Способ получения активного угля из растительных отходов


 


Владельцы патента RU 2527221:

Открытое акционерное общество "Электростальское научно-производственное объединение "Неорганика" (ОАО "ЭНПО "Неорганика") (RU)

Изобретение относится к способам получения активных углей из сельскохозяйственных растительных отходов. Предложен способ получения активного угля, включающий измельчение соломы рапса на куски 1-10 см, карбонизацию соломы в инертной атмосфере при температуре 450-500°C со скоростью подъема температуры 1-20°C/мин и выдержкой при конечной температуре в течение 30-60 минут. Затем осуществляют активацию водяным паром при температуре 820-850°C, подаваемым с расходом 3-5 кг на 1 кг карбонизованного продукта. Предложенный способ позволяет получить порошковый активный уголь с высокой адсорбционной способностью по полифенолам, ёмкость по резоцину составляет 0,0030-0,0050 мг/г, по гидрохинону составляет 0,0040-0,0050 мг/г. 3 пр.

 

Изобретение относится к способам получения активных углей из сельскохозяйственных растительных отходов, которые могут использоваться в различных агротехнологиях, а также процессах защиты окружающей среды.

Известен способ получения активного угля для защиты сельскохозяйственных культур от остатков пестицидов в почве, включающий смешение измельченного каменного угля со связующим, гранулирование смеси, подсушку гранул, их карбонизацию со скоростью подъема температуры 10-19°С/мин до 550-650°С, а затем со скоростью подъема температуры 4-8°С/мин до 800-850°С и активацию водяным паром при 850-950°С, при его расходе 7-10 кг/кг карбонизованного продукта (см. патент №2167102, кл. С01В 31/08, опубл. 20.05.2001 г.).

Недостатками известного способа являются сложность осуществления процесса и большие энергозатраты.

Наиболее близким к предлагаемому по технической сущности и количеству совпадающих признаков является способ получения активного угля из сельскохозяйственных растительных отходов (соломы), включающий карбонизацию соломы при 100-500°С в инертной атмосфере со скоростью нагревания 1-20°С/мин и химическую активацию без доступа воздуха при 350-400°С (см. патент ES №8802448, кл. B27K 3/04, опубл. 01.10.1988 г.).

Недостатком прототипа является низкая адсорбционная способность получаемого активного угля (АУ) по поглощению полифенолов, в частности двухатомных полифенолов, таких как резоцин (м-диоксибензол) и гидрохинон (п-диоксибензол) и низкий выход готового продукта.

Адсорбция этих полифенолов АУ важна при выращивании многих растений их семян, так как входящий в дражеровочную оболочку АУ поглощает эти фитоксиканты, увеличивая рост проростков.

Поставленная цель достигается предлагаемым способом, включающим карбонизацию в инертной атмосфере при температуре 450-500°C со скоростью подъема температуры 1-20°C/мин и активацию, причем в качестве соломы используют солому рапса, которую предварительно измельчают на куски 1-10 см, а по завершении процесса карбонизации осуществляют выдержку при конечной температуре в течение 30-60 мин, а активацию проводят водяным паром при температуре 820-850°C, подаваемым с расходом (3-5) кг на 1 кг карбонизованного продукта.

Отличие предлагаемого способа от прототипа состоит в том, что в качестве соломы используют солому рапса, которую предварительно измельчают на куски 1-10 см, а по завершении процесса карбонизации осуществляют выдержку при конечной температуре в течение 30-60 мин, а активацию проводят водяным паром при температуре 820-850°C, подаваемым с расходом (3-5) кг на 1 кг карбонизованного продукта.

Из научно-технической и патентной литературы авторам не известен способ получения активного угля из растительных отходов, в котором в качестве соломы используют солому рапса, которую предварительно измельчают на куски 1-10 см, а по завершении процесса карбонизации осуществляют выдержку при конечной температуре в течение 30-60 мин, а активацию проводят водяным паром при температуре 820-850°C, подаваемым с расходом (3-5) кг на 1 кг карбонизованного продукта.

Сущность предлагаемого способа заключается в следующем. Порошковые активные угли получают путем измельчения активных зерненных углей, поэтому исходные зерненные активные угли могут иметь невысокую прочность, чтобы не увеличивать энергозатраты при размоле. Поэтому логично получать такие АУ из растительных сельскохозяйственных отходов, таких как солома рапса. Причем ее предварительное измельчение способствует оптимизации выхода готового АУ. Для формирования оптимальной пористой структуры для сорбции таких разветвленных молекул, какими являются двухатомные полифенолы, необходимо обеспечить не только требуемую температуру карбонизации 450-500°C, но и строго фиксированную выдержку при конечной температуре, чтобы закрепить сформировавшуюся структуру кристаллитов углерода - матрицу для формирования объема микропор.

Температура активации влияет на развитие объема микропор, обеспечивая преобладание в АУ объема микропор с размером 0,6-1,0 нм, наиболее благоприятных для адсорбции двухатомных полифенолов.

Варьируя расходом пара на 1 кг карбонизованного продукта, можно добиться нужного объема транстпортных пор, обеспечивая хорошую кинетику поглощения.

Предлагаемый способ осуществляют следующим образом. Берут соответствующее количество соломы рапса и измельчают ее до размера кусков 1-10 см. Затем нарезанные куски помещают в стальную реторту и ведут карбонизацию сырья в атмосфере азота со скоростью подъема температуры 1-20°C/мин до конечной температуры 450-500°C, и выдерживают при конечной температуре карбонизации в течение 30-60 мин.

По завершении процесса карбонизации реторту охлаждают, выгружают карбонизат и направляют его в печь активации (ретортную, вращающуюся барабанную, вихревого типа и др.), где ведут процесс активации перегретым водяным паром при 820-850°C и расходе пара 3-5 кг на 1 кг карбонизованного продукта.

Полученный активный уголь из соломы рапса оценивают на адсорбционную способность по поглощению из водного раствора резоцина и гидрохинона по стандартной методике.

Готовят водный раствор резоцина или гидрохинона с концентрацией 0,01 мг/л. Затем берут 1 литр раствора, куда добавляют 5 г угля и ведут перемешивание механической мешалкой в течение 30 мин. После чего уголь отфильтровывают от раствора и определяют остаточную концентрацию полифенола. Определение концентрации осуществляют на жидкостном хроматографе «Милихром 5-6». Адсорбционную способность по полифенолам определяют по формуле

а=((Сисхост)×1)/m,

где

а - адсорбционная способность, мг/г

Сисх - исходная концентрация полифенола, мг/г

Сост - остаточная концентрация полифенола, мг/г

l - один литр раствора, л

m - масса навески АУ, г

Полученный по предлагаемому способу активный уголь имел адсорбционную способность по резоцину 0,0030-0,0050 мг/г, а по гидрохинону 0,0040-0,0050 мг/г; выход готового продукта составил 15-22% от веса карбонизата.

Активный уголь, получаемый по известному способу (пат.ES №8802448), имел адсорбционную способность по резоцину 0,0015 мг/г, а по гидрохинону 0,0020 мг/г, то есть значительно уступал АУ, полученному по предлагаемому способу. Выход готового продукта был 10-12% от веса карбонизата.

Пример 1

Берут 100 г соломы рапса, режут на куски 1 см, помещают в стальную реторту, которую закрывают крышкой с отводами, помещают в электропечь и подают в реторту азот для создания инертной атмосферы. Затем реторту нагревают со скоростью подъема температуры 5°C/мин до температуры 450°C и осуществляют выдержку при конечной температуре карбонизации в течение 30 мин. После завершения процесса карбонизации реторту охлаждают до комнатной температуры, выгружают карбонизат и, если требуется, доизмельчают его. Вес карбонизата составил 40 г.

Карбонизат загружают в ретортную печь активации и ведут процесс активации в ней перегретым водяным паром при температуре 820°С при расходе пара 3 кг на 1 кг карбонизованного продукта. После завершения активации ретортную печь охлаждают до комнатной температуры, выгружают из нее полученный активный уголь и определяют его адсорбционную способность. Адсорбционная способность полученного активного угля составила по резоцину 0,0030 мг/г, а по гидрохинону 0,0040 мг/г. Выход готового продукта составил 15% от веса карбонизата.

Пример 2

Проведение процесса как в примере 1 за исключением того, что солому рапса резали на куски размером 10 см, а карбонизацию осуществляли со скоростью подъема температуры 5°C/мин до температуры 500°C и осуществляли выдержку при конечной температуре в течение 60 мин. Активацию вели перегретым водяным паром при температуре 850°C при расходе пара 5 кг на 1 кг карбонизованного продукта. Полученный АУ имел адсорбционную способность по резоцину 0,0040 мл/г, а по гидрохинону 0,0045 мл/г. Выход готового продукта составил 22% от веса карбонизата.

Пример 3

Проведение процесса как в примере 1 за исключением того, что солому рапса резали на куски размером 5 см, а карбонизацию осуществляли со скоростью подъема температуры 5°С/мин до температуры 475°C и осуществляли выдержку при конечной температуре 45 мин. Активацию вели перегретым водяным паром при температуре 835°C при расходе пара 4 кг на 1 кг карбонизованного продукта. Полученный АУ имел адсорбционную способность по резоцину 0,0050 мл/г, а по гидрохинону 0,0050 мл/г. Выход готового продукта составил 18% от веса карбонизата.

Опыты показали, что при длине кусков соломы менее 1 см происходит разрушение структуры карбонизата и его невозможно активировать, а при длине более 10 см возникают технические трудности загрузки печей карбонизации, что в обоих случаях снижает выход готового продукта.

Многочисленные исследования термических режимов процесса получения АУ показали, что при времени выдержки при конечной температуре менее 30 мин не происходит полного формирования кристаллов и при активации развивается макропористость, а при времени выдержки боле 60 мин уже идут процессы графитизации, что также снижает развитие объема микропор.

Эксперименты показали, что при температуре активации ниже 820°С развиваются преимущественно микропоры размером менее 0,6 нм, что ухудшает поглощение полифенолов, а при температуре активации свыше 850°C увеличивается поверхностный обгар, а не развитие объема микропор, что и снижает адсорбционную способность получаемого АУ.

Относительно расхода перегретого пара на 1 кг карбонизата было показано, что если этот параметр ниже 3 кг на 1 кг карбонизата, то остается много непроактивированного карбонизата, а если этот параметр выше 5 кг на 1 кг карбонизата, то преимущественно идет развитие объема макропор и одновременно увеличивается поверхностный обгар, что снижает как адсорбционную способность так и выход готового продукта.

Таким образом, из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а вся совокупность является достаточной для характеристики заявленного технического решения.

Способ получения активного угля из соломы, включающий её карбонизацию в инертной атмосфере при температуре 450-500°C со скоростью подъема температуры 1-20°C/мин и активацию, причем в качестве соломы используют солому рапса, которую предварительно измельчают на куски размером 1-10 см, по завершении процесса карбонизации осуществляют выдержку при конечной температуре в течение 30-60 минут, а активацию проводят водяным паром при температуре 820-850°C, подаваемым с расходом 3-5 кг на 1 кг карбонизованного продукта.



 

Похожие патенты:

Изобретение относится к пористому углеродному композиционному материалу. Пористый углеродный композиционный материал образуется из (А) пористого углеродного материала, получаемого из материала растительного происхождения, имеющего содержание кремния (Si), составляющее 5 мас.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 мас.% или меньше, и (В) функционального материала, закрепленного на пористом углеродном материале, и имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР.
Изобретение относится к области адсорбционной техники, в частности к способам получения активных углей на основе каменноугольного сырья. Предложен способ получения активного угля на основе антрацита.

Изобретение относится к области получения углеродных сорбентов на основе растительного сырья. Способ получения углеродного адсорбента включает карбонизацию измельченной древесины березы при 300-800°C в инертной среде.
Изобретение относится к магнитоуправляемому сорбенту для удаления эндо- и экзотоксинов из организма человека, приготовленному из наночастиц магнетита Fe3O4. Поверхность магнетита модифицирована соединением, образующим прочную связь с частицей-носителем за счет поверхностно-активных групп, придающих свойства селективности и выполненных в виде оболочки из нормальных углеводородных цепей C12H25, присоединенных к ядру посредством сульфидной связи Fe-S, причем в качестве упомянутого соединения, обеспечивающего связывание железа с углеродной цепочкой, выбран додецилмеркаптан.

Изобретение относится к обработке питьевой воды с использованием сорбционной очистки. Способ дообработки питьевой воды включает механическую фильтрацию воды через древесную активированную угольную сорбционную загрузку и введение в исходную фильтруемую воду гипохлорита натрия.
Изобретение относится к области получения хемосорбентов, используемых для средств защиты органов дыхания и для очистки отходящих газов. Способ получения хемосорбента включает пропитку гранул активного угля модифицирующим раствором, вылеживание гранул и их термообработку.
Изобретение относится к способу получения активного угля. Способ включает выделение фракции 1-3 мм из шихты для слоевого высокотемпературного коксования и следующие стадии: окисление кислородом воздуха при температуре 250°C со скоростью подъема температуры от комнатной до заданной 15-20°C/мин, с выдержкой при конечной температуре в течение 2,5 часов, карбонизация окисленного сырья при подъеме температуры со скоростью 5°C/мин до температуры карбонизации 550-650°C, с выдержкой при температуре карбонизации в течение 60 минут и активирование полученных продуктов водяным паром до обгара 35-40% при температуре 950°C.
Изобретение может быть использовано для очистки технологических стоков предприятий химической промышленности. Способ очистки водных растворов от пиридина адсорбцией активным углем включает обработку активного угля хлоридом аммония с концентрацией 5 мг/дм3 в течение 3 часов.

Изобретение относится к получению активированного угля. Уголь получают путем карбонизации и последующей активации полимерных органических, сульфонированных исходных веществ.
Изобретение относится к технологическим процессам получения активного угля на основе древесины. .

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в аппарате с псевдоожиженным слоем углеродного наноматериала. Способ характеризуется высокой эффективностью, отсутствием токсичных продуктов окисления, малым расходом реагентов, легко масштабируется. 1 з.п. ф-лы, 2 ил., 4 табл., 4 пр.
Изобретение относится к модифицированию промышленного активного угля. Процесс модифицирования включает промывание дистиллированной водой, прогрев при температуре 200°C в атмосфере воздуха в течение 2 часов и обработку раствором соляной кислоты с концентрацией 0,1 моль/дм3. Изобретение обеспечивает повышенную сорбционную способность угля по диметитламину. Извлечение диметиламина возрастает в среднем на 35%. 3 табл., 3 пр.
Изобретение относится к способу получения древесноугольного сорбента, которое может быть использовано для получения активных углей и углеродных сорбентов, используемых в сельском хозяйстве (животноводстве, птицеводстве, очистке почв, а также в качестве кормовой добавки). Углеродсодержащее сырье (древесные опилки хвойных и лиственных пород с исходной влажностью 10-30%) карбонизуют при температуре 450-600°С. Проводят последующую активацию карбонизата парогазовой смесью при температуре 650-800°С. Карбонизат охлаждают в тонком слое до 20-30° со скоростью снижения температуры 10°С/мин. Полученный древесноугольный сорбент направляют на дополнительную активацию для окисления кислородом воздуха. Изобретение позволяет получить древесноугольный сорбент с адсорбционной способностью по йоду - 30-41% (что соответствует требованиям ГОСТ на уголь дробленый активный марки ДАК); проводить непрерывный процесс получения совмещенного технологического процесса карбонизации-активации древесных опилок в одном аппарате, управлять формированием пористой структуры полученных древесноугольных сорбентов, а также получать сорбенты с требуемыми параметрами пористой структуры и адсорбционными свойствами. 2 пр.
Изобретение относится к области адсорбционной техники. Способ получения углеродного катионообменника включает обработку активированного угля смесью аммиака и гидразина, взятых в соотношении 1:(2-2,5). Процесс осуществляют при температуре 350-450°C. Технический результат заключается в получении углеродного катионообменника с улучшенными свойствами. 1 табл., 3 пр.

Изобретение относится к области получения гранулированных активных углей. Способ получения гранулированного активного угля включает измельчение каменноугольного сырья, смешение его со смоляным связующим и легирующей добавкой, гранулирование композиции, охлаждение гранул, карбонизацию и парогазовую активацию. В качестве легирующей добавки в угольно-смоляную композицию вводят тристриметилсилоксифенилсилан. Изобретение позволяет получить гранулированный активный уголь с высокой адсорбционной способностью, рекомендованный для извлечения из сточных и оборотных вод флотационных фабрик остатков флотационных агентов, таких как бутиловый ксантогенат калия. 3 пр.

Изобретение относится к способам получения пористых углеродных материалов. Процесс получения гранулированного пористого углеродного материала состоит из двух стадий. На первой стадии сажу смешивают с нефтяным пеком и растворителем, далее полученную смесь гранулируют, гранулы стабилизируют в газовой среде при температуре не более 250°С, подвергают карбонизации при 600-1200°С и охлаждают. Продукт, полученный на первой стадии, обладает узким распределением пор. На второй стадии продукт, полученный на первой стадии, измельчают до размера частиц менее 1 мм, смешивают с нефтяным пеком и растворителем, смесь гранулируют. Полученные гранулы подвергают стабилизации и карбонизации при тех же условиях, как на первой стадии. Техническим результатом является обеспечение возможности получения пористого углеродного материала, характеризующегося бимодальным распределением пор и низким содержанием золы. 1 ил., 1 табл., 5 пр.
Изобретение относится к области получения порошковых активных углей. Предложен способ производства, включающий измельчение сырья, сушку, введение химического активирующего агента, активацию, отмывку и сушку готового продукта. В качестве сырья используют древесину или технический лигнин или торф. В качестве химического активирующего агента используют гидроксид калия или натрия. Сушку проводят при температуре 280-600°C. Активацию осуществляют в атмосфере парогазов при подъёме температуры до 550-800°C. Отмывку проводят в три стадии при температуре 70-90°C. На первой стадии отмывают водой, затем соляной кислотой и на последней стадии водой. Предложенное изобретение позволяет повысить адсорбционную способность активного угля по йоду до 150-240%, по метиленовому голубому до 350-600 мг/г. 3 пр.

Изобретение касается устойчивого к самовоспламенению термически активированного угля на целлюлозной основе и процесса его производства, а также применения такого угля для очистки дымовых газов от вредных веществ. Термическую стабильность термически активированного угля на целлюлозной основе повышают путем воздействия на него галогеном и/или галогенсодержащим веществом, содержащим бром, хлор, фтор, йод, бромид аммония, другие содержащие азот соли галогенов или бромид кальция. Причем этот термически активированный уголь содержит приблизительно от 5 до 20 вес.% галогена по отношению к полному весу термически активированного угля, подвергшегося воздействию галогена и/или галогенсодержащего вещества. Такой обработанный уголь на целлюлозной основе пригоден для использования в процессах снижения содержания вредных веществ в дымовых газах, в частности в дымовых газах, температура которых находится в диапазоне приблизительно от 100°С до 420°С. 3 н. и 2 з.п. ф-лы, 5 ил., 1 табл.
Изобретение относится к синтезу углеродных материалов, используемых для выделения водорода. Углеродное молекулярное сито получают из антрацита или каменного угля. Сырьё подвергают окислению кислородом воздуха. Окисление проводят при нагревании сырья от 100 до 450°C в нисходящем потоке воздуха, который подают со скоростью 0,5-15 м/сек. Изобретение обеспечивает получение селективного адсорбента для выделения водорода при снижении энергозатрат. 2 з.п. ф-лы, 2 табл.

Изобретение может быть использовано при получении адсорбентов в средствах для курения и фильтрах для улавливания табачного дыма. Гранулы микропористого активированного угля растительного происхождения погружают в раствор соли щелочноземельного или щелочного металла, встряхивают, фильтруют и отфильтрованный уголь сушат. Микропористый уголь, обработанный солью, может быть активирован паром, например, в аргоне в течение 1-10 ч. Полученный уголь имеет объем микропор по меньшей мере 0,4 см3/г и объем мезопор по меньшей мере 0,3 см3/г. Изобретение обеспечивает улучшенную способность угля фильтровать табачный дым. 4 н. и 14 з. п. ф-лы, 4 ил., 4 табл., 2 пр.
Наверх