Струнный акселерометр



Струнный акселерометр
Струнный акселерометр
Струнный акселерометр
Струнный акселерометр

 


Владельцы патента RU 2528103:

Открытое акционерное общество "Научно-производственное объединение "СПЛАВ" (RU)

Предлагаемое изобретение относится к области приборостроения и предназначено для автономного измерения ускорения летательных аппаратов. Струнный акселерометр содержит на своем основании чувствительные элементы, включающие струну, закрепленную одним концом на корпусе, другим на грузе, размещенном на упругом пластинчатом подвесе, и магнитоэлектрические приводы для поддержания автоколебаний струн. Для достижения технического результата чувствительный элемент выполнен в виде замкнутого прямоугольного камертона с внутренним креплением, расположенным на одной из сторон корпуса на геометрической оси, проходящей перпендикулярно струне через ее середину, причем каждая пара параллельных сторон чувствительного элемента состоит из нескольких жестко скрепленных участков из материалов с разными температурными коэффициентами линейного расширения. При этом суммы произведений их длин на температурный коэффициент линейного расширения равны соответственно для сторон вдоль и поперек струны, а температурный коэффициент модуля упругости подвеса равен разности температурных коэффициентов линейного расширения подвеса и струны. Изобретение позволяет повысить точность измерения ускорения за счет увеличения добротности струнного резонатора и снижения температурной погрешности и чувствительности к внешним и внутренним механическим воздействиям на напряжения в струне, а также упростить конструкцию и требования к выбору физико-механических свойств к материалам и форме деталей силовой цепи натяжения струны. 4 ил.

 

Изобретение относится к области приборостроения и предназначено для автономного измерения ускорения летательных аппаратов.

Известен дифференциальный струнный акселерометр по патенту РФ №2258230, G01P 15/10, опубл. 10.08.2005 г., в котором для повышения точности в силовую цепь струны между корпусом и подвесом введен набор прокладок из разнородных материалов, компенсирующих линейное расширение струны. Но полной компенсации температурного изменения параметров в цепи натяжения струны достичь не удается, что сказывается на точности измерения.

Известен струнный акселерометр, выбранный в качестве прототипа, по авт.св. SU №1840379, G01P 15/10, содержащий два чувствительных элемента (ЧЭ), включающих корпус, инерционную массу на упругом консольном закрепленном подвесе и струну, вырезанную из проволоки и закрепленную утолщенными концами на инерционной массе и корпусе через регулировочное устройство. Для уменьшения температурной погрешности подвес, корпус и основные крепящие детали рабочего контура натяжения выполняются из одного материала с температурным коэффициентом линейного расширения (ТКЛР), близким ТКЛР струны. Сложная конфигурация корпуса ЧЭ с пазом, выбранная для уменьшения влияния усилий в месте крепления к основанию на напряжения в струне, а следовательно, на точность измерения ускорения, ухудшает технологичность конструкции. ЧЭ, включенные по дифференциальной схеме, снабжены устройством поддержания автоколебаний струны и выделения разностной частоты. Недостатком прототипа является сложность конструкции акселерометра, а также влияние на точность измерения окружающей температуры и внешних механических воздействий, передающих напряжения струне через места крепления.

Задачей изобретения является повышение точности измерения ускорения за счет увеличения добротности струнного резонатора и снижения температурной погрешности и чувствительности к внешним и внутренним механическим воздействиям на напряжения в струне, а также упрощение конструкции и требований к выбору физико-механических свойств к материалам и форме деталей силовой цепи натяжения струны.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном струнном акселерометре, содержащем на основании чувствительные элементы, включающие струну, закрепленную одним концом на корпусе, другим на грузе, размещенном на упругом пластинчатом подвесе, и магнитоэлектрические приводы для поддержания автоколебаний струн, особенность заключается в том, что чувствительный элемент выполнен в виде замкнутого прямоугольного камертона с внутренним креплением, расположенным на одной из сторон корпуса на геометрической оси, проходящей перпендикулярно струне через ее середину, причем каждая пара параллельных сторон чувствительного элемента состоит из нескольких жестко скрепленных участков из материалов с разными температурными коэффициентами линейного расширения, при этом суммы произведений их длин на температурный коэффициент линейного расширения равны соответственно для сторон вдоль и поперек струны, а температурный коэффициент модуля упругости подвеса равен разности температурных коэффициентов линейного расширения подвеса и струны.

Сущность предлагаемого изобретения поясняется чертежами, где на фиг.1 показан общий вид струнного акселерометра (штрихпунктирной линией изображена геометрическая ось), на фиг.2 - вариант расположения внутреннего крепления ЧЭ к основанию, на фиг.3 представлена схематично силовая цепь крепления струны (пунктиром - направление колебания струны), а на фиг.4 - схематично температурный контур натяжения струны.

Струнный акселерометр состоит из основания 1 (фиг.1) с закрепленными на нем двумя ЧЭ (фиг.2) с помощью крепежного винта 2. Один струнный ЧЭ располагается на основании 1 таким образом, что при действии ускорения струна 3 растягивается грузом 4, а другой (на фиг.1 не показан) повернут на 180° и груз 4 уменьшает растяжение струны 3. При этом частота первого ЧЭ увеличивается, а второго уменьшается. Разностная частота изменяется линейно с действующим на акселерометр ускорением. Струна 3, выполненная из высокопрочной проволоки прямоугольного сечения, располагается в поле постоянного магнита (на фиг.1 не показана), и колебания возбуждаются с помощью магнитоэлектрического привода 5. ЧЭ содержит упругий подвес 6 с грузом 4, струну 3 и Г-образный корпус 7, выполненный наборным из разнородных материалов с изоляционными прокладками 8 и 9 на концах. Струна 3 закрепляется одним концом на Г-образном корпусе 7, другим с грузом 4 с помощью винтов 10 и 11 и сварки. Упругий подвес 6 в виде предварительно изогнутой консоли также жестко скреплен с Г-образным корпусом 7 клеем и винтами 12, а с грузом 4 -сваркой. Чувствительный элемент выполнен в форме замкнутого прямоугольного камертона, каждая сторона которого состоит из участков, жестко скрепленных между собой с разными длинами и ТКЛР. При начальном натяжении силой F0 струны 3 подвесом 6 он распрямляется и становится параллельным стороне Г-образного корпуса 7, а струна 3 параллельна другой стороне. Крепление ЧЭ к основанию 1 осуществляется за выступ, расположенный на Г-образном корпусе 7 внутри силовой цепи натяжения струны 3 (фиг.3), что эквивалентно внутреннему креплению О-образного камертона. Причем точка О крепления расположена на геометрической оси, проходящей через середину струны 3 перпендикулярно ей. Такое крепление в точке О исключает передачу на основание 1 реакций в заделке струны 3 - точки А и В, от изгибающего момента, так как Maв, и вертикальных сил, Ra=Rв. Не скомпенсированными остаются реакции Na=Nв, а в заделке N0=Na+Nв, которая передается основанию 1. Струна 3 колеблется с амплитудой (на фиг.3 показано пунктиром), определяемой добротностью системы и вносимой энергией от привода 5. Благодаря взаимной компенсации сил Ra и Rв и моментов Ма и Мв в точке О крепления ЧЭ удается повысить добротность колеблющейся струны 3 до 4000. Также частично компенсируется в точке О напряжение от крепления струны 3 в заделках и уменьшается влияние внешних механических нагрузок в месте крепления ЧЭ на напряжения в струне 3. Для исключения влияния температуры на натяжение струны 3 необходимо, чтобы каждая сторона аb и bc прямоугольного контура натяжения струны 3 (фиг.4) перемещалась параллельно двум другим сторонам, соответственно cd и da, тогда начальный прогиб подвеса 6 длиной l4 не изменится, а струна 3 длиной l1 не изменится по длине. Необходимо подобрать, таким образом, длину li участков и их материалов с ТКЛР αi, чтобы у каждой пары сторон ЧЭ вдоль и поперек струны 3 суммы произведений длин участков на их ТКЛР были равны, т.е.

l1α1+l2α2=l5α5+16α6 и l3α3+l4α4=l7α7+l8α8.

Возможно для обеспечения одинаковых температурных изменений менять не только li и αi участков, но и их количество и местоположение, например, исключить l8 или добавить к l5 дополнительный участок с определенной длиной и ТКЛР, сохраняя длину сторон ЧЭ.

Такой подбор материалов прямоугольного контура ЧЭ уменьшает температурную чувствительность от изменения прогиба подвеса 6 и длины струны 3. Для полного исключения температурного изменения частоты струны 3 необходимо обеспечить компенсацию изменения упругих свойств подвеса 6 (модуля упругости) соответствующим изменением геометрических размеров подвеса 6 и струны 3. Известно, что частота f колебаний струны 3, натянутой подвесом 6 начальной силой F0 (см., например, книгу под ред. Осадчего Е.П. Проектирование датчиков для измерения механических величин, М., Машиностроение, 1979, стр.286.), определяется выражением:

где m1 и l1 - масса и длина струны.

Для плоского консольно-закрепленного подвеса 6 с шириной D4, толщиной h4 и длиной l4 с начальным прогибом y4 выражение (1) может быть преобразовано

где E4 - модуль упругости подвеса.

Масса m1 струны 3 не зависит от температуры, а прогиб y4 подвеса 6 не изменяется, если подобраны длины и ТКЛР участков в сторонах прямоугольного контура ЧЭ (фиг.4). Изменения от температуры толщины h4 подвеса 6 и его длины l4 взаимно компенсируют друг друга. Относительное изменение частоты Δf/f от температуры будет равно нулю, если разность ТКЛР материалов подвеса 6 и струны 3 будет равна ТКМУ Y4 подвеса 6, т.е. α41=Y4. Таким требованиям может удовлетворить подвес 6 из дисперсионно-твердеющих сплавов, у которых Y лежит в пределах (0…15)·10-6 1/град., и за счет выбора термообработки возможно получить в этом диапазоне требуемый ТКМУ. Так, для сплава 42НХТЮ, имеющего высокие упругие свойства, α=9,5·10-6 1/град., a Y=3·40-6 1/град. Если струну 3 изготавливать из высокопрочного молибденового сплава, у которого α=6,5-10-6 1/град., то условие полной компенсации струнного ЧЭ будет выполнено. Именно благодаря простоте конструкции и широкому выбору материалов с заданными физико-механическими свойствами удается обеспечить минимальную погрешность акселерометра от температуры.

Струнный акселерометр работает следующим образом.

При подаче напряжения на магнитоэлектрический привод 5 по струне 3 протекает электрический ток, от взаимодействия с полем постоянного магнита возникает сила, толкающая струну 3. Начинаются автоколебания на собственной частоте струны 3. Чем выше добротность системы, тем больше амплитуда колебаний струны 3 и стабильней частота в условиях помех, а следовательно, и точность акселерометра. При действии ускорения а=ng (n - перегрузка, a g - ускорение свободного падения) вдоль оси чувствительности акселерометра груз 4 на одном ЧЭ растягивает струну 3 и ее частота f1 увеличивается. На втором ЧЭ частота f2 уменьшается, так как растягивающая сила подвеса 6 уменьшается на величину mГng (mГ - масса груза). Разность частот f1-f2 пропорциональна величине ускорения. Интегрируя частоту, можно определить скорость летательного аппарата за определенный промежуток времени и провести коррекцию траектории.

Благодаря предложенной конструкции струнного ЧЭ удалось повысить помехоустойчивость струнного акселерометра, обеспечив его работоспособность при температуре ±50°C и в широком диапазоне механических воздействий, а также упростить конструкцию струнного акселерометра и повысить его технологичность.

Струнный акселерометр, содержащий на основании чувствительные элементы, включающие струну, закрепленную одним концом на корпусе, другим на грузе, размещенном на упругом пластинчатом подвесе, и магнитоэлектрические приводы для поддержания автоколебаний струн, отличающийся тем, что чувствительный элемент выполнен в виде замкнутого прямоугольного камертона с внутренним креплением, расположенным на одной из сторон корпуса на геометрической оси, проходящей перпендикулярно струне через ее середину, причем каждая пара параллельных сторон чувствительного элемента состоит из нескольких жестко скрепленных участков из материалов с разными температурными коэффициентами линейного расширения, при этом суммы произведений их длин на температурный коэффициент линейного расширения равны соответственно для сторон вдоль и поперек струны, а температурный коэффициент модуля упругости подвеса равен разности температурных коэффициентов линейного расширения подвеса и струны.



 

Похожие патенты:

Изобретение относится к измерительной технике, а точнее к струнным акселерометрам для автономного определения параметров движения летательных аппаратов и может быть использовано при производстве струнных акселерометров.

Изобретение относится к измерительной технике, представляет собой преобразователь пути и линейной скорости движения объекта в код и может использоваться при контроле положения и скорости при малых (0,1 мкм÷10 мкм) и больших (до 10 см) перемещениях.

Изобретение относится к измерительной технике и может быть использовано для измерений ускорения и других параметров. .

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерениям механических параметров, в частности силы или ускорения. .

Изобретение относится к области измерений механических параметров. .

Изобретение относится к области измерений механических параметров. .

Изобретение относится к области измерений механической силы и производных от нее величин, момента силы, давления, массы, деформаций, линейных и угловых ускорений. .

Изобретение относится к области измерений механических параметров. .

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой силы, а другие концы соединены через первые упругие шарниры со вторым элементом приложения измеряемой силы, при этом вторые упругие шарниры выполнены в средней части каждого стержня с образованием клиновидных участков с большей изгибной жесткостью, узкие части которых обращены в сторону первых и вторых упругих шарниров соответственно. Достигаемым техническим результатом является увеличение силовой чувствительности резонатора силочувствительного. 1 ил.

Изобретение относится к метрологии, в частности к датчикам механических ускорений. Датчик представляет собой резонатор, выполненный в виде сдвоенного камертона, и содержит основание, чувствительный элемент с маятниковым подвесом в виде двух стержней, упругие шарниры, размещенные на одной пластине монокристалла кварца Z-среза. Первые концы стержней соединены с чуствительным элементом, а вторые концы через упругие шарниры соединены с основанием. Стержневой резонатор выполнен на второй пластине монокристалла кварца Z-среза меньшей толщины, на концах которого образованы участки с увеличенной поверхностью для присоединения к чувствительному элементу и к основанию соответственно. Стержни резонатора могут иметь как постоянную, так и переменную ширину. В концевых элементах выполнены отверстия для введения стеклоспая, соединяющего участки стержневого резонатора с поверхностями чувствительного элемента и основания. Размер площади концевых участков выбран исходя из использованием стеклоспая, качество соединения определяется по отсутствию гистерезиса при предельных нагрузках на резонатор. Технический результат - повышение точности измерений, уменьшение трудоемкости изготовления. 3 ил.
Наверх