, восстановления оксидов минеральной части сырья углеродом, а также образование шлакового и металлического расплава, происходит процесс газификации твердого топлива.

Недостатком такого способа является то, что при его осуществлении не может в достаточной степени эффективно использоваться электрическая энергия, так как не заданы параметры и величина тока, необходимого для осуществления и поддержания процесса, а сам процесс при этом не может осуществляться стабильно.

Техническим результатом заявляемого изобретения является повышение эффективности использования электрической энергии при осуществлении способа и повышение стабильности технологического процесса.

Этот технический результат достигается тем, что при газификации твердых видов углеродного топлива, включающем нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи углеродного топлива при пропускании через шлаковый расплав газифицирующих агентов, а также пропускании электрического тока, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, в соответствии с изобретением через шлаковый расплав пропускают трехфазный электрический ток, величина которого определяется в соответствии с расходом твердого топлива и с учетом необходимой мощности, определяемой из выражения

где

G - расход твердого топлива в электропечи, кг/ч,

wэл - удельный расход необходимой электроэнергии, определенный физическим и математическим моделированием, равный:

- для газификации каменного угля и использования в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,20-2,356 МДж/кг, водяного пара 7,0-7,23 МДж/кг, кислорода 0,20-0,23 МДж/кг;

- для газификации бурого угля и торфа и использования в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,50-2,83 МДж/кг, водяного пара 5,0-5,08 МДж/кг, кислорода 0,08-0,1 МДж/кг;

3600 - множитель перевода кг/ч в кг/с,

исходя из которой определяют мощность, приходящуюся на один электрод:

где 106 - множитель перевода мощности в ватты, η - электрический КПД,

m - число электродов, равное 3,

после чего определяют величину тока, приходящуюся на один электрод:

где C - технологический параметр, являющийся комплексной характеристикой электротехнологического режима установки электротермической газификации твердого топлива, определенные физическим и математическим моделированием значения параметра С составляют при газификации каменного угля 0,88 В/Вт1/3 при газификации бурого угля и торфа 0,85 В/Вт1/3.

Способ осуществляют следующим образом. Вначале в ванне электротермического газификатора создается слой расплавленного шлака. При поступлении рабочей массы топлива в электротермический газификатор происходит нагрев материалов, испарение влаги и выделение летучих веществ из органической массы твердого топлива. Высокая температура и наличие газифицирующего агента в реакционной зоне способствуют наиболее полной газификации углерода, входящего в состав горючей массы, с образованием смеси оксида углерода и водорода. Входящие в состав золы оксиды железа и кремния восстанавливаются углеродом по реакциям.

F e m O n + n C = m F e + n C O ( 8 )

S i O 2 + 2 C = S i + 2 C O ( 9 )

На Фиг.1 изображен схематичный рисунок электротермической газификации твердого топлива. В ванне установки находятся твердое топливо 2, расплавленный шлак 3, металлический сплав 4. С помощью электродов 1 подводят переменный трехфазный электрический ток, который растекается по расплавленному шлаку, при этом энергия электромагнитного поля преобразуется в тепловую энергию. Для создания симметричной нагрузки на электросеть используется трехфазный переменный ток, в расплаве печи установлено 3 электрода. В электропечи создается электрическая цепь, включающая погруженные в расплав графитовые электроды, слои шлака и металлического сплава на подине электропечи.

Исходя из размеров ванны, определяют расход твердого топлива, то есть количество загружаемого количества топлива в единицу времени. При нагревании его до 100-110°С в зоне нагрева происходит его сушка. В интервале температур 100-250°С начинается термическое разложение с выделением пирогенной воды, диоксида и оксида углерода, при более высокой температуре начинают выделяться углеводороды, смоляные пары и другие органические соединения. Основная масса летучих веществ выделяется из молодых топлив при 270-450°С, а из старых при 350-500°С, выделение смолы прекращается при 500-580°С. При нагреве до 500-700°С происходит полукоксование твердого топлива. При более высокой температуре в реакционной (шлаковой) зоне начинается газификация коксового остатка и плавление минеральной части топлива. Тепловую энергию, необходимую для поддержания эндотермических процессов, получают при растекании электрического тока по материалам реакционной зоны. Для этого через расплавленный шлак с углеродным твердым топливом пропускают с помощью электродов электрический ток, величина которого определяется в соответствии с расходом твердого топлива с учетом необходимой мощности, определяемой из выражения

P a = G w э л 3600 , М В т , где

G - расход твердого топлива в электропечи, кг/ч,

wэл - удельный расход электроэнергии, определенный физическим и математическим моделированием, равный:

- для газификации каменного угля и использования в процессе газификации в качестве газифицирующего агента парокислородной смеси - 2,20…2,356 МДж/кг;

- при газификации бурого угля и торфа и использовании в процессе газификации в качестве газифицирующего агента парокислородной смеси - 2,50…2,83 МДж/кг;

- для газификации каменного угля и использовании в процессе газификации в качестве газифицирующего агента пара - 7,0…7,23 МДж/кг;

- для газификации бурого угля и торфа и использования в процессе газификации в качестве газифицирующего агента пара 5,0…5,08 МДж/кг;

- для газификации каменного угля и использования в процессе газификации в качестве газифицирующего агента кислорода - 0,20…0,23 МДж/кг;

- для газификации бурого угля и торфа и использования в процессе газификации в качестве газифицирующего агента кислорода 0,08…0,1 МДж/кг,

m - число электродов, равное 3;

3600 - множитель перевода кг/ч в кг/с (кг/с*МДж/кг=МДж/с=МВт)

106 - множитель перевода мощности в ватты.

Затем определяют мощность, приходящуюся на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл - электрический КПД,

после чего определяют величину тока, приходящуюся на один электрод

I = p э а 2 3 С

где С - технологический параметр, являющийся комплексной характеристикой электротехнологического режима печной установки (Электротермические процессы химической технологии./ Под ред. В.А.Ершова. - Л.: Химия, 1984, 464 с.). Так для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения параметра составляют при газификации каменного угля С=0,88 В/Вт1/3, при газификации бурого угля и торфа 0,85 В/Вт1/3.

Полная газификация коксового остатка происходит при температуре выше 1200°С. Минеральная часть топлива и минеральные добавки образуют шлаковый расплав. Оксиды железа, кремния и других элементов восстанавливаются углеродом, при этом образуется металлический сплав.

Таким образом, установки электротермической газификации являются высокотемпературными химическими реакторами со сложной структурой рабочей зоны и неравномерным распределением источников тепла и температуры. В верхних уровнях, куда поступает холодная шихта, все компоненты твердые, по мере опускания шихты вниз температура повышается, появляется жидкая фаза. Область максимальных температур находится вблизи рабочих концов электродов, поскольку там выделяется большая часть мощности за счет растекания тока по материалам ванны. В этой области интенсивно протекают эндотермические реакции. Поскольку куски твердого топлива и расплавленный шлак обладают определенной электропроводностью, при растекании электрического тока по ним выделяется тепло, поэтому электротермический электродный газификатор может работать в режиме резистивного нагрева, когда тепло выделяется при растекании тока по материалам ванны.

Ввиду возможности поддержания в зоне газификации достаточно высокой и стабильной температуры электротермическая газификация позволяет перевести всю горючую массу низкосортного твердого топлива в высококалорийный синтез-газ практически свободный от азота, диоксида углерода и водяных паров.

Физическое и математическое моделирование процесса для определения wэл проводилось с учетом полного энергетического баланса процесса электротермической газификации, который включает расход и приход тепловой энергии.

При этом при физическом и математическом моделировании процесса исходили из того, что энергетический баланс должен учитывать расход энергии на:

испарение влаги qвл,

нагрев сухой массы до температуры начала пиролиза qc,

нагрев полукокса до температуры начала газификации qк,

эндотермическая газификация углерода полукокса водяным паром qэнд,

расплавление шлакообразующих материалов и минеральной части топлива qз,

восстановление оксидов минеральной части топлива золы qвос,

тепловые потери qпот;

электрические потери qэл,

а приход энергии в электротермическом газификаторе включает в себя

активную электроэнергию, преобразованную в тепловую wэл

экзотермические химические реакции газификации углерода полукокса кислородом qэкз,

физическое тепло материалов, подаваемых в рабочую зону установки qш.

Энергетический баланс электротехнологической установки при аллотермической газификации

qвл+qс+qк+qэнд+qз+qвос+qпот+qэл=wэл+qэкз+qш

Удельный расход электроэнергии, необходимой для проведения процесса газификации, равен

Wэл=qвл+qс+qк+qэнд+qз+qвос+qпот+qэл-qэкз-qш

При этом удельный расход электроэнергии зависит от технологии газификации и вида топлива (каменный уголь, бурый уголь, торф). При использовании в качестве газифицирующего агента водяного пара кислород не используется. Эмпирически было определено, что удельный расход электроэнергии wэл при паровой газификации каменного угля равен 7,0…7,23 МДж/кг, при паровой газификации бурого угля и торфа 5,0…5,08 МДж/кг. При этом было выявлено, что при этом синтез-газ, полученный в соответствии с заявляемым способом, содержит до 56% водорода, поэтому он может быть использован не только в качестве топлива, но и в качестве сырья для химической промышленности.

При использовании в качестве газифицирующего агента только пара по эндотермической реакции (3) необходим подвод тепловой энергии, расход электроэнергии при этом будет максимальным. При использовании в качестве газифицирующего агента только кислородом по экзотермической реакции (2) выделяющееся тепло практически полностью компенсирует затраты энергии на все процессы при газификации, расход электроэнергии при этом будет относительно небольшим. При использовании в качестве газифицирующего агента парокислородной смеси возможен режим получения термонейтрального газа, при котором тепловые эффекты эндотермической реакции (3) и экзотермической реакции (2) равны по величине. При использовании в качестве газифицирующих агентов смеси кислорода и водяного пара оптимальное содержание кислорода в смеси составляет 55% (Высокотемпературные теплотехнологические процессы и установки. / И.И.Перелетов, Л.А.Бровкин, И.Ю.Розенгарт и др. / под ред. А.Д.Ключникова. - М.: Энергоатомиздат, 1989. 336 с.).

При использовании в качестве газифицирующего агента парокислородной смеси и получении в процессе газификации термонейтрального газа электроэнергия расходуется только на испарение влаги, нагрев материалов и плавление золы, расход электроэнергии будет существенно меньше, чем при газификации только паром.

Эмпирически определено, что при этом для каменного угля удельный расход электроэнергии равен 2,356 МДж/кг, при использовании в качестве газифицирующего агента парокислородной смеси; для газификации бурого угля и торфа удельный расход электроэнергии равен 2,83 МДж/кг, а синтез-газ, полученный в соответствии с заявляемым способом, содержит до 45% водорода.

Энергетический потенциал генераторного газа Qg, который определяется как произведение низшей теплоты сгорания газа на удельный выход газа

Q g = Q н р v г ,

где Q н р -рабочая низшая теплота сгорания генераторного газа, vг - удельный выход газа.

Энергетический потенциал полученного из 1 кг каменного угля синтез-газа паровой газификации составит 29,65 МДж, из 1 кг бурого угля 17,36 МДж.

Энергетический потенциал полученного из 1 кг каменного угля синтез-газа составит 24,345 МДж, из 1 кг бурого угля 14,63 МДж.

При использовании в качестве газифицирующего агента кислорода при газификации каменного угля эмпирически было определено, что удельный расход электроэнергии равен 0,20…0,23 МДж/кг, при кислородной газификации бурого угля и торфа удельный расход электроэнергии равен 0,08…0,1 МДж/кг. Было определено, что при этом полученный синтез-газ содержит до 71% оксида углерода.

Энергетический потенциал полученного из 1 кг каменного угля синтез-газа составит 18,88 МДж, из 1 кг бурого угля 11,8 МДж.

При использовании в качестве газифицирующего агента водяного пара при газификации бурого угля и торфа, газификация происходит по эндотермической реакции (3) только за счет электроэнергии, энергетические затраты на газификацию 1 кг бурого угля и торфа составляют 5,598 МДж.

В таблице приведены показатели газификации каменного угля в соответствии с известными способами без пропускания электрического тока через электрошлаковый расплав и в соответствии с заявляемым способом.

Таблица
Способ газификации А.с. 1333686 Автотермическая газификация Патент 2422538, Автотермическая газификация заявляемый, парокислородная аллотермическая газификация заявляемый, кислородная аллотермическая газификация заявляемый, паровая аллотермическая газификация
Расход Каменный уголь, т/ч 19,77 24,332 14,8 19,976 2,368
Кислород, тыс, м3 16,475 14,434 5,25 14,443 -
Пар, т/ч 0,44 - 6,12 - 10,067
Мощность, МВт - - 9,686 1,276 24,84
Величина пропускаемого тока, кА - - 23,49 6,08 47,0
Выход Синтез-газ, тыс.м3 35,15 37,116 32,28 32,28 32,38
Содержание в синтез-газе оксида углерода и водорода, % объемные 90 79 98 98 98
Низшая теплота сгорания синтез-газа, МДж/м3 10,242 9,7 11,152 11,152 11,152
Энергетический потенциал полученного в течение часа синтез-газа, ГДж 360 360 360 360 360

Из таблицы следует, что при электротермической газификации твердое топливо и кислород используется более эффективно, синтез-газ имеет более высокое содержание оксида углерода и водорода и более высокую теплоту сгорания.

Пример 1. Осуществляется газификации каменного угля при подаче в ванну со шлаковым расплавом водяного пара и кислорода.

Использована ванна оксидного расплава следующих размеров: диаметр 4,5 м, глубина 1,25 м. Плотность расплава в ванне составляет 2,65 г/см3. Объем ванны расплава 19 м3, масса расплава 52 т. Процесс проводился при температуре ванны 1450°С. В ванну через загрузочные устройства подается каменный уголь в виде кусков размером 20…30 мм в количестве 14800 кг/ч. При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подают водяной пар в количестве 6120 кг/ч и кислород в количестве 5250 м3/ч.

Эмпирически установлена с помощью физико-математических методов величина удельного расхода электроэнергии для каменного угля, равного wэл=2,356 МДж/кг.

Для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения технологического параметра С=0,88 В/Вт1/3.

Одновременно с подачей угля пропускают электрический трехфазный ток через расплав. Величину пропускаемого тока выбирают следующим образом. Исходя из расхода твердого топлива G=14800 кг/ч, определили активную мощность установки

P a = G w э л 3600 , М В т

P a = 14800 2,356 3600 = 9,686 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД. Для трехэлектродных печей мощностью более 9 МВт ηэл=0,92 (Короткие сети и электрические параметры дуговых электропечей. Справ. изд. / Под. ред Я.Б.Данциса и Г.М.Жилова. М.: Металлургия. 1987. 320 с.)

P э a = 10 6 9,686 * 0,92 3 = 2970000 В т

Ток электрода

I = p э а 2 3 С

где С=0,88 В/Вт1/3 - технологический параметр (Электротермические процессы химической технологии. / Под ред. В.А.Ершова. - Л.: Химия, 1984, 464 с.).

Для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения технологического параметра С=0,88 В/Вт1/3

I = 2970000 2 3 0,88 = 23490 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность 8,91 МВт. Ток электрода 23,49 кА.

Электрическая энергия преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3/час, который имеет следующий состав (% об.): СО - 53; СО2 - 0,7; Н2 - 45; Н2О - 0,1;. Температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 2200 кг/ч с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 330 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

При газификации по технологии прототипа при расходе каменного угля 14800 кг/ч при расходе кислорода 12165 нм3/ч будет получено синтез-газа 27000 нм3/ч, с энергетическим потенциалом 303 ГДж, тепловая мощность при сжигании синтез-газа 84 МВт.

Пример 2. Основные параметры при паровой газификации каменного угля.

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Плотность расплава в ванне составляет 2,65 г/см3. Объем ванны расплава 19 м3, масса расплава 52 т. Заданная температура ванны 1450°С. В ванну сверху через загрузочные устройства подается каменный уголь в виде кусков размером 20…30 мм в количестве 12370 кг/ч. При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается водяной пар в количестве 10100 кг/час.

В рабочее пространство ванны вводят электрическую энергию путем пропускания электрического тока через расплав. Электрическая энергия преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=7,23 МДж/кг и расходу твердого топлива G=12370 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 12370 * 7,23 3600 = 24,84 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 10 6 24,84 * 0,92 3 = 7610000 В т

Ток электрода

I = p э а 2 3 С

где С=0,88 В/Вт1/3 - технологический параметр.

Для установок электротермической газификации твердого топлива определенные физическим и математическим моделированием значения технологического параметра С=0,88 В/Вт1/3

I = 7610000 2 3 0,88 = 44000 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность ванны 24,84 МВт. Ток электрода 44 кА.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы

Образуется синтез-газ в количестве 31200 нм3/час, который имеет следующий состав (% об.): СО - 42; СО 2 - 0,7; Н2 - 56; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 1840 кг/ч с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 275 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

При газификации по технологии прототипа при расходе каменного угля 14800 кг/ч при расходе кислорода 12165 нм3/ч будет получено синтез-газа 27000 нм3/ч, с энергетическим потенциалом 303 ГДж, тепловая мощность при сжигании синтез-газа 84 МВт.

Пример 3. Основные параметры при кислородной газификации каменного угля.

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Плотность расплава в ванне составляет 2,65 г/см3. Объем ванны расплава 19 м3, масса расплава 52 т. Заданная температура ванны 1450°С. В ванну сверху через загрузочные устройства подается каменный уголь в виде кусков размером 20…30 мм в количестве 19980 кг/ч. При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается кислород в количестве 14443 м3/ч.

В рабочее пространство ванны вводят электрическую энергию путем пропускания электрического тока через расплав. Электрическая энергия преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По эмпирически определенному из энергетического баланса удельному расходу электроэнергии wэл=0,23 МДж/кг и расходу твердого топлива G=19980 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 19980 * 0,23 3600 = 1,276 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 10 6 1,276 * 0,92 3 = 391000 В т

Ток электрода

I = p э а 2 3 С

Где С=0,88 В/Вт1/3 - технологический параметр

I = 7610000 2 3 0,88 = 44000 А

Подвод тока осуществляется через 3 графитированных электрода диаметром 400 мм. Активная электрическая мощность 1,276 МВт. Ток электрода 6,08 кА.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3 /ч, который имеет следующий состав (% об.): СО - 70; СО2 - 0,7; Н2 - 28; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 2970 кг/час с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 400 кг/час с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

При газификации по технологии прототипа при расходе каменного угля 14800 кг/ч при расходе кислорода 12165 нм3 /ч будет получено синтез-газа 27000 нм3/ч, с энергетическим потенциалом 303 ГДж, тепловая мощность при сжигании синтез-газа 84 МВт.

Пример 4

Основные параметры при парокислородной газификации бурого угля

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Объем 19,875 м. Плотность ванны составляет 2,65 г/см3. Масса расплава 52,7 т. Температура ванны 1450°С. В ванну сверху через загрузочные устройства подается бурый уголь в виде кусков размером 20..30 мм в количестве 24610 кг/ч. Рабочая масса бурого угля (%): влага Wr=39; зола Ar=7,3; сера Sop+Sk=0,4; углерод Cr=37,4; водород Hr=2,6; азот Nr=0,6; кислород Or=12,7. Низшая теплота сгорания каменного угля Q n p = 13,02 М Д ж / к г . Выход летучих (%) Vdaf=48.

При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается водяной пар в количестве 5266 кг/ч и кислород в количестве 4528 м3/ч.

В рабочее пространство ванны вводится электрическая энергия, которая преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400.. 1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=2,83 МДж/кг и расходу твердого топлива G=24610 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 24610 * 2,38 3600 = 19,34 М В т

Мощность, приходящая на один электрод, МВт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 10 6 19,34 * 0,92 3 = 5930000 В т

Ток электрода

I = p э а 2 3 С

I = 5930000 2 3 0,85 = 38560 А

Подвод тока осуществляется через 3 графитированных электрода диаметром 400 мм. Активная электрическая мощность 19,34 МВт. Ток электрода 38,56 кА.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3/ч, который имеет следующий состав (% об.): СО - 54; СО2 - 0,7; Н2 - 44; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 1796 кг/ч с температурой 1550°С, который отводится непрерывно. Образуется металлический сплав в количестве 270 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава.

В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31130 нм3/час, который имеет следующий состав (% об.): СО - 55; СО2 - 0,7; Н2 - 44,23; Н2О - 0,1; температура газа - 400°С, калорийность - 11570 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Пример 5

Основные параметры при паровой газификации бурого угля

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Объем 19,875 м3. Плотность ванны составляет 2,65 г/см3. Масса расплава 52,7 т. Температура ванны 1450°С. В ванну сверху через загрузочные устройства подается бурый уголь в виде кусков размером 20..30 мм в количестве 20740 кг/ч. Рабочая масса бурого угля (%): влага Wr=39; зола Ar=7,3; сера Sop+Sk=0,4; углерод Cr=37,4; водород Hr=2,6; азот Nr=0,6; кислород Or=12,7. Низшая теплота сгорания каменного угля Q n p = 13,02 М Д ж / к г . Выход летучих (%) Vdaf=48.

При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается водяной пар в количестве 8730 кг/ч.

В рабочее пространство ванны вводится электрическая энергия, которая преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=5,08 МДж/кг и расходу твердого топлива G=20740 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 20740 * 5,08 3600 = 41,966 М В т

Мощность, приходящая на один электрод, Вт

P э a = 10 6 Р а η э л m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 41,966 0,92 10 6 3 = 12870000 В т

Ток электрода

I = p э а 2 3 С

где С=0,85 В/Вт1/3 - технологический параметр

I = 12870000 2 3 0,85 = 64610 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность 41,966 МВт. Ток электрода 64,61 кА. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Образуется синтез-газ в количестве 31200 нм3/ч, который имеет следующий состав (% об.): СО - 53; СО2 - 0,7; Н2 - 45; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 1510 кг/ч с температурой 1550°С, который отводится непрерывно. Образуется металлический сплав в количестве 230 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Пример 6

Основные параметры при кислородной газификации бурого угля

Ванна оксидного расплава имеет следующие размеры: диаметр 4,5 м, глубина 1,25 м. Объем 19,875 м3. Плотность ванны составляет 2,65 г/см3. Масса расплава 52,7 т. Температура ванны 1450°С. В ванну сверху через загрузочные устройства подается бурый уголь в виде кусков размером 20…30 мм в количестве 30500 кг/ч. Рабочая масса бурого угля (%): влага W=39; зола Ar=7,3; сера Sop+Sk=0,4; углерод Cr=37,4; водород Hr=2,6; азот Nr=0,6; кислород Or=12,7. Низшая теплота сгорания каменного угля Q n p = 13,02 М Д ж / к г . Выход летучих (%) Vdaf=48.

При попадании кусков угля на поверхность расплава происходит пиролиз угля с образованием кокса, который плавает в расплаве. В рабочем пространстве ванны образуется суспензия, в которую подается кислород в количестве 7990 м3/ч.

В рабочее пространство ванны вводится электрическая энергия, которая преобразуется в тепловую энергию за счет растекания тока по жидким и твердым материалам. За счет этой тепловой энергии поддерживается температура расплава 1400…1600°С, обеспечивается протекание эндотермических реакций.

По определенному из энергетического баланса удельному расходу электроэнергии wэл=0,1 МДж/кг и расходу твердого топлива G=30500 кг/ч определяется активная мощность установки

P a = G w э л 3600

P a = 30500 * 0,1 3600 = 0,847 М В т

Мощность, приходящая на один электрод, Вт

P э a = Р а η э л 10 6 m

где m=3 - число электродов, ηэл=0,92 - электрический КПД.

P э a = 0,847 0,92 10 6 3 = 259800 В т

Ток электрода

I = p э а 2 3 С

где С=0,85 В/Вт1/3 - технологический параметр.

Для установок электротермической газификации бурого угля определенные физическим и математическим моделированием значения технологического параметра С=0,85 В/Вт1/3

I = 12870000 2 3 0,85 = 64610 А

Подвод тока осуществляется через 3 графитированных электрода. Активная электрическая мощность 0,847 МВт. Ток электрода 4,79 кА. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы. Образуется синтез-газ в количестве 31200 нм3/ч, который имеет следующий состав (% об.): СО - 69; СО2 - 0,7; Н2 - 29; Н2О - 0,1; температура газа - 400°С, калорийность - 11540 кДж/м3. Энергетический потенциал синтез-газа 360 ГДж, тепловая мощность при сжигании синтез-газа 100 МВт.

Образуется шлаковый расплав в количестве 2225 кг/ч с температурой 1450°С, который отводится непрерывно. Образуется металлический сплав в количестве 335 кг/ч с температурой 1550°С, который отводится периодически 1 раз в 6 часов с противоположной стороны от места отвода шлакового расплава. В процессе газификации угля образуются газообразные и конденсированные продукты, происходит расплавление минеральной части угля, восстановление железа и других металлов минеральной части топлива и разделение расплава на металлизированную и неметаллизированную (шлаковую) фазы.

Технология электрохимической газификации несмотря на использование сравнительно дорогой электроэнергии позволяет в одном процессе совместить металлургическую и энергетическую технологии с получением синтез-газа, металлического сплава и шлака, снизить суммарные энергетические затраты по сравнению с раздельными технологиями металлургического восстановления оксидов и газификации, кроме того, можно использовать установки электротермической газификации как способ регулирования максимумов электрической нагрузки, загружая электротермические газификаторы максимально в ночное время и запасая генераторный газ в газгольдерах.

Способ газификации твердых видов углеродного топлива, включающий нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи углеродного топлива при пропускании через шлаковый расплав газифицирующих агентов, а также пропускании электрического тока, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, отличающийся тем, что через шлаковый расплав пропускают трехфазный электрический ток, величина которого определяется в соответствии с расходом твердого топлива и с учетом необходимой мощности, определяемой из выражения:

где - G - расход твердого топлива в электропечи, кг/ч,
wэл - удельный расход необходимой электроэнергии, определенный физическим и математическим моделированием, равный:
- для газификации каменного угля и использовании в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,20-2,356 МДж/кг, водяного пара 7,0-7,23 МДж/кг, кислорода 0,20-0,23 МДж/кг;
- для газификации бурого угля и торфа и использовании в процессе газификации в качестве газифицирующего агента парокислородной смеси 2,50-2,83 МДж/кг, водяного пара 5,0-5,08 МДж/кг, кислорода 0,08-0,1 МДж/кг;
3600 - множитель перевода кг/ч в кг/с, исходя из которой определяют мощность, приходящуюся на один электрод:

где 106 - множитель перевода мощности в ватты, η - электрический КПД,
m - число электродов, равное 3,
после чего определяют величину тока, приходящуюся на один электрод:

где С - технологический параметр, являющийся комплексной характеристикой электротехнологического режима установки электротермической газификации твердого топлива, определенные физическим и математическим моделированием значения параметра С составляют при газификации каменного угля 0,88 В/Вт1/3, при газификации бурого угля и торфа 0,85 В/Вт1/3.



 

Похожие патенты:

Изобретение относится области энергетики, предназначено для утилизации отходов на предприятиях аграрно-промышленного комплекса. Техническим результатом является повышение качества сжигания подстилочного помета и продление срока использования установки для сжигания топлива.

Изобретение относится к устройствам для газификации твердых органических топлив и может быть использовано для производства горючего генераторного газа из отходов предприятий лесного и агропромышленного комплексов.

Изобретения относятся к промышленной переработке горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов реализуют в реакторах, оснащенных температурными датчиками (18, 20).

Изобретение относится к области термической переработки углеродсодержащих материалов с образованием топочного газа. Устройство для газификации сыпучего мелкодисперсного углеродсодержащего сырья и гранулированных биошламов содержит вихревую топку с камерой сгорания, устройство для нагрева камеры сгорания, загрузочное устройство, первую и вторую магистрали подачи газового потока в тангенциальном направлении в камеру сгорания, первый и второй нагнетатели.

Изобретение относится к области химии. .

Изобретение относится к технике мусоросжигания, в частности к высокотемпературному сжиганию влажных медицинских отходов. .

Изобретение относится к энергетике и может быть использовано в системах утилизации отходов деревообрабатывающих производств при одновременной выработке тепловой энергии и сокращении потребления газа и жидкого топлива.

Изобретение относится к строительству и может быть использовано для переработки и утилизации городских и промышленных отходов органического происхождения. .
Изобретение относится к термохимической переработке твердого органического сырья и может быть использовано для утилизации и переработки органической части твердых производственных и бытовых отходов.

Изобретение относится к устройствам для сжигания жидкого, в том числе водоугольного топлива (ВУТ), в различных котельных установках промышленной теплоэнергетики, жилищно-коммунального хозяйства и других теплогенерирующих системах.

Изобретение относится к системе крепления газовых труб. Система крепления газовой трубы в регуляторе или диффузоре газовой плиты содержит зажим с двойным соединением, центральная часть которого охватывает конец трубы, вставляемый в газовый регулятор или диффузор.

Рекуператор тепла для радиационной трубчатой горелки содержит трубу горелки и выпускную трубу. Горелка установлена на входе трубы горелки.

Изобретение относится к камере сгорания, которая нагревает горючий газ посредством сжигания горючего газа, который испускается из первой трубы через отверстия, которые находятся в пределах расстояния пламегашения в зоне горения внутри второй трубы, и также посредством передачи тепла отработанного газа, который возникает при сгорании горючего газа, к горючему газу посредством первой трубы.

Изобретение относится к горелкам, которые применяются в способах формирования минеральных волокон и в которых вытягивание этих волокон является следствием только лишь течений газовых потоков, производимых упомянутыми горелками.

Изобретение относится к беспламенному бензиновому отопителю. .

Изобретение относится к устройствам для сжигания жидкого, в том числе водоугольного топлива (ВУТ) в различных котельных установках промышленной теплоэнергетики, жилищно-коммунального хозяйства и других теплогенерирующих системах, и обеспечивает при его использовании однородность температур по объему топки.

Изобретение относится к пламенному нагревателю. .

Изобретение относится к пламенному нагревателю. .

Изобретение относится к устройству для непрерывной подачи мелкоизмельченного топлива в систему газификации угля. Изобретение касается устройства для подачи твердых топливных материалов в реактор для газификации твердых топливных материалов, содержащего измельчительное устройство (2), пылеуловитель (3), резервуар-хранилище (4), по меньшей мере два шлюзовых питателя (5), одно или несколько соединительных устройств (12) для транспортировки плотным потоком, питающий резервуар (13), реактор для газификации (15), в котором измельчительное устройство (2) соединено с резервуаром-хранилищем (4) посредством соединительных устройств, причем пылеуловитель (3) размещен между измельчительным устройством (2) и резервуаром-хранилищем (4), содержащего устройство (18) для повышения давления, которое возвращает транспортирующий газ из питающего резервуара (13) в шлюзовой питатель (5), при этом резервуар-хранилище (4) соединен со шлюзовыми питателями (5) через соединительные устройства, выполненные с возможностью перемещения самотеком или транспортировки плотным потоком, а шлюзовые питатели (5) соединены с питающим резервуаром (13) посредством совместно используемых одного или нескольких соединительных устройств (12), которые пригодны в качестве трубопровода (12) непрерывной подачи для транспортировки плотным потоком, причем питающий резервуар соединен с реактором (15) для газификации через дополнительные топливные трубопроводы (14).
Наверх