Винтовой забойный двигатель



Винтовой забойный двигатель
Винтовой забойный двигатель
Винтовой забойный двигатель
Винтовой забойный двигатель
Винтовой забойный двигатель
Винтовой забойный двигатель

 


Владельцы патента RU 2524238:

Открытое Акционерное Общество "Пермнефтемашремонт" (RU)

Изобретение относится к забойным двигателям и может быть использовано для бурения нефтяных, газовых и других скважин. Винтовой забойный двигатель состоит из двух секций - верхней и нижней, каждая из которых включает в свой состав винтовые рабочие органы, выполненные на базе многозаходного героторного механизма с внутренним циклоидальным зацеплением, шпиндель с выходным валом, установленным на осевой и радиальных опорах, шарнирный узел соединения ротора винтовых рабочих органов с выходным валом и каналы для прохода жидкости. Статор винтовых рабочих органов верхней секции неподвижно закреплен на колонне бурильных труб, а выходной вал нижней секции связан с породоразрушающим инструментом. Выходной вал верхней секции посредством жесткой связи соединен со статором винтовых рабочих органов нижней секции, установленным с зазором в расточке переводника, соединяющего неподвижные корпуса шпинделей секций, и совершающим концентричное вращение в радиальной опоре соединительного переводника. Обеспечивается расширение энергетических характеристик двигателя, в частности повышение частоты вращения выходного вала. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к нефтегазовой промышленности, а именно к технике и технологии бурения нефтяных и газовых скважин с использованием гидравлических забойных двигателей.

Известны винтовые забойные двигатели (ВЗД) для привода породоразрушающего инструмента при бурении и капитальном ремонте скважин [Балденко Д.Ф., Балденко Ф.Д., Гноевых А.Н. Одновинтовые гидравлические машины, т.2. - М.: ИРЦ «Газпром», 2007]. Рабочим органом ВЗД является зубчатая косозубая пара с внутренним циклоидальным зацеплением, состоящая из металлического ротора и статора с эластичной обкладкой, между винтовыми поверхностями которых образуются рабочие камеры.

При работе ВЗД ротор, обкатываясь внутри обкладки неподвижного статора, совершает планетарное движение (вращается относительно собственной оси, которая обращается в переносном движении вокруг неподвижной оси двигателя), а выходной вал, соединенный с ротором посредством шарнирного соединения, совершает концентричное вращение в радиальных опорах шпиндельной секции. Угловая скорость оси ротора в переносном движении в z2 раза больше угловой скорости ротора в абсолютном движении, которая соответствует угловой скорости выходного вала и породоразрушающего инструмента, что вследствие действия инерционных центробежных сил во многом определяет допускаемый скоростной режим ВЗД и ограничивает быстроходность многозаходных высокомоментных двигателей (z2>5) на уровне 100-200 об/мин.

Вместе с тем в современных технологиях бурения в определенных горно-геологических условиях повышение эффективности строительства скважины может быть достигнуто только на основе использования моментоемких долот типа PDC с поликристаллическими или твердосплавными пластинами, для рациональной отработки которых требуется обеспечить средне- и высокооборотные режимы с частотой вращения не менее 300 об/мин.

При использовании ВЗД стандартного конструктивного исполнения указанный скоростной режим может быть достигнут только за счет снижения рабочего объема двигателя путем перехода на винтовые пары с меньшей заходностью. Однако при этом требуемое снижение рабочего объема сопровождается снижением крутящего момента ВЗД, что не соответствует характеристикам долот типа PDC. В этой связи для создания ВЗД, одновременно отвечающего требованиям высокой частоты вращения и высокого крутящего момента, приходится существенно увеличивать перепад давления в рабочих органах, т.е. использовать удлиненные рабочие органы с целью обеспечения необходимого числа контактных линий, разделяющих вход и выход гидромашины, выбираемого по условию допускаемого межвиткового перепада давления между камерами ВЗД. Недостатком такого технического решения является увеличение осевого габарита ВЗД и усложнение технологии изготовления протяженных рабочих органов, что отрицательно сказывается на технико-экономических показателях применения ВЗД.

Другим возможным техническим решением при разработке высокооборотного высокомоментного ВЗД является переход на нестандартную кинематическую схему его рабочих органов с дополнительной подвижностью одного из элементов (ротора или статора), в которой ни один из элементов винтовой пары не остается неподвижным в ходе рабочего процесса.

Ближайшим техническим решением, принятым за прототип, является схема ВЗД с нутирующим (совершающим переносное движение) ротором и вращающимся статором, в которой долото соединяется с совершающим концентричное вращение наружным элементом рабочих органов (статором), зубья которого обкатываются вокруг внутреннего элемента (ротора), шарнирно закрепленного на конце колонны бурильных труб [Tiraspolsky W. Hydraulic downhole drilling motors. Editions Technip, Paris, 1985].

Недостатком данной схемы применительно к рассматриваемой технической задаче, является относительно невысокая частота вращения выходного вала (статора), что не обеспечивает необходимые энергетические характеристики двигателя при бурении долотами типа PDC.

Задачей предложенного изобретения, представляющего собой гидравлический забойный двигатель, предназначенный для высокооборотных технологий бурения скважин с использованием долот типа PDC, является расширение функциональных возможностей ВЗД посредством реализации кинематической схемы с дополнительной подвижностью рабочих органов, обеспечивающей возможность увеличения частоты вращения выходного вала ВЗД при сохранении необходимого крутящего момента и допускаемого уровня инерционных нагрузок.

Поставленная задача осуществляется за счет того, что ВЗД выполнен по схеме двухсекционного двигателя, каждая секция (верхняя и нижняя) которого включает в свой состав винтовые рабочие органы на базе многозаходного героторного механизма с внутренним циклоидальным зацеплением, шпиндель с выходным валом, установленным на осевой и радиальных опорах, шарнирный узел соединения ротора винтовых рабочих органов с выходным валом и каналы для прохода жидкости, причем статор винтовых рабочих органов верхней секции неподвижно закреплен на колонне бурильных труб, выходной вал нижней секции связан с породоразрушающим инструментом, а выходной вал верхней секции посредством жесткой связи соединяется со статором винтовых рабочих органов нижней секции, установленным с зазором в расточке переводника, соединяющего неподвижные корпуса шпинделей секций, и совершающим концентричное вращение в радиальных опорах соединительного переводника, что позволяет обеспечить дополнительную подвижность ротора нижней секции, находящегося в зацеплении со статором нижней секции и совершающего планетарное движение, и тем самым реализовать высокооборотный режим отработки долота.

Принципиальная кинематическая особенность предложенной схемы заключается в том, что угол поворота ротора в переносном движении несущественно превышает угол поворота ротора в абсолютном движении, что обеспечивает преимущество в отношении действия инерционных сил и допускаемой быстроходности.

Для реализации режима концентричного вращения ротора нижней секции вокруг собственной оси рабочие объемы винтовых рабочих органов верхней и нижней секций назначают в соответствии с кинематическим отношением рабочих органов нижней секции.

На фиг.1 представлен общий вид заявленного винтового забойного двигателя, на фиг.2 изображены поперечные сечения рабочих органов секций ВЗД в случае их одинаковой геометрии, на фиг.3 - аналогичные поперечные сечения в случае различной геометрии рабочих органов верхней и нижней секции, на фиг.4 показано изменение относительного положения профилей ротора и статора нижней секции за один рабочий цикл героторного механизма с кинематическим отношением 3:4, а на фиг.5 - положения профилей ротора и статора для особого кинематического случая при неподвижном положении центра ротора. Для удобства восприятия кинематики профилей крупными точками на фиг.4 и фиг.5 отмечены фиксированные зубья ротора. Черным цветом заштриховано текущее положение площади камеры, изменяющейся от нуля до максимального значения и снова сокращающейся до нуля.

Винтовой забойный двигатель с дополнительной подвижностью представляет собой двухсекционный гидродвигатель, каждая секция которого включает в свой состав винтовые рабочие органы (2, 3 и 11, 12) на базе многозаходного героторного механизма с внутренним циклоидальным зацеплением (кинематической пары «металлический ротор - статор с эластичной обкладкой»), шпиндель с выходным валом (8 и 18), установленным на осевой (7 и 17) и радиальных (6 и 16) опорах, шарнирный узел (4 и 14) соединения ротора с выходным валом и каналы для прохода жидкости (а, б), причем верхняя секция выполнена по схеме планетарного механизма (с неподвижным статором), а нижняя секция - по схеме дифференциального механизма.

Статор 2 верхней секции неподвижно закрепляется на колонне бурильных труб 1, а выходной вал 18 нижней секции соединяется с породоразрушающим инструментом 19. Выходной вал 8 верхней секции посредством жесткой связи соединяется со статором 11 нижней секции, который размещается с зазором в расточке переводника 10, соединяющего неподвижные корпуса 5 и 15 шпинделей секций, и устанавливается в радиальной опоре 13 для возможности осуществления вращательного движения статора 11. Для уплотнения выходного вала 18 двигателя от перепада давления в рабочих органах нижней секции в расточке соединительного переводника 10 может быть установлен торцевой сальник 9 или герметизирующее устройство другого типа.

Устройство работает следующим образом (фиг.1). При подаче бурового раствора через гидравлический канал бурильных труб 1 в верхнюю секцию рабочих органов совершается рабочий цикл, при котором ротор 3 совершает планетарное движение, обкатываясь по винтовым зубьям неподвижного статора 2 с эксцентриситетом ев, равным межосевому расстоянию винтового героторного механизма верхней секции. Вращение верхнего ротора 3 через шарнирное соединение 4 передается установленному в радиальных 6 и осевых 7 опорах шпинделя выходному валу 8 верхней секции, который, в свою очередь, приводит в движение статор 11 нижней секции, совершающий концентричное вращение внутри переводника 10 в радиальной опоре 13, чем обеспечивается дополнительная подвижность рабочих органов нижней секции, приводящей породоразрушающий инструмент 19. При вращении статора 11 сопряженный с ним ротор 12 нижней секции совершает планетарное движение, при котором ротор вращается вокруг собственной оси, а ось обращается вокруг оси подвижного статора 11 в обратном направлении с эксцентриситетом ен винтового героторного механизма нижней секции. Вращение нижнего ротора 12 через шарнирное соединение 14 передается выходному валу 18 нижней секции, установленному в радиальных 16 и осевых 17 опорах шпинделя.

В результате выходной вал нижней секции, связанный с породоразрушающим инструментом, например с долотом типа PDC, вращается с частотой, зависящей от соотношения рабочих объемом винтовых пар верхней (Vв) и нижней (Vн) секций (фиг.2), а также расхода Q бурового раствора.

Для осуществления вращения роторов верхней и нижней секций в одном направлении и тем самым сложения угловых скоростей на выходном валу ВЗД рабочие органы секций должны иметь одинаковое направление винтовых нарезок. Длина рабочих органов должна соответствовать заданному крутящему моменту и назначается в зависимости от допускаемого межвиткового перепада давления.

В общем случае без учета объемных потерь частота вращения выходного вала ВЗД или абсолютная частота вращения ротора нижней секции

n = n в + n отн ,                         (1)

где nв - частота вращения выходного вала верхней секции, nв=Q/Vв;

nотн.н - относительная частота вращения ротора нижней секции, nотн.н=Q/Vн.

Таким образом, частоту вращения выходного вала ВЗД можно представить как функцию частоты вращения ротора верхней секции и отношения рабочих объемов винтовых пар секций:

n = ( 1 + V в V н ) n в .                        (2)

Кинематическим показателем, характеризующим рабочий процесс ВЗД с дополнительной подвижностью, является коэффициент мультипликации, равный отношению частот вращения выходного вала и ротора верхней секции:

k = n n в .                            (3)

С учетом выражения (2) коэффициент мультипликации и отношение рабочих объемов винтовых пар связаны следующей зависимостью:

k = 1 + V в V н .                        (4)

В частном случае, когда рабочие органы верхней и нижней секций имеют одинаковые рабочие объемы (Vн=Vв), чего можно достичь применением идентичных винтовых пар (фиг.3) с одинаковым кинематическим отношением, эксцентриситетом и шагом винтовых поверхностей, частота вращения выходного вала ВЗД

n = 2 n в ;   k = 2 .                (5)

Таким образом, при использовании одинаковых винтовых пар в рассматриваемой схеме частота вращения выходного вала удваивается.

Для любой кинематической схемы ВЗД с дополнительной подвижностью (статора или ротора) цикл рабочего процесса, в течение которого через рабочие органы с числом заходов статора и ротора соответственно z1 и z2 проходит объем жидкости, равный объему рабочих камер, осуществляется при повороте ротора в абсолютном движении на угол

Δ ϕ = 2 π z 2 + ϕ д о п = k k 1 2 π z 2 ,                 (6)

где φдоп - угол поворота, обусловленный дополнительным вращением, φдоп=2πnвt (t - время, соответствующее относительному углу поворота 2π/z2).

Т.е. кратность действия ВЗД с дополнительной подвижностью, соответствующая числу рабочих циклов за один оборот выходного вала

j = 2 π Δ ϕ = k 1 k z 2 .                              (7)

Характеристики и работоспособность элементов конструкции ВЗД с дополнительной подвижностью во многом зависят от соотношения угловых скоростей абсолютного и переносного движения ротора.

В общем случае угол поворота центра элемента (ротора или статора), совершающего планетарное движение в ВЗД с дополнительной подвижностью (соответственно статора или ротора) определяется следующим образом

ϕ п е р = ± z п л а н ϕ о т н + ϕ д о п ,                     (8)

где zплан - число заходов планетарно движущегося элемента рабочих органов (внутреннего z2 или наружного z1); φотн - угол поворота центра в относительном движении по отношению к концентрично вращающемуся элементу, повернувшегося на угол φдоп.

Знак плюс относится к случаю планетарно движущегося статора, знак минус - к случаю планетарно движущегося ротора как в рассматриваемом изобретении. Здесь угол поворота φдоп соответствует углу поворота выходного вала верхней секции: φдопв.

Поскольку

ϕ îòí = ϕ - ϕ д о п ,                                (9)

то соотношение угловых перемещений переносного и абсолютного движения получает вид

ϕ п е р ϕ = ± z п л а н + ϕ д о п ϕ о т н 1 + ϕ д о п ϕ о т н .                          (10)

Т.к.

ϕ д о п ϕ о т н = 1 k 1 ,                                      (11)

то выражение (10) окончательно принимает следующий вид

ϕ п е р ϕ = ± z п л а н ( k 1 ) + 1 k .                           (12)

Для рассматриваемого изобретения с планетарно движущимся ротором (внутренним элементом рабочих органов) углы поворота ротора в переносном и абсолютном движении относятся как

ϕ п е р ϕ = z 2 ( k 1 ) + 1 k = ( z 2 z 1 k ) .                           (12a)

Отметим, что в данном случае ротор и центр ротора, также как и в типовой схеме ВЗД с неподвижным статором, поворачиваются в противоположных направлениях. Принципиальная кинематическая особенность предложенной схемы заключается в том, что угол поворота ротора в переносном движении всегда меньше чем в z2 раза превышает угол поворота ротора в абсолютном движении, что выгодно отличает схему в отношении действия инерционных сил и допускаемой быстроходности по сравнению с другой возможной схемой с планетарно движущимся статором, а также вариантом типового ВЗД.

В качестве примера рассмотрим кинематику ВЗД с дополнительной подвижностью за счет вращения статора, принимая кинематическое отношение 3:4 (z2=3; z1=A) и коэффициент мультипликации k=2 (фиг.4).

Кратность действия винтового механизма j=3/2, цикл рабочего процесса данной кинематической схемы осуществляется при повороте ротора на угол φ=Δφ=2π/j=240°, при этом статор поворачивается на угол 120°, а ось ротора в переносном движении на угол φпер=-(3-2)∙×240=-240°.

При выполнении условия

k = z 1 / z 2                       (13) переносная скорость ротора становится равной нулю (φпер=0), т.е. в этом особом случае ротор совершает концентричное вращение вокруг собственной неподвижной оси (малая точка на фиг.5), что превращает рабочие органы нижней секции в бироторный механизм. Для соблюдения условия (13) необходимо, чтобы рабочие объемы винтовых пар верхней и нижней секций назначались в соответствии с кинематическим отношением рабочих органов нижней секции согласно зависимости

V в V н = z 1 z 2 1.                   (14)

Согласно принятой классификации предложенная компоновка ВЗД относится к варианту кинематической схемы винтового героторного механизма типа Б-I, в котором дополнительная подвижность осуществляется за счет вращения статора, а выходной вал, связанный с ротором, и статор совершают вращение с различными угловыми скоростями [Балденко Д.Ф., Балденко Ф.Д., Гноевых А.Н. Одновинтовые гидравлические машины, т.1.- М.: ИРЦ «Газпром», 2005, стр.28].

Технический результат и экономический эффект от использования предлагаемого устройства достигается за счет повышения эффективности бурения долотами типа PDC в связи возможностью реализации оптимальных скоростных режимов их отработки.

1. Винтовой забойный двигатель, состоящий из двух секций - верхней и нижней, каждая из которых включает в свой состав винтовые рабочие органы, выполненные на базе многозаходного героторного механизма с внутренним циклоидальным зацеплением, шпиндель с выходным валом, установленным на осевой и радиальных опорах, шарнирный узел соединения ротора винтовых рабочих органов с выходным валом и каналы для прохода жидкости, причем статор винтовых рабочих органов верхней секции неподвижно закреплен на колонне бурильных труб, а выходной вал нижней секции связан с породоразрушающим инструментом, отличающийся тем, что выходной вал верхней секции посредством жесткой связи соединен со статором винтовых рабочих органов нижней секции, установленным с зазором в расточке переводника, соединяющего неподвижные корпуса шпинделей секций, и совершающим концентричное вращение в радиальной опоре соединительного переводника.

2. Винтовой забойный двигатель по п.1, отличающийся тем, что рабочие объемы винтовых рабочих органов верхней и нижней секций назначают в соответствии с кинематическим отношением рабочих органов нижней секции согласно зависимости
V в V н = z 1 z 2 1,
где Vв,Vн - рабочий объем соответственно верхней и нижней секций;
z1, z2 - число заходов соответственно статора и ротора нижней секции.



 

Похожие патенты:

Группа изобретений относится к области бурения, а именно к универсальному переходнику для бурильного двигателя, имеющего провода или порты. Узел нижней части бурильной колонны содержит забойный двигатель, расположенный на бурильной колонне и имеющий ротор и статор, причем в роторе выполнено первое отверстие, шпиндель, расположенный снизу от скважинного двигателя, в котором выполнено второе отверстие, вал, в котором выполнено третье отверстие и который имеет первый и второй концы, причем первый конец соединен с ротором посредством первого универсального переходника, при этом второй конец соединен со шпинделем посредством второго универсального переходника, и внутренний стержень, расположенный в третьем отверстии вала, причем внутренний стержень имеет внутренний проход и имеет третий и четвертый концы, при этом третий конец герметизирует сообщение внутреннего прохода с первым отверстием ротора, а четвертый конец герметизирует сообщение внутреннего прохода со вторым отверстием шпинделя.

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, и может быть использовано при роторном бурении боковых горизонтальных стволов нефтяных скважин винтовыми героторными гидравлическими двигателями.

Изобретение относится к бурению нефтяных и газовых скважин гидравлическими забойными двигателями (ГЗД), а именно к способам контроля режима работы ГЗД в забойных условиях.

Изобретение относится к буровой технике, а именно к забойным двигателям для бурения скважин. Шпиндель включает корпус, дроссель и вал со сквозным осевым каналом, установленный в корпусе с возможностью осевого перемещения в пределах гарантированного люфта.

Изобретение относится к буровой технике и может быть использовано при бурении нефтяных и газовых скважин в составе забойного двигателя. .

Изобретение относится к устройствам приводов вращения, размещаемых в скважине, и может быть использовано в гидравлических героторных винтовых двигателях и турбобурах.

Изобретение относится к области машиностроения и используется при обкатке и испытаниях гидравлического забойного двигателя (ГЗД). .

Изобретение относится к области машиностроения и используется для обкатки и испытания гидравлического забойного двигателя (ГЗД). .

Изобретение относится к области машиностроения и используется для обкатки и испытания гидравлического забойного двигателя (ГЗД). .

Изобретение относится к машиностроению, более конкретно к конструкции и изготовлению двигателей объемного типа, различные варианты осуществления которых используются для добычи углеводородов.

Группа изобретений относится к области бурения, а именно к техническим средствам для управления потоком бурового раствора, проходящим через скважинный инструмент, установленный в стволе скважины, проходящей через подземный пласт. Скважинный инструмент содержит буровое долото на своем нижнем конце и буровой двигатель, содержащий кожух с ротором, вращающимся в канале ротора в кожухе, когда буровой инструмент проходит через него. Ротор имеет перепускной канал для перепуска части бурового раствора по нему. Клапан содержит пластину клапана, установленную выше по потоку от двигателя, имеющую по меньшей мере один проход потока и по меньшей мере один перепускной проход, проходящий через нее. По меньшей мере один проход потока гидравлически сообщен с каналом ротора для пропуска бурового раствора, проходящего через него. Ротор выполнен с возможностью вращения в кожухе. По меньшей мере один перепускной проход селективно гидравлически сообщен с перепускным каналом, когда ротор вращается в кожухе, и перепускной канал селективно перемещается в положение совмещения по меньшей мере с частью по меньшей мере одного перепускного прохода для перепуска части бурового раствора по нему, генерируя на долоте ударное действие. Обеспечивается предотвращение прихватов бурильного инструмента, уменьшение вибрации, увеличение КПД бурения скважинным инструментом с предотвращением повреждения долота. 3 н. и 22 з.п. ф-лы, 14 ил.

Группа изобретений относится к подшипниковому узлу забойного двигателя. Подшипниковая секция для забойного двигателя содержит кольцевой резервуар для масла, расположенный в радиальном направлении между оправкой и корпусом и проходящий в осевом направлении между верхним поворотным уплотнением, расположенным между оправкой и корпусом, и нижним поворотным уплотнением, расположенным между оправкой и корпусом, причем часть кольцевого резервуара для масла образует кольцевую вторую подшипниковую камеру, имеющую нижний конец, ограниченный кольцевым нижним выступом, относящимся к оправке, и верхний конец, ограниченный кольцевым верхним выступом, относящимся к корпусу; упорный подшипник, расположенный во второй подшипниковой камере и выполненный с возможностью выдерживания сжимающих нагрузок между верхним и нижним выступами при действии осевого сжатия на указанную подшипниковую секцию. Обеспечивается оптимизация использования бурового раствора. 2 н. и 14 з.п. ф-лы, 5 ил.

Группа изобретений относится к области бурения скважин, а именно к системам компенсации давления для подшипниковых узлов с масляным уплотнением. Подшипниковая секция забойного двигателя содержит удлиненный шпиндель, расположенный коаксиально с удлиненным цилиндрическим корпусом, имеющим продольную ось, и с возможностью поворота в нем. Шпиндель имеет внешнюю поверхность, а корпус имеет внутреннюю поверхность. Подшипниковая секция дополнительно содержит кольцевой масляный резервуар, расположенный в радиальном направлении между внешней поверхностью шпинделя и внутренней поверхностью корпуса и проходящий в осевом направлении между верхним поворотным уплотнением и нижним поворотным уплотнением, каждое из которых расположено в радиальном направлении между шпинделем и корпусом, причем частью масляного резервуара образована кольцевая камера подшипника; компенсационную систему для компенсации давления масла, содержащую: цилиндрическую гильзу, имеющую внутреннюю цилиндрическую поверхность и внешнюю цилиндрическую поверхность и расположенную коаксиально с внешней цилиндрической поверхностью шпинделя в области, расположенной в осевом направлении над камерой подшипника, причем гильза соединена без возможности поворота с корпусом с образованием кольцевой поршневой камеры между внешней цилиндрической поверхностью гильзы и внутренней цилиндрической поверхностью корпуса, при этом шпиндель выполнен с возможностью поворота относительно гильзы, а компенсационная система дополнительно содержит: круговой выступ, выполненный на нижнем конце гильзы, соединяющий указанную гильзу с корпусом и содержащий нефтепроводный канал, обеспечивающий возможность прохода через него масла, радиальный подшипник, расположенный между внутренней цилиндрической поверхностью гильзы и внешней цилиндрической поверхностью шпинделя; и кольцевой поршень, расположенный в поршневой камере без возможности поворота и выполненный с возможностью перемещения в ней в осевом направлении и содержащий внутреннюю поверхность, взаимодействующую с внешней поверхностью гильзы с обеспечением уплотнения, и внешнюю поверхность, взаимодействующую с внутренней цилиндрической поверхностью корпуса с обеспечением уплотнения. Обеспечивается радиальная опора шпинделя. 3 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, в частности к осцилляторам для бурильной колонны, предназначенным для создания гидромеханических импульсов, воздействующих на бурильную колонну. Осциллятор содержит героторный винтовой гидравлический двигатель, включающий статор и расположенный внутри него ротор, и клапан, клапанные элементы которого взаимодействуют, совместно образуя переменное проходное сечение для текучей среды через клапан. Осциллятор содержит плунжерный модуль, трансмиссионный вал, радиально-упорную опору вращения и генератор гидромеханических импульсов, содержащий корпус, размещенную внутри корпуса оправку, элементы для передачи крутящего момента между корпусом и оправкой, пружинный модуль между корпусом и оправкой, упорную втулку между верхним упорным торцом корпуса и пружинным модулем, кольцевой поршень с уплотнениями, установленный между внутренней поверхностью корпуса и наружной поверхностью оправки, реагирующий на давление текучей среды, а также содержащий уплотнения во входной части между корпусом и оправкой и камеру для рабочей жидкости-масла, ограниченную уплотнениями во входной части корпуса и уплотнениями кольцевого поршня между корпусом и оправкой, и упорное кольцо, установленное на внутреннем трубчатом элементе, составляющем нижнюю часть оправки. Вращательный привод для передачи момента между оправкой и корпусом при продольном перемещении относительно друг друга снабжен ударным кольцом, установленным в оправке с возможностью продольного перемещения оправки с ударным кольцом внутри упорной втулки. Повышается ресурс и надежность осциллятора, снижаются силы трения бурильной колонны о стенки скважины, уменьшаются крутильные напряжения в бурильной колонне при наклонно-направленном бурении, снижается вероятность прихвата бурильной колонны, обеспечивается возможность приложения осевой нагрузки на осциллятор при работе гидромеханическим ясом для освобождения от прихвата, повышается ресурс долота и скорость проходки скважины. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области бурения скважин и, более конкретно, к способу изготовления статора забойного двигателя. Способ изготовления статора для забойного двигателя включает в себя создание шпинделя 506, имеющего наружную геометрию, комплементарную с необходимой внутренней геометрией статора, и наложение гибкого рукава поверх шпинделя 506. Кроме того, создают трубу 502 статора, имеющую внутреннюю поверхность, и связывающее вещество наносят на внутреннюю поверхность трубы 502 статора. Гибкий рукав и шпиндель 506 устанавливают в трубу 502 статора и армирующий материал 510 вводят в трубу 502 статора для заполнения пространства между гибким рукавом и трубой 502 статора. Армирующий материал 510 отверждается и служит для связывания армирующего материала 510 с гибким рукавом и трубой 502 статора. Изобретение направлено на экономически эффективное изготовление забойных двигателей и его компонентов. 16 з.п. ф-лы, 22 ил.

Группа изобретений относится к клапанам, используемым при бурении скважин, к компоновкам низа бурильной колонны и к способам избирательного приведения в действие забойного двигателя. Технический результат заключается в повышении надежности и точности управления работой забойного двигателя. Клапан, используемый при бурении скважин, содержит цилиндр, имеющий внутреннее пространство с круглым поперечным сечением, впускное отверстие, выпускное отверстие и перепускное отверстие, первый диск, размещенный в цилиндре с возможностью вращения и имеющий дроссельное отверстие, и второй диск, размещенный в цилиндре с возможностью вращения, прижатый к первому диску для выборочного образования уплотнения и имеющий дроссельное отверстие. Второй диск соединен с ротором в двигателе, а выпускное отверстие сообщено с двигателем для подачи текучей среды в двигатель для его работы. 3 н. и 15 з.п. ф-лы, 5 ил.

Изобретение относится к области бурения. Способ изготовления вставки статора для забойного двигателя, в котором обеспечивают шпиндель, имеющий наружную геометрию, комплементарную с необходимой внутренней геометрией статора; осуществляют наложение гибкого рукава поверх шпинделя; устанавливают гибкий рукав и шпиндель в форму; осуществляют ввод армирующего материала в форму для заполнения пространства между гибким рукавом и формой; отверждают армирующий материал для связывания армирующего материала с гибким рукавом; удаляют отвержденный армирующий материал и гибкий рукав из формы; таким образом получая статор. Обеспечивается быстрота замены статора в полевых условиях. 23 з.п. ф-лы, 22 ил.

Изобретение относится к области горного дела, а именно к забойным средствам бурения скважин. Объемный забойный двигатель содержит корпус с продольными подводящими каналами, установленный в полости корпуса с возможностью вращения вал, имеющий полуцилиндрические участки, скользяще контактирующие с корпусом, и центральный канал, посредством боковых радиальных отверстии сообщающийся с полостью корпуса. Продольные подводящие каналы выполнены разделяясь выходящими в полость корпуса направленно в верхние и нижние стороны внутренней стенки полуцилиндрических участков. Боковые радиальные отверстия проведены между полуцилиндрическими участками, по ходу вращения вала выходящими в центральный канал, где жестко закреплена перегородка формой «S», состоящая из частей, развернутых между собой по кругу, вогнутые поверхности которых обращены в боковые радиальные отверстия. Обеспечивается рост величины крутящего момента на валу за счет полного использования потенциальной энергии промывочной жидкости. 2 ил.

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, и может быть использовано при роторном бурении боковых горизонтальных стволов нефтяных скважин. Забойный двигатель содержит трубчатый корпус, размещенный внутри него многозаходный винтовой героторный механизм, включающий статор с обкладкой из эластомера и установленный в статоре ротор, и шпиндельную секцию, включающую вал, установленный на осевой опоре, выполненной в виде упорно-радиального многорядного подшипника, а также на верхней и нижней радиальных опорах скольжения, состоящих из наружной и внутренней втулок, размещенных в корпусе шпиндельной секции, и, соответственно, на валу шпиндельной секции. Вал шпиндельной секции скреплен на входе приводным валом с ротором, а на выходе скреплен с долотом. Двигатель снабжен верхним ловильным устройством, состоящим из вала, упора и гайки, и нижним ловильным устройством, выполненным в виде ловильной втулки с наружным буртом, упорного кольца и резьбового переводника. Верхнее ловильное устройство скреплено с верхней частью ротора героторного винтового механизма, а нижнее ловильное устройство установлено на валу шпиндельной секции между внутренней втулкой нижней радиальной опоры скольжения и осевой опорой, выполненной в виде упорно-радиального многорядного подшипника. Вал шпиндельной секции и ловильная втулка нижнего ловильного устройства с ловильным буртом жестко скреплены между собой с помощью общей резьбы. Упорное кольцо выполнено разъемным и установлено внутри корпуса шпиндельной секции между направленными друг к другу торцами резьбового переводника и наружного кольца упорно-радиального многорядного подшипника. Ловильный бурт в ловильной втулке расположен между внутренним кольцом упорно-радиального многорядного подшипника и указанным упорным кольцом. Диаметр ловильного бурта ловильной втулки превышает диаметр отверстия упорного кольца. Диаметр отверстия нижней радиальной опоры скольжения превышает диаметр ловильной втулки. Обеспечивается снижение аварийности, повышение ресурса и надежности двигателя, точности проходки скважины, темпа набора параметров кривизны скважины и проходимости. 5 з.п. ф-лы, 5 ил.

Группа изобретений относится к области винтовых забойных двигателей и насосов. Компоновка гидравлического забойного двигателя содержит объемный или винтовой забойный двигатель, имеющий впускной конец и выпускной конец. Двигатель содержит статор и ротор, при этом поверхность статора выполнена из гибкого материала для обеспечения образования уплотнения между входящими в контакт поверхностями ротора и статора; по меньшей мере одно устройство, расположенное между статором и ротором вблизи, по меньшей мере, одного из впускного конца и выпускного конца, причем указанное устройство выбрано из группы, включающей блок колеса, содержащий колесо, прикрепленное к ротору; неподвижно закрепленную вставку, установленную внутри статора; поршневую компоновку, содержащую множество поршней, соединенных со статором; и прецессионное устройство, содержащее зубчатое колесо, соединенное с ротором, при этом указанное по меньшей мере одно устройство ограничивает радиальное и/или тангенциальное перемещение ротора относительно статора. Обеспечивается регулирование положения ротора относительно статора. 3 н. и 24 з.п. ф-лы, 18 ил.
Наверх