Способ обжига подины алюминиевого электролизера с обожженными анодами


 


Владельцы патента RU 2526351:

Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" (RU)

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. Способ включает нагрев подины, выполненной из катодных блоков с катодными блюмсами, электропроводным материалом, размещение на нем обожженных анодов, соединение анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через электропроводный материал и регулирование токовой нагрузки обожженных анодов. В качестве электропроводного материала используют насыпной графитовый материал с фракцией не более 2 мм, размещенный в виде рядов усеченной пирамиды расположенных в проекции ниппелей по всей длине обожженного анода, при этом высоту каждого ряда устанавливают 10 мм до 100 мм в обратно пропорциональной зависимости от силы пропускаемого тока, составляющего от 500 кА до 100 кА, а соединение всех анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера осуществляют посредством гибких элементов. Обеспечивается повышение срока службы электролизера. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к способам обжига подины алюминиевого электролизера с обожженными анодами.

Обжиг необходим для коксования подовой массы, которой набиваются швы между катодными блоками и промежутки между катодными блоками и стенками шахты, для просушки и прогрева катодных блоков и всей футеровки электролизера. Обжиг считается законченным, когда подовая масса скоксуется, а температура поверхности подины станет близкой к температуре электролиза. Обжиг осуществляется за счет тепла, выделяемого в обожженных анодах, в подине, выполненной из катодных блоков, и в слое материалов между обожженными анодами и катодными блоками при прохождении постоянного электрического тока через алюминиевый электролизер.

Известен способ обжига подины алюминиевого электролизера, включающий установку обожженных анодов на подину, крепление анододержателей обожженных анодов к анодным шинам анодной ошиновки, подъем обожженных анодов, заливку жидкого алюминия из расчета погружения в него обожженных анодов, подключение электролизера в электрическую цепь (Вольфсон Г.Е., Ланкин В.П. Производство алюминия в электролизерах с обожженными анодами. М.: Металлургия, 1974, с.55 и 56).

Недостаток известного способа обжига подины алюминиевого электролизера заключается в том, что при заливке жидкого алюминия подина подвергается тепловому удару, что может привести к образованию трещин в катодных блоках разрушению при дальнейшей эксплуатации электролизера. Также большим недостатком является прямой контакт подины с жидким алюминием, который имеет малую вязкость и температуру плавления. Алюминий может проникать глубоко внутрь подины перед затвердеванием и, реагируя с изоляцией, разрушать ее или создавать тепловой шунт.

Наиболее близким к заявленному по технической сущности является способ обжига подины алюминиевого электролизера с обожженными анодами, включающий покрытие подины, выполненной из катодных блоков, слоем углеродной засыпки, размещение на нем обоженных анодов, соединение анододержателей всех установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через слой углеродной засыпки и регулирование токовой нагрузки обожженных анодов. Соединение анододержателей по меньшей мере 50% от общего числа обожженных анодов с анодными шинами анодной ошиновки электролизера осуществляют посредством гибких элементов, обеспечивающих возможность отключения и подключения обожженных анодов, при этом обожженные аноды размещают по ширине подины в пределах периметра катодных блоков с постоянным или переменным смещением по отношению к продольной оси подины (патент RU №2215825, МПК С25С 3/06, 2003).

Недостаток прототипа - способа обжига подины алюминиевого электролизера заключается в том, что при простом опускании обожженных анодов на слой углеродной засыпки за счет ее большой площади не обеспечивается гарантированное прилегание анодного блока на углеродную засыпку. Следовательно, тепло выделяется только в той части слоя углеродной засыпки, где наблюдается касание блока. Вследствие этого возникают большие перепады температур по ширине, что приводит к возникновению больших термических напряжений и разрушению крайних катодных блоков. Также накрытие всей подины углеродным материалом приводит к большим трудозатратам по его удалению после пуска электролизера. Другим недостатком описанного способа обжига подины алюминиевого электролизера является то, что допускается до 50% от общего числа обожженных анодов закреплять с анодными шинами анодной ошиновки электролизера посредством базовых замков (жестко). Из-за того, что при нагреве подины за счет естественного выгорания угольного материала аноды, закрепленные с помощью гибких элементов, будут опускаться, а жестко залепленные аноды оставаться на месте, что приведет к появлению локальных перегревов подины.

Задачей изобретения является равномерный нагрев подины алюминиевого электролизера, как следствие увеличение срока службы электролизера, снижение затрат на нагрев и более быстрый ввод в эксплуатацию по сравнению с газопламенным обжигом.

Технический результат, достигаемый при осуществлении заявленного способа, заключается в равномерном распределении тока в подине, за счет которого происходит равномерный нагрев подины до 900°С менее чем за 60 часов, как при газопламенном обжиге.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе обжига подины алюминиевого электролизера с обожженными анодами, включающем покрытие подины, выполненной из катодных блоков с катодными блюмсами, электропроводным материалом, размещение на нем обожженных анодов, соединение анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через электропроводный материал и регулирование токовой нагрузки обожженных анодов. В качестве электропроводного материала применяют насыпной графитовый материал, размещенный в виде рядов усеченной пирамиды расположенных в проекции ниппелей по всей длине обожженного анода, при этом высоту каждого ряда устанавливают в обратно пропорциональной зависимости от силы пропускаемого тока, а соединение всех анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера осуществляют посредством гибких элементов.

Кроме того, применяют насыпной графитовый материал фракцией не более 2 мм, а высоту каждого ряда устанавливают от 10 мм до 100 мм, а силу электрического тока - от 500 кА до 100 кА.

Сравнение заявленного решения не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявленные решения от прототипа, что делает возможным сделать вывод о соответствии критерию "новизна".

Сущность изобретения поясняется эскизом.

На фигуре 1 показана геометрия насыпного графитового материала на продольном разрезе торцевой части электролизера с обожженными анодами.

Подина, состоящая из катодных блоков 1 и блюмсов 2, покрыта слоем графитового материала 3 в виде формы усеченной пирамиды, на котором размещены обожженные аноды 4 с ниппелями 5, стрелками 6 показано направление силовых линий электрического тока. Анододержатели всех установленных обожженных анодов соединены с анодными шинами анодной ошиновки электролизера (не показано).

Способ обжига подины алюминиевого электролизера с обожженными анодами осуществляется следующим образом.

Перед установкой анода на подину электролизера укладывается приспособление с рейками требуемой высоты (от 10 до 100 мм).

Углеродный материал засыпается до верхней грани в пространство между рейками. Затем разравнивается и убирается излишек углеродного материала при помощи шаблона для разравнивания материала.

Далее приспособление демонтируется с подины электролизера, и углеродный материал приобретает форму усеченной пирамиды (фиг.1).

Для того, чтобы получить мощность достаточную для успешного разогрева подины электролизера и сохранения структуры катодного блока на слой графитовой засыпки высотой не менее 10 мм и не более чем 100 мм при силе тока от 500кА до 100кА соответственно размещают обожженные аноды таким образом, чтобы направление тока осуществлялось напрямую через последовательность проводников «анодный ниппель - анодный блок - графитовый материал - подовый блок - катодный блюмс».

После установки всех анодов в пространство борт-анод загружается пусковая шихта (криолит, дробленый оборот, сода) и сверху анодный массив укрывается криолитом.

Соединяют анододержатели всех установленных обожженных анодов с анодными шинами анодной ошиновки электролизера с помощью пакета алюминиевых гибких лент и пропускают полный электрический ток через слой графитового материала. Производят регулирование токовой нагрузки обожженных анодов путем отключения анодов берущих высокую нагрузку или имеющих локальный перегрев подин.

1. Способ обжига подины алюминиевого электролизера с обожженными анодами, включающий покрытие подины, выполненной из катодных блоков с катодными блюмсами, электропроводным материалом, размещение на нем обожженных анодов с ниппелями, соединение анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через электропроводный материал и регулирование токовой нагрузки обожженных анодов, отличающийся тем, что в качестве электропроводного материала используют насыпной графитовый материал, размещенный в виде рядов усеченной пирамиды расположенных в проекции ниппелей по всей длине обожженного анода, при этом высоту каждого ряда устанавливают в обратно пропорциональной зависимости от силы пропускаемого тока, а соединение всех анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера осуществляют посредством гибких элементов.

2. Способ по п.1, отличающийся тем, что используют насыпной графитовый материал фракцией не более 2 мм.

3. Способ по п.1, отличающийся тем, что высоту каждого ряда устанавливают от 10 мм до 100 мм, а силу электрического тока - от 500 кА до 100 кА.



 

Похожие патенты:

РЕФЕРАТ Изобретение относится к устройству для сбора твердых отходов и шлама из ванны электролизера для получения алюминия. Устройство содержит ковш для сбора корки, предназначенный для чистки анодных отверстий, подвижную вертикальную стойку, приводимую в движение первым приводом, раму, закрепленную на подвижной вертикальной стойке, и шарнирный черпак, при этом первый привод выполнен в виде гидроцилиндра, питаемого гидравлическим контуром, выполненным таким образом, что при приведении в движение черпака посредством второго привода давление масла в камере штока удерживается, по существу, постоянным, для удерживания нагрузки, соответствующей весу устройства для сбора, уменьшенной на заданную величину, предпочтительно, меньше 1000 даН, обычно от 200 до 600 даН.

Изобретение относится к системе и способу для выливки расплавленного алюминия из электролизера для получения алюминия. Система содержит контейнер, имеющий корпус, приспособленный для помещения в него расплавленного алюминия, и желоб, имеющий участок-основание, соединенный с корпусом контейнера, участок-наконечник, соприкасающийся с расплавом в электролизере, и канал, соединяющий участок-основание с участком-наконечником, для прохождения расплава в корпус контейнера, причем расплав в электролизере содержит расплавленный алюминий и электролит, и электрический источник, соединенный с электролизером и выполненный с возможностью подачи вспомогательного тока на желоб для создания вспомогательного электромагнитного поля по меньшей мере вблизи участка-наконечника желоба, обеспечивающего по меньшей мере частичное увеличение потока расплавленного алюминия в желоб при поступлении вспомогательного тока на желоб, находящийся в жидкостном сообщении с расплавом в электролизере.
Изобретение относится к композиции для материала смачиваемого покрытия катода алюминиевого электролизера для производства алюминия из криолит-глиноземных расплавов.
Изобретение относится к способу защиты смачиваемого покрытия на основе диборида титана катодных блоков алюминиевого электролизера от окисления при обжиге и пуске.

Изобретение относится к электролизеру в серии электролизеров для получения алюминия и составному токоотводящему катодному стержню электролизера. Электролизер содержит кожух и огнеупорную футеровку, образующие рабочую полость для размещения высокотемпературных расплавов криолита и алюминия, электропроводящий катод из множества катодных блоков, образующих основание рабочей полости, анод, подвешенный внутри электролизера и находящийся в контакте с высокотемпературными расплавами в рабочей полости, токоотводящий стержень, помещенный внутри пазов, выполненных в катодном блоке катода, непосредственно не контактирующий с расплавами в рабочей полости, и размещенную снаружи кожуха электрическую ошиновку.

Изобретение относится к способу создания смачиваемого покрытия углеродной подины алюминиевого электролизера. .

Изобретение относится к способу определения концентрации глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. .

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода.

Изобретение относится к области цветной металлургии, к электролитическому получению алюминия. .

Изобретение относится к конструкции мощного алюминиевого электролизера на 400 кА. .

Изобретение относится к электролизерам для получения алюминия с верхним подводом тока, в частности к устройству отвода газов из-под подошвы самообжигающегося анода. В устройстве отвода газов из-под подошвы самообжигающегося анода в систему организованного газоотсоса в виде труб, запеченных в тело анода по его продольной или поперечной осям в один или несколько рядов, трубы для отвода газов расположены но всей высоте анода, при этом в зоне жидкой анодной массы высота труб составляет 0,25÷0,3 от общей высоты труб, в зоне полукокса трубы выполнены перфорированными, и их высота составляет 0,5÷0,6 от общей высоты труб, а в нижней части в зоне сформированного анода трубы снабжены газопроводящими пробками, высота которых составляет 0,2÷0,25 от общей высоты трубы. При этом газопроводящие пробки выполнены из подштыревой анодной массы с содержанием связующего - каменноугольного пека 35-40% масс. Обеспечивается уменьшение толщины газосодержащего слоя электролита, сокращение потребления электролизером электроэнергии и увеличение выхода металла по току. 1 з.п. ф-лы, 2 ил.

Изобретение относится к получению алюминия электролизом глинозема в расплаве фтористых солей и может быть использовано при технологическом контроле состава электролита методом количественного рентгенофазового анализа (РФА) калийсодержащего электролита с добавками кальция либо кальция и магния. Способ подготовки образцов для количественного РФА заключается в том, что отобранные из ванн закристаллизованные пробы подвергаются процедуре допирования с последующей термической обработкой. Для этого навеску перемолотого образца перемешивают с навеской фторида натрия для перевода состава пробы в область высокого КО, например, взятой в соотношении 1:2 к массе образца. Смесь помещают в печь, нагретую до необходимой температуры 650-750°C, и выдерживают в ней в течение 20-40 минут для растворения фторида натрия в образце и перекристаллизации образца с желаемым фазовым составом при последующем охлаждении на воздухе. Далее допированный образец помещают в печь, нагретую до температуры 420-450°C, и выдерживают в ней в течение 15-30 минут. После этого допированный образец извлекают из печи, охлаждают на воздухе и проводят анализ состава любым из методов количественного РФА и, учитывая количество внесенного NaF, рассчитывают состав исходной пробы. Применение допирования отобранных проб с дополнительной термической обработкой позволяет получить образцы с равновесным фазовым составом с известными кристаллическими фазами и с хорошей окристаллизацией фаз в пробе, что является необходимым при применении методов количественного РФА. 2 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к очистке основного потока неочищенного газа из предприятия, например, по получению алюминия. Газоочистное устройство содержит множество газоочистных камер (34a-c), входную магистраль (32) для разделения основного потока неочищенного газа, текущего через нее, на множество отдельных фракционных потоков неочищенного газа для втекания во входы (46a-c) очистных камер и множество теплообменников (40a-c). Каждый теплообменник (40a-c) расположен ниже по потоку от входной магистрали (32) для охлаждения соответствующего фракционного потока неочищенного газа, входящего в соответствующую очистную камеру (34a-c). Теплообменники (40a-c) выполнены с возможностью генерирования перепада давления во фракционном потоке неочищенного газа, проходящем через них, оказывая выравнивающий эффект на относительные скорости индивидуальных фракционных потоков газа. Технический результат: повышение эффективности и надежности газоочистки. 2 н. и 14 з.п. ф-лы, 5 ил.
Изобретение относится к способу электролитического получения алюмокремниевых сплавов -силуминов с использованием кремнезема и кремнеземсодержащих материалов, например, отработанной подины, содержащей большое количество кремнезема, глинозема и электролита, необходимых для электролиза. Способ включает предварительную обработку измельченного алюмосиликатного сырья, содержащего отработанную подину, глинозем и электролит, механоактивацией как отдельно, так и в смеси с глиноземом, периодическую загрузку подготовленного сырья в электролизер и проведение электролиза расплава с образованием силумина непосредственно в ванне электролита. Обеспечиваются высокая скорость растворения сырья, снижение напряжения и расхода энергии и увеличение срока службы электролизера.

Изобретение относится к графитированному фасонному катодному устройству для получения алюминия. Катодное устройство содержит основной блок и графитированный катодный замедлительный блок. На продольных кромках основного блока симметрично выполнены две группы канавок. Сырьевой материал, из которого изготовляется упомянутый графитированный катодный замедлительный блок, включает в себя кальцинированный нефтяной кокс, электрокальцинированный антрацит, каменноугольный пек, легирующую добавку TiB2 и добавку SiC. Графитированный катодный замедлительный блок вставлен в канавку, образованную обеими упомянутыми канавками, с перекрыванием соединительного шва между двумя основными блоками. Обеспечивается достижение эффекта сбережения электроэнергии и снижения затрат, уменьшения эффективной толщины основного блока и влияния на его срок эксплуатации, и достижение частичного структурного усиления основного блока и продления срока эксплуатации электролизера. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к способу и устройству для рафинирования алюминия и его сплавов от электроположительных примесей. Устройство содержит контейнер с подиной, футерованной огнеупорными материалами, для размещения в нем расплавленного алюминиевого сплава с электроположительными примесями и расплавленного рафинированного алюминия, одну или несколько пористых мембран, пропитанных электролитом, непроницаемых для расплавленного алюминиевого сплава с электроположительными примесями и проницаемых для электролита и катионов алюминия, для разделения расплавленного алюминиевого сплава с электроположительными примесями, используемого в качестве анода с токоподводом, и расплавленного рафинированного алюминия в качестве катода с токоподводом и по крайней мере один МГД перемешиватель анодного расплава, установленный на границе раздела пористая мембрана - анодный расплав. Раскрыт также способ рафинирования алюминия и его сплавов от электроположительных примесей. Технический результат - обеспечение повышенной степени очистки. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: C j = ( I j a / K j a ) / ( ∑ l M I l a / K j a ) , а криолитовое отношение определяют по формуле: K O = 2 × ∑ j α j C j ∑ j β j C j где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.

Изобретение относится к электролизерам для производства жидких металлов, в частности алюминия, электролизом расплавленных солей. Электролизер содержит корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды, подсоединенные к источнику постоянного тока, при этом в электродах выполнены внутренние каналы для транспортировки по ним продуктов электролиза. Электроды выполнены в поперечном сечении в виде прямоугольника, закреплены в крышке электролизера и/или в углублениях корпуса и подины, причем в подине катодной частью, и соединены от 1 до 100 параллельных рядов с последовательно соединенными биполярными электродами в ряду от 2 до 100, при расстоянии между электродами от 0,5 до 5 см, а от боковой поверхности электрода до боковой стенки электролизера от 0,01 до 1 см, при этом каждый ряд эквипотенциальных электродов соединен с накопителем металла, расположенным в нижней части электролизера. Обеспечивается увеличение удельной производительности, снижение удельного расхода электроэнергии и массы токоподводящей ошиновки. 2 з.п. ф-лы, 13 ил., 1 табл.
Наверх