Устройство для изучения геометрических несовершенств резервуаров муаровым методом с двумя опорами

Изобретение относится к группе контрольно-измерительных приборов, а именно является устройством для определения начальных геометрических несовершенств стенки цилиндрических резервуаров (вмятин, трещин, овальностей и т.д.). Устройство содержит механизм подъема-опускания и поворота платформы, в который входят верхний и нижний фиксаторы, труба с прикрепленной к ней подвижной площадкой. На площадке установлены фотокамера и проектор. Поворот площадки осуществляется посредством шагового электродвигателя, закрепленного внутри нижнего фиксатора. Подъем-опускание площадки осуществляется посредством шагового электродвигателя, закрепленного на трубе и ленточного, тросового или цепного механизмов. Поворот фотокамеры для осуществления настройки устройства производится при помощи шагового электродвигателя. Обеспечение электричеством фотокамеры, проектора, электродвигателя для поворота фотокамеры, электродвигателя для поворота площадки, электродвигателя для подъема-опускания площадки осуществляется посредством силового кабеля, проложенного внутри трубы. Управление шаговыми электродвигателями, проектором и фотокамерой осуществляется посредством контроллера, получающего сигналы через модемную линию связи от компьютера. Технический результат - повышение точности измерения геометрических несовершенств цилиндрических резервуаров. 3 ил.

 

Изобретение относится к группе контрольно-измерительных приборов, а именно к средствам для определения начальных геометрических несовершенств стенки цилиндрических резервуаров (вмятин, трещин, овальностей и т.д.).

Известно устройство определения деформаций поверхности, содержащее проектор со слайдом изображения сетки, видеокамеру, устройство ввода-вывода информации в ЭВМ, саму ЭВМ с видеоконтроллером и дисплеем [патент 2065570 РФ, МПК 6 G01N 21/00, опубл. 20.08.96].

Недостатками известного устройства являются его низкая степень автоматизации, низкая точность из-за использования устаревших технологий и связанная с этим трудоемкость определения топологии всей поверхности объекта.

Известно устройство для определения топологии поверхности муаровым методом, содержащее проектор, видеокамеру, мини-лазер, контроллер, управляющий данными устройствами посредством связи с ЭВМ через модем и программу на ЭВМ, позволяющую моделировать муаровый эффект [патент 2267087 РФ, МПК 8 G01B 11/25, опубл. 27.12.2005].

Однако при помощи этого устройства невозможно провести требуемые исследования резервуаров.

Известно устройство для изучения геометрических несовершенств резервуаров муаровым методом, содержащее проектор и фотокамеру, установленные на площадке, имеющей возможность осуществления вращательного и поступательного движения посредством шаговых электродвигателей, связанных с контроллером, управляющим данными устройствами посредством связи с ЭВМ через модем и программу на ЭВМ, позволяющую моделировать муаровый эффект [патент 2267087 РФ, МПК G01B 11/25 (2006.01), опубл. 27.06.2012].

Недостатком данного устройства является большая вероятность появления искажений картины муаровых полос, получаемой при фотографировании стенки резервуара, связанная с воздействием на установку различных внешних нагрузок.

Известное устройство является наиболее близким к заявляемому и принято за прототип.

Задачей, на решение которой направлено предлагаемое техническое решение, является минимизация последствий воздействия внешних нагрузок на устройство.

Техническим результатом применения предлагаемого технического решения является повышение точности измерения геометрических несовершенств цилиндрических резервуаров путем добавления дополнительной опоры к механизму, обеспечивающему подъем-опускание устройства на нужную высоту, а также его поворот посредством шаговых электродвигателей.

Указанный технический результат достигается тем, что в устройстве для определения топологии поверхности, содержащем проектор и фотокамеру, установленные на площадке, при этом фотокамера установлена с возможностью поворота посредством шагового электродвигателя, установленного на площадке, которая прикреплена к трубе с возможностью осуществления поворота и подъема-опускания посредством шаговых электродвигателей, и компьютер с модемной линией, соединенных между собой контроллером, обеспечивающим управление устройством, особенностью является то, что указанная труба снабжена верхним и нижним фиксаторами, при этом электродвигатель поворота площадки расположен в нижнем фиксаторе, а электродвигатель подъема-опускания площадки установлен на указанной трубе.

Предлагаемое устройство позволяет исследовать при помощи компьютера топологию поверхности стенки резервуара с большей точностью по сравнению с устройством, принятым за прототип, за счет практически полного отсутствия вибраций, вызванных внешними нагрузками, так как устройство надежно закрепляется в двух точках фиксаторами.

Общий вид устройства показан на фиг.1, на фиг.2 и фиг.3 показаны этапы процесса настройки устройства (юстировки).

Устройство содержит механизм подъема-опускания и поворота платформы, в который входят верхний 1 и нижний фиксаторы 2 и труба 3 с прикрепленной к ней подвижной площадкой 4. На площадке 4 установлены проектор 5 и фотокамера 6. Поворот площадки 4 осуществляется посредством шагового электродвигателя 9, закрепленного внутри нижнего фиксатора 2 трубы 3. Подъем-опускание площадки 4 осуществляется посредством шагового электродвигателя 8, закрепленного на трубе 3, и ленточного, тросового или цепного механизма 10, расположенного вдоль трубы 3. Поворот фотокамеры 6 для осуществления настройки устройства производится при помощи шагового электродвигателя 7, расположенного на площадке 4. Обеспечение электричеством фотокамеры 6, проектора 5, электродвигателя 7 для поворота фотокамеры 6, электродвигателя 9 для поворота площадки 4, электродвигателя 8 для подъема-опускания площадки 4 осуществляется посредством силового кабеля 11, проложенного внутри трубы 3. Управление шаговыми электродвигателями 7, 8, 9, проектором 5 и фотокамерой 6 осуществляется посредством контроллера 12, получающего сигналы через модемную линию связи 13 от компьютера 14.

Обследование резервуара при помощи устройства проводится следующим образом.

Устройство устанавливают в резервуар 15, затем производят его юстировку. Юстировка заключается в том, что оптические оси 16 и 17 проектора 5 и фотокамеры 6 сводятся в одну точку. Перед проведением юстировки (фиг.2.) оптические оси 16 и 17 проектора 5 и фотокамеры 6 параллельны. Проектором 5 нормально к исследуемой поверхности резервуара 15 проецируется изображение, в центре которого формируется сфокусированная светлая область. Затем по сигналу компьютера 14 шаговый электродвигатель 7 поворачивает фотокамеру 6 до тех пор, пока светлая область не окажется ровно по центру изображения, снимаемого фотокамерой 6. После этого фотокамера 6 фиксируется посредством остановки шагового электродвигателя 7.

Далее осуществляется проецирование проектором 5 сформированного в компьютере 14 изображения эталонной сетки, состоящей из чередующихся темных и светлых линий с заданным шагом на поверхность стенки резервуара 15. Параметры сетки задаются в компьютере 14 и передаются при помощи модемной линии 13 на контроллер 12, а затем на проектор 5. Параметры сетки могут быть программно изменены, что повышает быстроту ее выбора.

Затем ведется прием при помощи фотокамеры 6 объектного растра. Фотокамера 6 осуществляет прием объектного растра и передает его в цифровом формате на компьютер 14. В компьютере 14 по заданной формуле формируется картина муаровых полос, образованных при наложении светлых и темных линий «объектного» и «мнимого» растров, вычисляются центры полос, расстояния от них до стенки резервуара 15 и величины деформаций поверхности стенки резервуара 15.

Далее происходит переориентация системы на другой участок стенки резервуара 15. Сигналы для переориентации поступают на контроллер 12 с компьютера 14, и тот подает сигнал шаговым электродвигателям 7, 8, 9, которые начинают вращать, поднимать, опускать площадку 4 с проектором 5 и фотокамерой 6 таким образом, что переориентируют устройство на другой участок стенки резервуара 15. Далее проводится юстировка, проецирование на участок эталонной сетки, прием фотокамерой 6 «рабочего растра» и вновь переориентирование системы. Эти процессы будут повторяться до тех пор, пока не будет изучена вся поверхность исследуемого резервуара 15.

В итоге, после обследования всей поверхности резервуара 15, в компьютере 14 формируется суммарная картина топологии поверхности стенки резервуара 15, анализируя которую, можно определить его геометрические несовершенства (сколы, вмятины, овальности и т.д.).

Устройство для определения топологии поверхности, содержащее проектор и фотокамеру, установленные на площадке, при этом фотокамера установлена с возможностью поворота посредством шагового электродвигателя, установленного на площадке, которая прикреплена к трубе с возможностью осуществления поворота и подъема-опускания посредством шаговых электродвигателей, и компьютер с модемной линией, соединенных между собой контроллером, обеспечивающим управление устройством, отличающееся тем, что указанная труба снабжена фиксаторами, расположенными на ее концах, при этом электродвигатель поворота площадки расположен в нижнем фиксаторе, а электродвигатель подъема-опускания площадки установлен на указанной трубе.



 

Похожие патенты:

Способ анализа для получения фазовой информации путем анализа периодической структуры муара содержит этапы: подвергания периодической структуры муара оконному преобразованию Фурье с помощью оконной функции; отделения информации о первом спектре, содержащем фазовую информацию, от информации о втором спектре, наложенной на информацию о первом спектре для получения фазовой информации с использованием аппроксимации каждой из форм первого и второго спектров в форму предварительно заданной функции.

Изобретение относится к методу измерения геометрии профиля цилиндрических тел в качестве измеряемых объектов с использованием метода двухмерного светового сечения, при котором с использованием, по меньшей мере, одного лазера проецируется веерообразная лазерная линия в качестве линии светового сечения на поверхность тела и отраженные от поверхности тела лучи воспринимаются, по меньшей мере, одной камерой для съемки поверхностей, причем лазер и камера расположены под углом триангуляции в нормальной плоскости по линии оси цилиндра.

Устройство содержит источник белого света (1) в виде LED-полоски (40), коллимационный блок (4), блок спектрометра для расщепления луча белого света (30) на луч мультихроматического света (31), направляемый на тестируемое изделие (5) под заданным углом падения, и камеру (3) для записи отраженного луча монохроматического света (32), так что информация о высоте поверхности по оси z тестируемого изделия (5) может извлекаться из значения оттенка отраженного луча (32) при относительном перемещении тестируемого изделия (5) по направлению (9) сканирования по оси x.

Изобретение может быть использовано для определения геометрических несовершенств стенки магистральных трубопроводов (вмятин, трещин, овальностей и т.д.) и напряженно-деформированного состояния трубопроводов.

Изобретение относится к устройствам трехмерного обмера объектов при помощи топометрического способа измерения. Устройство для трехмерного обмера объекта включает первое проекционное устройство, содержащее первый источник инфракрасного излучения для проецирования на объект подвижного первого узора, причем проецируемый узор проявляется на объекте в виде распределения нагревания; по меньшей мере одно съемочное устройство для съемки изображений распределения нагревания, проявляющееся на объекте, в инфракрасной области спектра; а также анализирующее устройство для анализа изображений, снятых съемочным устройством, и определения формы поверхности объекта.

Изобретение относится к группе контрольно-измерительных приборов, а именно, является устройством для определения начальных геометрических несовершенств стенки цилиндрических резервуаров (вмятин, трещин, овальностей и т.д.).

Изобретение относится к способу измерения износа футеровки металлургического плавильного сосуда, например конвертера для плавки стали, посредством лазерного сканера.

Изобретение относится к области измерительной техники и предназначено для использования с высевающими устройствами. .

Способ определения остаточной сферичности отражающей поверхности относится к измерительной технике и может быть использован для определения остаточной сферичности плоских зеркал и радиусов кривизны крупногабаритных сферических зеркал. Способ заключается в том, что измерительный прибор устанавливают в рабочее положение перед отражающей поверхностью, расположенной в вертикальной плоскости, и настраивают на автоколлимационное изображение, причем в качестве измерительного прибора используют, по меньшей мере, один автоколлимационный теодолит, остаточную сферичность определяют по измеренным значениям углов, считанным по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением, измерение углов проводят для двух точек отражающей поверхности, максимально разнесенных на поверхности и расположенных на одной вертикали, а остаточную сферичность рассчитывают по формуле: R = Δ d π ⋅ ( α − β ) ⋅ 180 ∘ где: Δd - разница высот установки теодолита относительно Земли, м α, β - значения углов вертикального круга теодолита при совмещении сетки теодолита с ее автоколлимационным изображением для верхнего и нижнего положения теодолита соответственно, град. Технический результат - сокращение времени определения остаточной сферичности за счет сокращения времени, необходимого на сборку измеряющей схемы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических моделей на основании заранее известных геометрических закономерностей исследуемого объекта, характеризующих форму, положение, движение, деформацию. Наносят маркеры на поверхность объекта, группируя по обособленным зонам в обособленные группы. Далее регистрируют изображения центральной проекции указанных маркеров. И на их основании с учетом заранее известных геометрических закономерностей исследуемого объекта и с использованием методов многомерной минимизации расхождений определяют искомые геометрические параметры объекта. Технический результат - повышение точности и достоверности измерений геометрических параметров объекта при использовании одной камеры, особенно в условиях стесненного окружающего пространства и ограниченного оптического доступа. 2 н. и 2 з.п. ф-лы, 14 ил.

Изобретение относится к способам измерительного контроля качества поверхности строительных конструкций. Способ бесконтактного определения кривизны поверхности строительной конструкции включает синхронное измерение с помощью системы закрепленных на общем основании датчиков расстояния, расположенных относительно друг друга под неизменяемым углом, расстояний от каждого из датчиков до своей контрольной точки на пересечении оси датчика с поверхностью конструкции, и передачу полученных данных в блок анализа и обработки информации, в котором производится расчет кривизны. При этом одновременно поверхность конструкции остается неподвижной. Измерение расстояний осуществляют переносной системой из трех наклонных и одного высотного лазерных дальномеров, равноудаленных от вершины воображаемой правильной треугольной пирамиды и направленных при измерении в сторону поверхности конструкции таким образом, чтобы оси наклонных дальномеров совпадали с боковыми ребрами, имеющими угол наклона 55-85°, а ось высотного дальномера - с высотой этой пирамиды, все углы основания которой своими вершинами совмещены с поверхностью конструкции. Технический результат - бесконтактное определение кривизны поверхности неподвижных объектов с расстояния более 1 м. 1 з.п. ф-лы, 3 ил.

В способе определения расстояния до объекта используется видеоизмерительное устройство, включающее первый излучатель света и второй излучатель света, при этом первый излучатель света может испускать свет через отверстие по меньшей мере с одним тенеобразующим элементом. Способ включает захват по меньшей мере одного первого изображения при включенном первом излучателе света и отключенном втором излучателе света, захват по меньшей мере одного второго изображения при включенном втором излучателе света и отключенном первом излучателе света, определение первого множества значений яркости пикселей в упомянутом по меньшей мере одном первом изображении, определение второго множества значений яркости пикселей в упомянутом по меньшей мере одном втором изображении, определение отношений яркостей второго множества значений яркости к первому множеству значений яркости и определение расстояния до объекта с использованием упомянутых отношений яркости. Технический результат - повышение точности измерения. 2 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к области проведения измерений деформаций. В графо-проекционном способе проведения измерений объектов на поверхность исследуемого объекта проектором проецируют растр с заданными в установленном на компьютере программном обеспечении параметрами. Далее сканируют это изображение фотокамерой, изображения, полученные таким образом, вводят в компьютер, в котором предварительно заложен «мнимый» растр. При этом «мнимый» растр получают при помощи типографического растра и фотокамеры или проектора, фотокамеры и плоской поверхности или математической модели в лабораторных условиях, при этом «мнимый» растр и изображение, получаемое при помощи сканирования фотокамерой, имеют разную контрастность и цвет. Технический результат - повышение точности измерений деформации. 1 з.п. ф-лы, 5 ил.

Заявленное изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности. Заявленное устройство определения радиуса кривизны крупногабаритной оптической детали на основе датчика волнового фронта содержит: оптическую насадку 2; оптическую систему 3, состоящую из афокальной системы оптических элементов 3.1, 3.2, светоделительного кубика 3.3 между ними и точечного источника излучения 3.4. Оптический элемент 3.1 является коллимирующим объективом для источника 3.4 с выводом коллимированного излучения в насадку 2 и одновременно с этим элементы 3.1, 3.2 согласуют апертуры насадки 2 и датчика 4, расположенного позади элемента 3.2; место неподвижного расположения детали 1 с ее контролируемой поверхностью, обращенной к насадке 2. Деталь 1, насадка 2 и система 3 расположены последовательно на единой оптической оси. Насадка 2, система 3 и датчик 4 образуют единый блок с возможностью его малых по сравнению с величиной радиуса кривизны поверхности детали 1 варьируемых перемещений вдоль оптической оси относительно места неподвижного расположения детали 1. Оптическая ось датчика 4 совпадает с единой оптической осью детали 1, насадки 2 и системы 3. При этом отсутствует излом кубиком 3.3 сферических волновых фронтов, отраженных от поверхности детали 1 обратно в насадку 2 и через элементы 3.1, 3.2 к датчику 4, а кубик 3.3 использован только для ввода излучения от источника 3.4 в элемент 3.1. Способ с использованием указанного устройства заключается в том, что в начальном положении на насадку 2 единого блока приходит отраженный от детали 1 сферический волновой фронт с радиусом кривизны, равным фокусному расстоянию ƒн насадки 2, при этом после насадки 2 и системы 3 этот волновой фронт приходит на датчик 4 уже в виде плоского волнового фронта с радиусом кривизны, равным бесконечности. После этого посредством дополнительного малого по сравнению с величиной радиуса Rз кривизны поверхности детали 1 перемещения Δ единого блока насадки 2, системы 3 и датчика 4 вдоль оптической оси производят определение радиуса Rз через определение радиуса кривизны приходящего на датчик 4 отраженного от поверхности детали 1 сферического волнового фронта с учетом его геометрического преобразования системой 3 с помощью расчета по формуле отрезков для насадки 2 и элементов 3.1, 3.2 и с использованием формул расчета радиуса Rз с учетом правила знаков (из геометрической оптики). Перемещение Δ выбирают так, чтобы на датчик 4 приходил сферический волновой фронт, соответствующий допустимому минимально измеряемому датчиком 4 радиусу кривизны сферического волнового фронта, при этом радиус кривизны сферического волнового фронта Rn на входе насадки 2 связан с радиусом Rз, перемещением Δ и фокусным расстоянием ƒн формулой: , из которой при известной величине радиуса Rn определяют искомую величину радиуса Rз кривизны контролируемой поверхности детали 1. Технический результат - уменьшение искажений (аберраций) отраженного от контролируемой поверхности детали сферического волнового фронта и соответственно увеличение динамического диапазона работы устройства; а также минимизация среднеквадратической погрешности измерения радиуса кривизны волнового фронта и соответственно повышение точности определения радиуса кривизны контролируемой поверхности детали. 2 н. и 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение может быть использовано для привязки и ориентации на местности при наведении теплового источника излучения на местности. Способ включает формирование первого и второго световых пучков с длинами волн λ1 и λ2 с помощью первого и второго коллиматоров, оптические оси которых образует угол 90°. Устанавливают зеркало, снабженное отверстием со световым диаметром по его центру и отражающим слоем, обращенным в противоположную сторону от первого коллиматора, за первым коллиматором под углом к его оптической оси с возможностью прохода сквозь отверстие зеркала светового пучка с длиной волны λ1. Оптическую ось второго коллиматора направляют через геометрический центр зеркала с отверстием. Световой диаметр второго коллиматора выбирают равным диаметра отверстия зеркала. Начиная от точки пересечения оптических осей первого и второго коллиматоров их оптические оси совмещают и осуществляют однонаправленное опознавание объекта в когерентных световых пучках с длинами волн λ1 и λ2. Технический результат - возможность однонаправленного опознавания объекта в когерентных световых пучках с двумя разными длинами волн. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к медицинской технике, а именно к диагностическим магнитно-резонансным системам. Система для регулирования содержит устройство регулирования рентгеновской визуализации, которая содержит порт ввода для приема данных трехмерного изображения, полученных с помощью датчика при трехмерном наблюдении объекта, причем принятые таким образом данные трехмерного изображения содержат информацию о пространственной глубине, при этом данные трехмерного изображения описывают геометрическую форму объекта в трех измерениях, анализатор данных трехмерного изображения, выполненный с возможностью вычислять по принятым данным трехмерного изображения данные анатомических ориентиров объекта, причем вычисленные данные управления устройством визуализации включают в себя демаркационные данные, определяющие границу окна коллимирования устройства визуализации для области объекта, представляющей интерес, устанавливать из принятых данных трехмерного изображения данные положения анатомических ориентиров объекта, блок управления, причем функционирование устройства рентгеновской визуализации включает в себя операцию коллимирования для рентгеновского пучка, исходящего из рентгеновского источника. Система регулирования выполняется посредством работы устройства регулирования с использованием машиночитаемого носителя. Использование группы изобретений обеспечивает расширение арсенала средств для персональной и автоматической корректировки рентгеновской системы. 4 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке. Также способ включает калибровку точки обзора для системы контроля по отношению к модели на основании положения измерителя удаленности по отношению к заготовке и измерение данных о фактическом расстоянии удаленности одного элемента отображения измерителя удаленности по отношению к заготовке. На основании данных о фактическом расстоянии удаленности определяют, удовлетворяет ли заготовка предварительно установленным критериям контроля. Повышается точность и надежность контроля. 2 н. и 13 з.п. ф-лы, 3 ил.
Наверх