Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении

Изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение точности обнаружения прямолинейных границ объектов на изображении за счет получения локальных максимумов. В способе на основе градиентного поля проводится формирование трех изображений, которые затем подвергаются преобразованию Радона и объединяются в одно изображение посредством поточечного взвешенного суммирования трех преобразований Радона от изображений.

 

Изобретение относится к области цифровой обработки изображений и может быть использовано в охранных системах, системах мониторинга, оптоэлектронных системах сопровождения объектов, контрольно-измерительных системах, медицине и др.

Известен способ применения модифицированного преобразования Хафа для обнаружения штриховых кодов и текстовых областей [Визильтер Ю.В., Желтов С.Ю., Бондаренко А.В. и др. Методы анализа свидетельств // Обработка и анализ изображений в задачах машинного зрения. Курс лекций и практических занятий. - М.: Физматкнига, 2010. С.341-343. ISBN 978-5-89155-201-2], в котором для повышения точности и надежности обнаружения полос выполняется оценка градиентного поля исходного изображения. Все точки, имеющие модуль градиента выше порогового значения, участвуют в голосовании, по результатам которого в каждой ячейке аккумулятора хранится количество лежащих на соответствующей прямой точек, со значительным уровнем градиента и направлением градиента, отличающимся от перпендикулярного этой прямой не более чем на заданное пороговое значение. Далее над аккумулятором выполняются специфические для задач поиска кодосодержащих полос операции.

К недостаткам данного способа можно отнести крайнюю ограниченность областей использования алгоритма и неприменимость в нем быстрого преобразования Фурье (БПФ) для ускорения вычислений. Следует отметить тот факт, что узкий диапазон значений углов голосования снижает робастность результата к слабокоррелированному шуму.

Наиболее близким к заявляемому способу, но имеющим более широкую область применения, является подход, основанный на преобразовании Радона или обычном преобразовании Хафа. Преобразование Хафа во многом схоже с преобразованием Радона, но позволяет выполнять лишь частичное преобразование изображения, в отличие от тотального преобразования Радона. Однако в качестве прототипа был выбран подход, основанный именно на преобразовании Радона, т.к. оно может быть выполнено через БПФ, что дает значительный прирост производительности в сравнении с преобразованием Хафа всего изображения.

Недостатком прототипа является использование скалярного двумерного поля, получаемого в результате обработки исходного изображения каким-либо выделителем границ. Таким образом, направление вектора градиента исключалось из внимания при поиске прямолинейных границ. Этот недостаток был частично решен в работе [Визильтер Ю.В., Желтов С.Ю., Бондаренко А.В. и др. Методы анализа свидетельств // Обработка и анализ изображений в задачах машинного зрения. Курс лекций и практических занятий. - М.: Физматкнига, 2010. С.341-343. ISBN 978-5-89155-201-2], однако описанный в ней подход был разработан для решения узкоспециализированных задач.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в повышении точности обнаружения прямолинейных границ объектов на изображении посредством получения более ярко выраженных локальных максимумов, соответствующих прямолинейным границам при значительном уровне некоррелированного или слабокоррелированного аддитивного или мультипликативного шума.

Технический результат достигается тем, что заявляемый способ обработки сигналов для обнаружения прямолинейных границ объектов на дискретном изображении выполняется с учетом направления вектора перепада уровня яркости изображения.

Предлагаемый способ состоит из четырех этапов.

1) Вычисление поля градиентов. Для каждого пикселя l(i, j) исходного изображения L вычисляется значение вектора градиента

g ( i , j ) = ( g x ( i , j ) , g y ( i , j ) )

оператором Собеля.

2) Вычисление трех обычных преобразований Радона от изображений, полученных на основе градиентного поля по выражениям:

g1(i,j)=gx(i,j)2,(i,j)∈L

g2(i,j)=gx(i,j)·gy(i,j),(i,j)∈L

g3(i,j)=gy(i,j)2,(i,j)∈L

r1=R[g1];

r2=R[g2];

r3=R[g3],

где g1, g2 и g3 - промежуточные изображения;

R[] - оператор преобразования Радона;

r1, r2 и r3 - результаты преобразований Радона от g1, g2 и g3 соответственно (имеют размеры Nρ×Nθ).

r1, r2 и r3 - представляют собой дискретные изображения с координатами пикселей (s, α), где s = 1, N ρ ¯ , α = 1, N θ ¯ . Каждой точке (s, α) соответствует прямая с параметрами (ρ(s)θ(α)), где ρ(s) - расстояние от начала координат до ближайшей к нему точки на прямой, θ(α) - угол поворота нормали к прямой относительно абсциссы (оси х) против часовой стрелки.

3) Вычисление вектора весов w1, w2 и w3 для всех значений α = 1, N θ ¯ , которые были использованы в преобразованиях r1, r2 и r3:

w 1 ( α ) = cos 2 ( θ ( α ) ) , α = 1, N θ ¯ ;

w 2 ( α ) = sin ( 2 θ ( α ) ) , α = 1, N θ ¯ ;

w 3 ( α ) = 1 w 1 ( α ) , α = 1, N θ ¯ .

4) Вычисление модифицированного преобразования Радона путем взвешенного суммирования трех обычных преобразований по выражению:

r'(s,α)=r1(s,α)·w1(α)+r2(s,α)·w2(α)+r3(s,α)·w3(α),

s = 1, N ρ ¯ , α = 1, N θ ¯ .

После получения изображения модифицированного преобразования Радона производится поиск локальных максимумов, соответствующих прямым на исходном изображении, на которых предположительно лежат прямолинейные границы объектов [Д.Б.Волегов, В.В.Гусев, Д.В.Юрин. "Обнаружение прямых линий на изображениях на основе преобразования Хартли. Быстрое преобразование Хафа" // в: 16-я международная конференция по компьютерной графике и ее приложениям ГрафиКон2006. Россия, Новосибирск, Академгородок, 2006, с.182-191].

Эксперименты показывают, что использование модифицированного преобразования Радона вместо обычного позволяет на 40% увеличить эффективность работы алгоритмов сопровождения объектов с прямолинейными границами на видеоизображении.

Предлагаемый способ обработки сигналов для обнаружения прямолинейных границ объектов может быть реализован на базе персональной электронной вычислительной машины (ПЭВМ) общего назначения.

В случаях, когда использование ПЭВМ общего назначения невозможно (например, в бортовых системах обработки изображений), предлагаемый способ обработки сигналов может быть реализован на базе программируемых логических интегральных схем (ПЛИС) либо совместного использования ПЛИС и специализированных цифровых процессоров обработки сигналов.

При использовании предлагаемого способа в системах обработки видеоизображений реального времени рекомендуется использовать преобразование Радона, реализованное с помощью БПФ или преобразования Хартли [Д.Б.Волегов, В.В.Гусев, Д.В.Юрин. "Обнаружение прямых линий на изображениях на основе преобразования Хартли. Быстрое преобразование Хафа" // в: 16-я международная конференция по компьютерной графике и ее приложениям ГрафиКон2006. Россия, Новосибирск, Академгородок, 2006, с.182-191]. Это позволит снизить требования, предъявляемые к аппаратному обеспечению.

Заявляемый способ отличается невысокой вычислительной сложностью и может быть реализован на существующей и перспективной элементной базе.

Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении, включающий в себя оценку градиентного поля исходного изображения, его обработку посредством преобразования Радона и поиск локальных максимумов в полученном параметрическом пространстве, отличающийся тем, что на основе градиентного поля проводится формирование трех изображений, которые затем подвергаются преобразованию Радона и объединяются в одно изображение посредством поточечного взвешенного суммирования трех преобразований Радона от изображений.



 

Похожие патенты:

Изобретение относится к средствам анализа цифровых изображений. Техническим результатом является обеспечение классификации объектов по геометрическим признакам в лабиринтных структурах.

Изобретение относится к сегментации изображений. Техническим результатом является улучшение очерчивания контуров эндокарда и эпикарда сердца.

Настоящее изобретение относится к области электрофизиологии. Техническим результатом является обеспечение возможности более точно определять положение объекта, тем самым повышая качество локализации.

Изобретение относится к средствам обработки видеоизображений в виртуальной сетевой среде. Техническим результатом является обеспечение точного соответствия между реальными видеоданными пользователя и его виртуального персонажа в виртуальной сетевой среде.

Изобретение относится к способу идентификации и анализа устойчивых рассеивателей (PS) в последовательности цифровых изображений, полученных с помощью радиолокатора с синтезированием апертуры (SAR).

Изобретение относится к применению многомерного анализа изображения для выявления дефектов на производственной линии, производящей продукт питания. Техническим результатом является обеспечение контроля производственной линии для продуктов питания путем выявления дефектов продуктов питания, и избирательное удаление дефектных продуктов питания без удаления недефектных продуктов питания.

Изобретение относится к медицинской технике, а именно к ультразвуковым диагностическим системам формирования изображений. Устройство содержит зонд, выполненный с возможностью передачи ультразвуковых волн в сердце и приема ответных эхо-сигналов, процессор изображений, реагирующий на эхо-сигналы, выполненный с возможностью производить последовательность изображений миокарда в течение, по меньшей мере, части сердечного цикла, анализатор движения миокарда, реагирующий на последовательность изображений, который определяет движение множества сегментов миокарда, процессор задействования, реагирующий на движение сегментов, который производит индикатор совокупного участия множества сегментов в процентном отношении от полного смещения миокарда во время сердечного цикла и относительных промежутков времени участия сегментов в движении миокарда относительно процентного отношения от полного смещения во время сердечного цикла, и дисплей, соединенный с процессором задействования, который отображает индикатор.

Изобретение относится к средствам обработки данных изображений. Техническим результатом является уменьшение количества ошибочных распознаваний кадров-вставок в потоке мультимедийных данных.

Изобретение относится к области сегментации изображений. Техническим результатом является обеспечение одновременной сегментации объектов близко друг к другу при одновременном обеспечении требуемых пространственных соотношений, а также минимизация вероятности нарушения требуемых пространственных соотношений сеток, адаптированных к этим объектам.

Изобретение относится к средствам детектирования копий видеоданных. Техническим результатом является повышение точности детектирования копий видеоданных за счет построения траектории представляющих интерес устойчивых точек.

Изобретение относится к системе и способу наблюдения за взлетно-посадочной полосой (ВПП). Техническим результатом является обеспечение обнаружения повреждений от посторонних предметов в условиях естественной освещенности как в дневное, так и в ночное время без использования дополнительного освещения, например от инфракрасных или лазерных световых приборов. Система включает одну или несколько камер, фиксирующих изображения ВПП; и систему обработки изображений для обнаружения повреждений от посторонних предметов на ВПП на основе адаптивной обработки изображений, отснятых камерами, и для использования способов улучшения качества изображений для повышения их четкости; при этом система обработки изображений сформирована таким образом, чтобы обнаружить движения в отснятых изображениях, изучить фон, используя только изображения, на которых движение отсутствует, разработать сводную карту контуров во время изучения фона; при этом сводная карта контуров фона состоит из карты контуров адаптивного фона и ранее изученной карты фона, а также дополнительной сезонной разметки, создаваемой для конкретного времени года или погодных условий; при этом система наблюдения адаптивно пригодна для обнаружения повреждений от посторонних предметов в условиях наружной освещенности как в дневное, так и в ночное время без принудительного освещения, включая инфракрасные или лазерные световые приборы. 2 н. и 28 з.п. ф-лы, 10 ил.

Изобретения относятся к средствам визуализации интересующего объекта вместе с устройством, применяемым для лечения пациента. Технический результат заключается в обеспечении возможности компенсировать движение устройства, применяемого для лечения и находящегося внутри интересующего объекта, с помощью временной интеграции. Устройство содержит блок формирования изображений, выполненный с возможностью предоставления информации об изображении интересующего объекта и устройства, находящегося внутри, блок обработки и дисплей, который выполнен с возможностью визуализации изображения, являющегося сочетанием информации об изображении устройства и улучшенной информации об изображении интересующего объекта. При этом он выполняет обнаружение и сегментацию устройства на основе информации об изображении, обеспечиваемой блоком формирования изображений; стирание информации об изображении устройства; обнаружение интересующего объекта на основе предоставленной информации об изображении; улучшение за счет временной интеграции информации об изображении интересующего объекта с повторным добавлением информации об изображении устройства. 4 н. и 7 з.п. ф-лы, 1 ил.

Группа изобретений относится к технологиям компьютерной томографии. Техническим результатом является повышение точности определения изменений размера объекта. Устройство для определения изменения размера объекта включает в себя блок предоставления набора данных изображения для предоставления первого набора данных изображения, показывающего объект в первое время и для предоставления второго набора данных изображения, показывающего объект во второе время, являющееся отличным от первого времени. Устройство также включает в себя блок предоставления области интереса для предоставления первой и второй областей интереса, в которых располагаются объекты, показанные в первом и втором наборе данных изображения. Устройство также содержит блок регистрации для регистрации первой и второй областей интереса относительно друг друга. При этом указанный блок выполнен с возможностью генерировать значение масштабирования, осуществляя преобразование масштабирования для регистрации первой и второй областей интереса относительно друг друга. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к средствам обработки цифровых изображений. Техническим результатом является обеспечение автоматической коррекции исходной фотографии по функции фотометрической коррекции эталонной фотографии. Способ включает создание массива данных цифровых фотографий, формирование базы эталонов; формирование матриц кодовых признаков эталонных фотографий перекодировкой матриц яркости в матрицы кодовых признаков; построение для каждой эталонной фотографии функции фотометрической коррекции; формирование матрицы кодовых признаков исходной фотографии путем перекодировки матрицы яркости в матрицу кодовых признаков, алгебраическое вычитание матриц кодовых признаков эталонных и исходной фотографий с установлением порога для достоверной идентификации ближайшей к исходной фотографии эталонной фотографии; формирование адреса эталонной фотографии с расширением из ее матрицы кодовых признаков и функции фотометрической коррекции; ретуширование исходной фотографии на основе рассчитанной матрицы кодовых признаков и функции фотометрической коррекции по адресу в базе эталонов. 4 ил.

Изобретение относится к области анализа трехмерных медицинских изображений. Техническим результатом является повышение точности оценки ориентации патологического изменения трехмерного изображения. Система содержит: детектор (52) поверхности для идентификации участка поверхности (5) объекта, представленного изображением; детектор (51) патологического изменения для идентификации патологического изменения (4), содержащегося в объекте и представленного изображением; и средство (53) установления ориентации патологического изменения (4) относительно участка поверхности (5), основываясь на выходном сигнале детектора (51) патологического изменения и выходном сигнале детектора (52) поверхности. 4 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к области сегментации объема медицинских изображений. Техническим результатом является упрощение регулировки внутренних параметров в соответствии с регулировкой веса суперпараметра, а также обеспечение повторных сегментаций изображения для достижения желаемого результата. Система (10) содержит: дисплей (24) в интерфейсе (16) пользователя, на котором пользователю отображается начальный сегментированный интересующий объем; причем интерфейс (16) пользователя содержит инструмент (26) ввода данных пользователем, с помощью которого пользователь регулирует вес суперпараметра (50) сегментированного интересующего объема; процессор, выполненный с возможностью исполнять компонент устройства (22) регулировки параметра, который регулирует один или более из множества внутренних параметров (52), в соответствии с регулировкой веса суперпараметра, чтобы вызвать изменение в сегментированном интересующем объеме; и причем процессор (12) выполнен с возможностью многократно повторять сегментацию интересующего объема, используя множество отрегулированных внутренних параметров, и выводить на дисплей повторно сегментированный объем. 4 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к средствам определения кривых края объекта на изображении. Техническим результатом является обеспечение определения кривых края объекта с нечетко обозначенными контурами. Способ содержит конвертирование изображения в цифровое спектрозональное изображение, на котором каждому пикселю присваивают цветовой тон пространства HSV, соответствующий цветовому углу Н на заданном хроматическом круге, классификацию объектного пикселя, чей цветовой тон находится в пределах заданного диапазона значений и фонового пикселя, определение профиля энтропии. В способе проводят дифференцирование и рассмотрение экстремумов определенного профиля энтропии и определяют кривые кромки объекта, содержащие наивысшие разности энтропии. 1 з.п. ф-лы, 5 ил.

Изобретение относится к анализу трубчатой структуры. Техническим результатом является обеспечение выполнения анализа сосудов. Система содержит средство (1) отображения для отображения трехмерного изображения, представляющего по меньшей мере трубчатую структуру; средство (2) указания для предоставления пользователю возможности указывать положение на сосуде с трубчатой структурой для получения указанного положения, причем средство (2) указания выполнено с возможностью реагировать на событие перемещения мыши; и средство (3) идентификации для идентификации участка трубчатой структуры, расположенного вокруг указанного положения, включая любые бифуркации, и продолжающегося вплоть до заданного расстояния, измеряемого от указанного положения, для получения идентифицированного участка, причем средство (1) отображения выполнено с возможностью отображения графической аннотации в отображаемом трехмерном изображении, показывающей идентифицированный участок трубчатой структуры, и причем средство идентификации и/или средство отображения выполнены с возможностью предоставления обновленного идентифицированного участка, когда определяют событие перемещения мыши. 4 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к медицинской технике, а именно к системам для направлений медицинского устройства в намеченное местоположение. Интервенционная система включает устройство формирования изображения для обеспечения прямого изображения объекта, игольчатое устройство, выполненное с возможностью введения в объект и имеющее положение в объекте, обнаруживаемое на прямом изображении, и обрабатывающее устройство, выполненное с возможностью получения предварительно записанного изображения объекта из баз данных. Игольчатое устройство включает датчик обеспечения местных данных, соответствующих свойствам ткани вблизи датчика, а обрабатывающее устройство выполнено с возможностью совмещения наложением предварительно записанного изображения и прямого изображения друг на друга, причем местные данные от датчика используются для повторной калибровки совмещения наложением на основе предварительно записанного изображения, положения игольчатого устройства на прямом изображении и местных данных от датчика. Машиночитаемый носитель системы имеет сохраненную на нем компьютерную программу, которая предписывает обрабатывающему устройству выполнять способ совмещения предварительно записанного изображения и прямого изображения объекта. Использование изобретения позволяет повысить точность наложения изображений. 2 н. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к устройству объединения изображений в единую композицию сцены. Технический результат заключается в повышении точности объединения изображений разного масштаба за счет автоматического выбора преобразований детализированных объектов, определения коэффициентов масштабирования и трансформации и исключения ложных соответствий. Устройство содержит соединенные между собой блок поиска контрольных точек (7), блок поиска соответствий (8), блок преобразования входных изображений (14), блок совмещения (15), блок хранения входной реализации (1), вход которого является информационным входом устройства, блок переноса контрольных точек на исходные изображения (12), блок детектора границ (4), блок поиска детализированных объектов (5), блок выделения детализированных областей (6), блок исключения ложных соответствий (9), блок масштабирования детализированных объектов (10), блок приведения к единому масштабу входных изображений (13), блок преобразования детализированных объектов (11), блок хранения выходной реализации (16), выход которого является информационным выходом устройства, а также блок управления, при этом синхронность работы устройства обеспечивается генератором тактовых импульсов (3). 4 ил.
Наверх