Способ предварительного прогрева нефтенасыщенного пласта



Способ предварительного прогрева нефтенасыщенного пласта
Способ предварительного прогрева нефтенасыщенного пласта
Способ предварительного прогрева нефтенасыщенного пласта
Способ предварительного прогрева нефтенасыщенного пласта

 


Владельцы патента RU 2530930:

Шлюмберже Текнолоджи Б.В. (NL)

Изобретение относится к нефтегазовой отрасли и может быть использовано в тепловых методах добычи тяжелой нефти и, в частности, с использованием парогравитационного дренажа, паротепловой обработки скважины, циклической закачки теплоносителя. Обеспечивает повышение эффективности способа за счет уменьшения капитальных затрат и энергозатрат на его реализацию. Сущность изобретения: способ включает подачу насыщенного или перегретого пара при первоначальном давлении в насосно-компрессорную трубу, размещенную в скважине нефтенасыщенного пласта, измерение температуры пара во времени на выходе из насосно-компрессорной трубы с последующим определением величины теплового потока от скважины в пласт во времени и расчетом оптимального расхода пара во времени после достижения массового паросодержания на выходе из затрубного пространства, отличного от нуля. Этим обеспечивают компенсацию теплового потока от скважины в пласт тепловой энергией, выделяемой паром в результате фазового перехода. Уменьшают текущий расход пара до оптимального значения путем уменьшения первоначального давления до величины, при которой значение температуры пара на выходе из насосно-компрессорной трубы сохраняется постоянным. 6 з.п. ф-лы, 1 табл., 1 ил.

 

Изобретение относится к нефтегазовой отрасли и может быть использовано в тепловых методах добычи тяжелой нефти, в частности с использованием парогравитационного дренажа, паротепловой обработки скважины, циклической закачки теплоносителя, и пр.

Так, мировые запасы тяжелой нефти и битума более чем в два раза превышают запасы обычной нефти. Добыча тяжелой нефти и битума представляет собой сложный процесс, для которого требуются продукты и услуги, созданные для специфических условий, поскольку эти жидкости имеют чрезвычайно высокую вязкость (до 1900 Па·с). Вязкость тяжелой нефти и битума значительно уменьшается при увеличении температуры, и, по всей видимости, наиболее многообещающими являются методы добычи с использованием теплового воздействия на пласт.

Парогравитационный дренаж (ПГД) или Steam Assisted Gravity Drainage (SAGD) имеет несколько преимуществ по сравнению с другими методами добычи с тепловым воздействием на пласт. Типичная реализация этого метода требует бурения, по меньшей мере, двух параллельных горизонтальных скважин вблизи подошвы пласта, одна над другой. Верхняя скважина - "инжектор", используется для закачки пара, а нижняя скважина - "добывающая скважина", используется для добычи нефти. Технология ПГД обеспечивает более высокие дебиты скважин, лучшие показатели отдачи пласта, сниженные затраты на очистку воды и резкое уменьшение паронефтяного соотношения (ПНО).

Одна из проблем метода ПГД заключается в сложности запуска технологических процессов добычи. Из-за высокой вязкости холодная нефть практически неподвижна и поэтому требуется первоначальный прогрев пласта. Этот этап первоначального прогрева необходим для создания равномерной термогидравлической взаимосвязи между двумя скважинами. На этом этапе пар закачивается в обе скважины, чтобы разогреть пласт между ними, что требует значительных затрат энергии. Оптимальная стратегия этапа предварительного прогрева имеет целью свести к минимуму промежуток времени, за который пара скважин может быть переведена в режим добычи по методу ПГД, а также минимизировать количество пара, требующееся для циркуляции.

Описание процесса парогравитационного дренажа и его модификаций известно из US 4344485, опубл. 17.08.1982 г.

Методы добычи с тепловым воздействием на пласт представлены в патенте US 4085803, опубл. 25.04.1978 г., патенте US 4099570, опубл. 11.07.1978 г., и в патенте US 4116275, опубл. 26.09.1978 г.

Типичная модель закачивания скважин при добыче нефти методом ПГД состоит из двух горизонтальных скважин у подошвы пласта, при этом скважина, в которую закачивается пар, расположена примерно в 5-10 метрах по вертикали над добывающей скважиной.

Известен патент US 6988549, опубл.24.01.2006 г., в котором обозначены проблемы, возникающие при добыче по методу ПГД. Так, на экономические показатели добычи оказывают значительное влияние затраты, связанные с генерацией пара. Вместе с тем в методе ПГД обычно не используется перегретый пар из-за высокой стоимости производства такого пара с использованием обычных трубных котлов, в которых в качестве топлива используются углеводороды. В результате этого используется пар, менее эффективно передающий тепло к пласту с тяжелой нефтью.

Также на экономические показатели метода ПГД могут оказывать отрицательное влияние продолжительность этапа предварительного прогрева и расход подаваемого пара. Численные модели, созданные с использованием коммерческих гидродинамических симуляторов, были использованы для оценки параметров предварительного прогрева (расхода подаваемого пара и продолжительности этапа предварительного прогрева) метода ПГД, в частности:

1) Vanegas Prada J.W., Cunha L.B., Alhanati F.J.S.: "Impact of Operational Parameters and Reservoir Variables During the Startup Phase of a SAGD Process", SPE paper 97918 (Ванегас Прада Дж.В., Кунья Л.Б., Алханати Ф.Дж.С."Влияние эксплуатационных параметров и переменных пласта на этапе запуска процесса SAGD", доклад SPE (Общества инженеров-нефтяников) №97918).

2) Vincent K.D., MacKinnon C.J., Palmgren C.T.S.: "Developing SAGD Operating Strategy using a Coupled Wellbore Thermal Reservoir Simulator", SPE paper 86970 (Винсент К.Д., МакКиннон С.Дж., Палмгрен С.Т.С."Разработка эксплуатационной стратегии добычи методом SAGD с использованием сцепленного неизотермического симулятора скважины и пласта", доклад SPE №86970).

3) Shin H., Polikar M.: "Optimizing the SAGD Process in Three Major Canadian Oil-Sands Areas", SPE paper 95754 (Шин Х., Поликар M. "Оптимизация процесса SAGD в трех основных зонах канадских нефтеносных песков", доклад SPE №95754). Однако эти модели не могут использоваться для быстрой оценки параметров предварительного прогрева для широкого диапазона свойств пласта.

Известен способ предварительного прогрева нефтенасыщенного пласта (патента US 5215146, опубл. 1.07.1993 г.). Данный способ позволяет оптимизировать процесс прогрева за счет уменьшения времени предварительного прогрева. Пар непрерывно циркулирует в верхней и нижней горизонтальных скважинах при поддержании существенного градиента температуры между ними, что заставляет горячие жидкости вытесняться из верхней скважины в нижнюю. В процессе реализации способа производят определенное количество пены, с помощью которой сопротивление потоков между буровыми скважинами возрастает, что, в свою очередь, приводит к росту градиента давления, а также скорости дренажа нефти. Увеличенные скорости смещения приводят к уменьшению времени предварительного прогрева.

Способ является энерго- и капиталозатратным, поскольку необходимы ресурсы и оборудование на производство пены, а также осуществление контроля за реализацией многокомпонентного процесса.

Технический результат, достигаемый заявленным способом, позволяет оптимизировать процесс, а также уменьшить ресурсо-, капитало- и энергозатраты на реализации данного способа.

Заявленный технический результат достигается тем, что осуществляют подачу насыщенного или перегретого пара при первоначальном давлении в насосно-компрессорную трубу (НКТ), которая предварительно размещена в скважине нефтенасыщенного пласта. Измеряют температуру пара на выходе из насосно-компрессорной трубы во времени и определяют величину теплового потока от скважины в пласт. После достижения массового паросодержания на выходе из затрубного пространства, отличного от нуля, рассчитывают оптимальный расход пара во времени, обеспечивающий компенсацию теплового потока от скважины в пласт тепловой энергией, выделяемой паром в результате фазового перехода. Далее, уменьшают текущий расход пара до рассчитанного оптимального значения путем уменьшения первоначального давления до величины, при которой значение температуры пара на выходе из насосно-компрессорной трубы сохраняется постоянным.

Используемый пар может быть водяным.

Измерение температуры пара возможно осуществлять постоянно и непрерывно или периодически.

Дополнительно измеряют давление пара на выходе из насосно-компрессорной трубы.

Величина теплового потока от скважины в пласт может быть определена по формуле Q ( t ) = C 1 4 π λ Δ T z h o r ln ( a t r w 2 ) ,

где π - математическая константа, равная 3,14159, λ и а - теплопроводность и температуропроводность пласта, ΔT - разность температуры стенки скважины, определяемой из измерений температуры пара на выходе из насосно-компрессорной трубы, и температуры пласта, zhor - длина горизонтальной части скважины, t - время предварительного прогрева, rw - радиус скважины, С1 - безразмерная константа, имеющая порядок единицы.

Предпочтительно установить первоначальное давление закачки максимально возможным.

Заявленное изобретение поясняется следующим чертежом и таблицей:

Фиг.1. Интенсивность теплового потока в пласт,

Таблица 1. Температура между скважинами, °C.

Заявленный способ предусматривает измерение температуры насыщенного пара в скважине. Тепловой поток от поверхности скважины в пласт рассчитывается по аналитической формуле с использованием измеренной температуры пара и теплофизических свойств пласта. Расход пара, требующийся для поддержания оптимального режима работы, рассчитывается на основе энергетического баланса. Оптимальная продолжительность предварительного прогрева рассчитывается по аналитической формуле с использованием теплофизических свойств пласта.

Представленная последовательность операций обеспечивает информацию о расходе пара, требующемся для оптимального прогрева при добыче методом ПГД, и продолжительности предварительного прогрева, принимая во внимание теплофизические свойства пласта.

Основные параметры этой модели: теплопроводность и объемная теплоемкость пласта, удельная теплота конденсации пара, массовое паросодержание, плотность воды, разность температур пара и пласта, радиус и длина скважины.

На начальном этапе (как правило, это 1-7 суток, в зависимости от теплофизических свойств пласта) расход закачиваемого пара должен быть настолько высок, насколько это возможно. Возможно применение как перегретого, так и насыщенного пара. На этом этапе из-за ограничений, налагаемых закачиванием скважины (физические свойства трубы, местные сопротивления и пр.), расход пара ниже (и составляет первоначальное давление) требующегося для оптимального режима, и вследствие этого, пар конденсируется в насосно-компрессорной колонне.

Для управления, т.е. контроля над этим процессом используется комплект датчиков температуры, установленных по длине скважин для определения температуры пара в скважинах. В качестве датчиков температуры могут быть использованы DTS-датчики (Distributed Temperature Sensors - распределенные датчики температуры) или обычные датчики температуры, установленные вдоль нагнетательной скважины. Измерение температуры может осуществляться непрерывно и постоянно, либо измеряться периодическим образом. Периодичность измерения будет зависеть, в частности, от значения вязкости добываемой нефти, свойств пласта, длительности прогрева, и может составлять, например, от 1 до 10 раз в сутки.

Так как минимум один датчик температуры на выходе насосно-компрессорной колонны позволяет контролировать приблизительно постоянную температуру пара в затрубном пространстве, чтобы поддерживать постоянную интенсивность прогрева пласта.

В момент начала реализации способа осуществляют прокачивание пара через НКТ. Поскольку пласт еще не прогрет, происходит конденсация пара в НКТ.

В тот момент времени, когда пар достигает выхода насосно-компрессорной колонны, он будет находиться при температуре насыщения, и при однозначно соответствующему этой температуре значению давления в каждой точке скважины. Возможно дополнительно осуществлять контроль за состоянием пара путем установки датчиков давления на выходе из насосно-компрессорной трубы, в качестве которых могут быть использованы, например, датчики, указанные в [Chalifoux G.V., Taylor R.M. Reservoir Monitoring Methods and Installation Practices // Canadian Association of Drilling Engineers newsletter, 2007. N.2. P.2-5].

Для оценки теплового потока могут быть использованы различные известные методы, в частности, может использоваться аналитическая оценка теплового потока от цилиндрической поверхности скважины в пласт. Температура стенки скважины может быть рассчитана с использованием температуры насыщенного пара.

Q ( t ) = C 1 4 π λ Δ T z h o r ln ( a t r w 2 ) , ( 1 )

где λ и а - теплопроводность и температуропроводность пласта, Δt - разность температуры стенки скважины и температуры пласта, zhor - длина горизонтальной части скважины, t - время предварительного прогрева, rw - радиус скважины, С1 - безразмерная константа, имеющая порядок единицы. На Фиг.1 показано сравнение между величинами теплового потока от скважины в пласт Q(t) для Cl=1,4, полученными с использованием аналитической [λ=3 Вт/(м·К), Ср.=1900 кДж/(м3·K)] (2) и численной (1) моделей.

Чтобы обеспечить эффективный прогрев пласта, критически важно поддерживать достаточное количество пара, создающего тепловой поток (1). Тепло в основном доставляется в пласт с теплотой конденсации пара. Используя разность значений массового паросодержания на входе насосно-компрессорной трубы и на выходе из затрубного пространства (значение на выходе должно быть больше нуля и зафиксировано на относительно малой величине ≈0,1), можно рассчитать расход пара W(t), необходимый для оптимального режима работы.

W ( t ) = Q ( t ) L Δ χ , ( 2 )

L - удельная теплота конденсации пара, Δ χ = χ 0 χ 1 , χ 0 - массовое паросодержание на входе насосно-компрессорной колонны, χ 1 - массовое паросодержание на выходе из затрубного пространства ( χ 1 >0).

Таким образом, существенно важно, что расчет оптимального расхода пара во времени после достижения массового паросодержания на выходе из затрубного пространства, отличного от нуля, должен происходить с учетом условия, что тепловой поток от скважины в пласт будет компенсирован тепловой энергией, выделяемой паром в результате фазового перехода.

В процессе прогрева пласта, при сохранении постоянными всех прочих условий, количество тепла, которое содержится в паре, будет требоваться все меньше и меньше, т.е. не будет необходимости прокачивать все тот же объем пара. Таким образом, возможно осуществление контролируемого уменьшения объема (расхода) закачиваемого теплоносителя при сохранении температуры теплоносителя на выходе из затрубного пространства НКТ (и, соответственно, температуры стенки скважины) на приблизительно постоянном значении, соответствующем насыщенному состоянию пара.

Расход пара можно изменять посредством изменения давления закачки пара при условии, что температура на выходе из насосно-компрессорной трубы будет оставаться постоянной. Уменьшение давления закачки пара приведет к меньшим величинам расхода пара, в результате чего и будет достигаться заявленная оптимизация процесса. Как один из вариантов реализации способа предполагается, что в начале процесса предварительного прогрева давление закачки пара должно быть настолько высоким, насколько это возможно.

Вместе с тем, оптимальная продолжительность предварительного прогрева определяется с использованием аналитической формулы, в зависимости от теплофизических свойств пласта.

t p r e h C 2 h 2 λ C p , ( 3 )

где h - половина расстояния между скважинами, Ср - объемная теплоемкость пласта, С2 - безразмерная константа ≈1, зависящая от выбранной температуры пласта в конце процесса предварительного прогрева. Промежутки времени, необходимые для предварительного прогрева зоны между скважинами до температуры, например, Т=80 градусов Цельсия, рассчитаны аналитически по формуле (3) (при C2=1,1) и представлены в табл.1. C2 зависит от начальной температуры пласта и температуры между скважинами, требующейся для получения подвижности нефти в межскважинной зоне.

Таблица 1
Теплопроводность, Вт/(м·K) Объемная кДж/(3·K) Время прогрева, сутки
Численная
Время прогрева, сутки
Аналитическая модель
1.5 1600 100 97
2.5 1700 69 70
3 1900 61 57
4 2250 53 51
5 2500 46 45

Пример реализации способа

Способ был реализован посредством численного моделирования, выполненного с использованием коммерческого гидродинамического симулятора, и следующих параметров одного из месторождений тяжелой нефти в битуминозных песках Атабаски.

Так, первоначальное давление в пласте =10 бар,

первоначальная температура пласта =5°С,

массовое паросодержание на входе =0,8,

теплопроводность пласта =3 Вт/м/K,

теплопроводность перекрывающих пород =2,1 Вт/(м·K),

объемная теплоемкость пласта =1900,0 кДж/(м3·С),

объемная теплоемкость перекрывающих пород =2500 кДж/(м3·С),

начальная нефтенасыщенность =0,76,

остаточная нефтенасыщенность =0,127,

вязкость нефти при начальных условиях в пласте 1600 Па·с,

вязкость нефти при температуре пара 0,015 Па·с.

Параметры нагнетательной скважины: длина горизонтальной части 500 м, значения внутреннего и наружного диаметра затрубного пространства и насосно-компрессорной трубы (НКТ):внутренний диаметр НКТ - 3 дюйма (7,62 см), наружный диаметр НКТ - 3,5 дюйма (8,89 см), внутренний диаметр обсадной трубы - 8,625 дюйма (21,91 см), наружный диаметр обсадной трубы - 9,5 дюйма (24,13 см). Теплоемкость НКТ / обсадной трубы - 1,5 кДж/(кг·K), теплопроводность НКТ/обсадной трубы - 45 Вт/(м·K), эффективная шероховатость стенки скважины - 0,001 м.

Предварительно провели расчет оптимальной продолжительности предварительного прогрева с использованием формулы (3). Такая продолжительность составила 60 суток. Реализуя способ, осуществляли постоянное измерение температуры пара на выходе из насосно-компрессорной трубы, которая достигла температуры насыщения, равной 180°C через 5 суток. Давление насыщения, соответствующее данному значению температуры, составило 1,0 МПа.

По окончании первоначального этапа оптимальный расход закачиваемого пара W(t) определяется по формуле (2) и обеспечивается постепенным уменьшением давления закачки пара.

1. Способ предварительного прогрева нефтенасыщенного пласта, включающий подачу насыщенного или перегретого пара при первоначальном давлении в насосно-компрессорную трубу, размещенную в скважине нефтенасыщенного пласта, измерение температуры пара во времени на выходе из насосно-компрессорной трубы с последующим определением величины теплового потока от скважины в пласт во времени и расчетом оптимального расхода пара во времени после достижения массового паросодержания на выходе из затрубного пространства, отличного от нуля, которое обеспечивает компенсацию теплового потока от скважины в пласт тепловой энергией, выделяемой паром в результате фазового перехода, уменьшение текущего расхода пара до оптимального значения путем уменьшения первоначального давления до величины, при которой значение температуры пара на выходе из насосно-компрессорной трубы сохраняется постоянным.

2. Способ по п.1, отличающийся тем, что пар является водяным.

3. Способ по п.1, отличающийся тем, что измерение температуры осуществляют постоянно и непрерывно.

4. Способ по п.1, отличающийся тем, что измерение температуры осуществляют периодически.

5. Способ по п.1, отличающийся тем, что дополнительно измеряют давление пара на выходе из насосно-компрессорной трубы.

6. Способ по п.1, отличающийся тем, что величину теплового потока от скважины в пласт определяют по формуле
,
где
Q(t) - тепловой поток от скважины в пласт;
С1 - безразмерная константа;
π - математическая константа, равная 3,14159;
λ - теплопроводность пласта, Вт/(м·К);
ΔT - разность температуры стенки скважины и температуры пласта, К;
zhor - длина горизонтальной части скважины, м;
a - температуропроводность пласта, м2/с;
t - время предварительного прогрева, с;
rw - радиус скважины, м.

7. Способ оптимизации по п.1, отличающийся тем, что первоначальное давление закачки устанавливают максимально возможным.



 

Похожие патенты:

Изобретение относится к извлечению углеводородов из коллектора. Технический результат - повышение производительности добычи углеводородов.

Группа изобретений относится к системам и способам для добычи продукции из подземных пластов. Способ нагрева подземного пласта включает подведение тепла от множества нагревателей по меньшей мере к одному участку подземного пласта путем циркуляции теплопереносящей текучей среды через по меньшей мере один трубопровод по меньшей мере в одном из указанных нагревателей.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления призабойной зоны.

Изобретение относится к области газовой и нефтяной промышленности и, в частности, к разработке месторождений - залежей газовых гидратов. Обеспечивает повышение эффективности добычи газа из газогидратных залежей.

Изобретение относится к нефтедобывающей промышленности. Технический результат - эффективное вытеснение битума и увеличение извлекаемых запасов за счет стабилизации теплового воздействия на пласт, возможности контроля за распределением теплоносителя в пласте и под пластом, а также за счет увеличения охвата пласта тепловым воздействием.

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяного месторождения с залежами вязкой или высоковязкой и сверхвязкой нефти, совпадающими полностью или частично в структурном плане.

Изобретение относится к нефтяной промышленности. Технический результат - исключение обводненности пласта и отбираемой нефти, возможность реализации способа на месторождении битума с пластами толщиной до 5-7 м, равномерность выработки месторождения, увеличение коэффициента вытеснения нефти из пласта.

Группа изобретений относится к способу и системам регулирования температуры текучих сред, добываемых из коллектора для предотвращения перегрева смежного геологического пласта.

Изобретение относится к нефтяной промышленности. Технический результат - повышение нефтеотдачи пласта, снижение обводненности продукции, уменьшение объемов закачки вытесняющего агента, поддержание пластового давления и температуры в стволе добывающей скважины.

Изобретение относится к разработке нефтяных месторождений. Технический результат - повышение эффективности добычи высоковязкой и тяжелой нефти термическим воздействием.
Изобретение относится к разработке залежи сверхвязкой нефти с применением тепла для разогрева продуктивного пласта. Обеспечивает увеличение эффективности разработки залежи сверхвязкой нефти за счет улучшения проницаемости для сверхвязкой нефти в зоне пласта вблизи горизонтального ствола добывающей скважины, а также снижение энергетических затрат на реализацию способа. Сущность изобретения: способ включает бурение пары горизонтальных верхней нагнетательной и нижней добывающей скважин, горизонтальные участки которых размещены параллельно один над другим в вертикальной плоскости, прогрев пласта закачкой пара в обе скважины с образованием паровой камеры, разогрев межскважинной зоны пласта, снижение вязкости сверхвязкой нефти, закачку пара в верхнюю горизонтальную нагнетательную скважину и отбор продукции из нижней горизонтальной добывающее скважины. Согласно изобретению прогревают пласт закачкой пара в обе скважины до стабилизации величины паронефтяного отношения. После этого поочередно используют три режима разработки залежи сверхвязкой нефти. Первый режим включает закачку пара в нагнетательную скважину и выдержку его в пласте в течение 48-72 часов. Второй режим включает закачку в добывающую скважину пропиленгликоля из расчета 5 м3 на 100 м горизонтального участка добывающей скважины с содержанием основного вещества не менее 98% с выдержкой в пласте в течение 12-24 часов и одновременной циркуляцией водяного пара в нагнетательной скважине. Третий режим включает добычу высоковязкой нефти из добывающей скважины до возрастания величина паронефтяного отношения в 1,5 раза. 1 пр.

Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение отбора продукции пласта и коэффициента извлечения нефти по месторождению без больших затрат на прогрев зон пласта, не охваченных прогревом и добычей. Способ разработки месторождения высоковязких нефтей или битумов включает строительство пар расположенных друг над другом горизонтальных добывающих и нагнетательных скважин, а также вертикальных наблюдательных скважин, закачку теплоносителя через нагнетательные скважины с прогревом продуктивного пласта и созданием паровой камеры, отбор продукции за счет парогравитационного дренажа через добывающие скважины и контроль за состоянием паровой камеры, при этом разработку месторождения сверхвязкой нефти ведут с регулированием текущего размера паровой камеры путем изменения объемов закачки теплоносителя в нагнетательные скважины и отбора жидкости из добывающих скважин с контролем объема паровой камеры. Наблюдательные скважины вскрывают ниже нижней добывающей горизонтальной скважины как минимум на 0,5 м, но выше уровня водонефтяного контакта ВНК на 0,5÷1 м. Дополнительно строят скважину между близлежащими парами горизонтальных скважин. Если площадь распространения паровой камеры в продуктивном пласте меньше расстояния между парами добывающих и нагнетательных скважин, то строят дополнительную горизонтальную скважину, если больше - то вертикальную, при этом дополнительные скважины вскрывают ниже нижней добывающей горизонтальной скважины как минимум на 0,5 м, но не ниже уровня ВНК более чем на 0,5 м. Производят прогрев теплоносителем дополнительных скважин до создания термогидродинамической связи с близлежащими парами горизонтальных скважин с последующим переводом на отбор продукции для обеспечения симметричного и равномерного распространения паровой камеры вокруг пар горизонтальных скважин. В качестве теплоносителя используется перегретый пар или пар с углеводородным растворителем, или пар с инертным газом. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, а конкретно к пороховым генераторам давления, и может быть использовано для интенсификации добычи нефти и газа. Обеспечивает повышение эффективности воздействия на продуктивные пласты и предотвращение выброса из скважины добываемого продукта. Сущность изобретения: по способу в предварительно заглушенную скважину спускают колонну насосно-компрессорных труб с приемной воронкой внизу. Воронка выполнена в виде отрезка трубы с внутренним конусом, меньший диаметр которого равен внутреннему диаметру насосно-компрессорных труб, а больший - меньше минимального проходного сечения скважины. Над приемной воронкой выше продуктивного пласта устанавливают и активируют пакер. Трубную задвижку фонтанной арматуры закрывают, устанавливают выше трубной задвижки лубрикатор с пороховым генератором давления. Геофизический кабель пропускают через сальниковое устройство, установленное выше лубрикатора. Закрывают вентиль выравнивания давления, открывают трубную задвижку. После этого спускают пороховой генератор давления на геофизическом кабеле ниже приемной воронки в интервал продуктивного пласта скважины. На спирали накаливания, установленные в пороховых зарядах, по геофизическому кабелю подают напряжение. Пороховые заряды воспламеняют, обеспечивают механическое, тепловое и физико-химическое воздействие на продуктивный пласт. После обработки продуктивного пласта делают временную выдержку. Затем на геофизическом кабеле несгоревшие части порохового генератора давления через приемную воронку поднимают в лубрикатор, перекрывают трубную задвижку, открывают вентиль выравнивания давления. Внутри лубрикатора давление выравнивают с атмосферным и отсоединяют лубрикатор. При этом приемную воронку выполняют с возможностью предохранения пакера во время горения пороховых зарядов, а временную выдержку после обработки продуктивного пласта принимают не менее пяти минут. 3 ил.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение нефтеотдачи нефтяной залежи, снижение вязкости нефти и увеличение коэффициента охвата пласта. В способе разработки нефтяной залежи тепловым и водогазовым воздействием, включающем бурение на участке нефтяной залежи добывающих и нагнетательных скважин, закачку через нагнетательные скважины водогазовой смеси и теплоносителя, отбор продукции через добывающие скважины, бурят вертикальные добывающие и нагнетательные скважины по рядной системе разработки, по данным бурения которых предварительно проводят расчеты оптимальных параметров закачки на тепловой гидродинамической модели. Соотношение рядов вертикальных добывающих скважин к нагнетательным выполняют как 2:1. Между рядами вертикальных добывающих скважин, где отсутствует ряд вертикальных нагнетательных скважин, бурят горизонтальные нагнетательные скважины. Горизонтальные стволы располагают параллельно друг другу и выполняют длиной (1,4-2,8)·а, где а - расстояние между вертикальными скважинами. Горизонтальные нагнетательные скважины оборудуют забойными нагревателями и ведут закачку в пласты, залегающие на глубине 700 м и более, горячей воды с температурой не менее 95°C на устье и под давлением закачки (0,45-0,85)·Рг, где Рг - вертикальное горное давление пород, а в пласты, залегающие на глубине менее 700 м, - закачку водяного пара при температуре на устье не менее 200°C и степени сухости пара 0,6-0,8. В каждую вертикальную нагнетательную скважину ведут закачку водогазовой смеси, состоящей из воды и попутного нефтяного газа, с расходом Qг=Vг/N+Qв, м3/сут, где Vг - объем добываемого попутного нефтяного газа с участка в сутки, м3, N - число вертикальных нагнетательных скважин, Qв - расход закачиваемой воды в вертикальные нагнетательные скважины, обеспечивающий 100%-ную текущую компенсацию отбора закачкой на участке, м3/сут. 2 пр., 1 ил.

Изобретение относится к нефтеперерабатывающей промышленности. Технический результат - повышение степени извлечения вязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости призабойной зоны пласта закачивают глинистый буровой шлам, содержащий глинистые частицы - катализатор разложения пероксида водорода и частицы песка, обеспечивающие проницаемость катализаторной подушки, или суспензию смеси, содержащую, мас.%: катализатор разложения пероксида водорода - порошок оксида двух- или трех-, или четырехвалентного металла 20-50, песок или пропант остальное. Затем производят закачку в пласт одновременно 10,0-50,0%-ного водного раствора пероксида водорода и 1,0-30,0%-ного водного раствора или суспензии бикарбоната щелочного металла и/или бикарбоната аммония, затем буфера воды из системы поддержания пластового давления с последующей откачкой нефти. 5 табл., 5 пр.
Изобретение относится к нефтяной промышленности, в частности к способам разработки нефтяных залежей с трудноизвлекаемыми запасами нефти с использованием тепловых методов воздействия на залежь. Технический результат - повышение эффективности способа при разработке залежей с нефтями нормальной и высокой вязкости за счет создания области необходимой нефтенасыщенности, снижения расхода топлива на поддержание процесса горения, более полного использования окислителя и безопасности проведения процесса разработки залежи с неоднородными и трещиноватыми пластами, увеличение охвата зоны пласта процессом горения и вытеснения. В способе разработки нефтяной залежи, содержащей трудноизвлекаемые запасы нефти путем закачки в нагнетательные скважины оторочек окислителя и воды и отбор нефти посредством добывающих скважин, перед закачкой окислителя в пласт закачивают водный раствор средней соли угольной кислоты с водорастворимым полимером акрилового ряда и кислотный раствор. Кроме того, закачку в пласт средней соли угольной кислоты с водорастворимым полимером акрилового ряда и кислотного раствора производят попеременно циклами для получения необходимого объема оторочки. В случае прорыва газа в добывающие скважины производят изоляцию высокопроницаемых интервалов пласта. 2 з.п. ф-лы.

Изобретение относится к области разработки нефтяных месторождений и в частности к термошахтным способам добычи высоковязкой нефти. Обеспечивает снижение затрат на проходку горных выработок и улучшение температурного режима в горных выработках. Сущность изобретения: способ включает проходку буровой галереи в нижней части или ниже нефтяного пласта, закачку теплоносителя и отбор нефти через подземные пологонаклонные, крутонаклонные и вертикальные скважины, закачку вытесняющего агента после прогрева пласта до оптимальной температуры. При этом пологонаклонные скважины с отводами чередуют с пологонаклонными скважинами без отводов. В начальный период ведут закачку теплоносителя через пологонаклонные скважины без отводов, а отбор нефти ведут через пологонаклонные скважины с отводами. После прогрева пласта до оптимальной температуры ведут закачку вытесняющего агента через пологонаклонные скважины с отводами, а отбор нефти ведут через пологонаклонные скважины без отводов. 4 ил.

Изобретение относится к нефтяной промышленности и может найти применение при разработке неоднородного нефтяного месторождения. Технический результат - увеличение охвата неоднородного месторождения воздействием, снижение обводненности добываемой продукции, выравнивание проницаемости месторождения, повышение коэффициента конечной нефтеотдачи. В способе разработки неоднородного нефтяного месторождения, включающем бурение нагнетательных и добывающих скважин, закачку теплоносителя через нагнетательные скважины и отбор продукции через добывающие скважины, закачку в пласт водного изолирующего агента порциями различной концентрации для селективной изоляции нагнетательных скважин, производят выделение зон различной проницаемости вокруг нагнетательной скважины при помощи термометрии с определением площади зон с близкой температурой, причем селективную изоляцию производят оторочками с различной концентрацией изолирующего агента, так как для заполнения больших по площади зон закачивают изолирующий агент с большей концентрацией, а меньших по площади зон - с меньшей концентрацией пропорционально площади этих зон в горизонтальной проекции для выравнивания проницаемости месторождения. 2 ил., 2 пр.

Группа изобретений относится к области нефтедобывающей промышленности и, в частности, к разработке нефтяных или битумных месторождений, освоению и ремонту скважин. Обеспечивается повышение эффективности освоения скважин высоковязкой нефти или битума посредством свабирования. Сущность изобретения: способ свабирования скважины с вязким флюидом включает этапы, на которых: предварительно опускают свабирующее устройство до границы с вязким флюидом с предварительно заданной температурой не менее 40°C и не более 100°C; погружают его под уровень вязкого флюида с предварительно заданной скоростью не менее 0,3 м/с и не более 1 м/с; подают непосредственно от наземного оборудования с помощью геофизического кабеля к свабирующему устройству электрическую энергию, которую затем подводят через кабельный наконечник посредством канала электрической энергии к нижней части свабирующего устройства; преобразуют с помощью расположенного в нижней части свабирующего устройства преобразователя электрической энергии в тепловую электрическую энергию в тепловую и передают ее под уровень вязкого флюида, осуществляя его локальный нагрев до температуры разжижения флюида с одновременным спуском свабирующего устройства; при этом скорость спуска и температуру скважинного флюида контролируют на всем протяжении спуска свабирующего устройства; при отклонении скорости погружения свабирующего устройства и температуры от заданных значений регулируют количество электрической энергии, подаваемой с поверхности; осуществляют отбор вязкого флюида и подъем его на поверхность при помощи свабирующего устройства. 2 н. и 15 з.п. ф-лы, 1 ил.

Изобретение относится к разработке нефтяных месторождений. Технический результат - повышение эффективности разработки залежи. В способе разработки залежи высоковязкой и тяжелой нефти сначала бурят одну вертикальную добывающую скважину. На расстоянии 30 м от нее бурят наблюдательную скважину, спускают в наблюдательную скважину сейсмоприемник, обвязанный на устье с цифровой регистрирующей аппаратурой, осуществляют регистрацию сейсмических колебаний в добывающей скважине. Производят гидроразрыв пласта в добывающей скважине. По результатам обработки сейсмических сигналов определяют направление развития трещины и ее размеры по азимуту. С двух сторон от трещины гидроразрыва, образованной из добывающей скважины, и на расстоянии 15 м от оси трещины и параллельно ей бурят по одному ряду вертикальных нагнетательных скважин с расстоянием 15 м между скважинами. В добывающую скважину спускают насосное оборудование. В каждую нагнетательную скважину спускают электронагревательное оборудование на кабеле. Осуществляют одновременное прогревание пласта через нагнетательные скважины и отбор разогретой нефти из добывающей скважины до полной выработки. Затем добывающую скважину переводят в наблюдательную. Параллельно стволу наблюдательной скважины, переведенной из добывающей скважины, на расстоянии 30 м бурят вторую добывающую скважину. Затем процесс, описанный выше, повторяют, начиная со спуска в наблюдательную скважину сейсмоприемника. При отклонении оси трещины, образованной из второй добывающей скважины, от параллельного направления к оси трещины, образованной из первой добывающей скважины, на угол 15° и менее для выработки призабойной зоны второй добывающей скважины используют существующий ряд нагнетательных скважин, дополнительный ряд бурят параллельно оси трещины, образованной из второй добывающей скважины. При отклонении оси трещины, образованной из второй добывающей скважины, от параллельного направления к оси трещины, образованной из первой добывающей скважины, на 15° и более для выработки призабойной зоны второй добывающей скважины бурят новый ряд нагнетательных скважин параллельно оси трещины, образованной из второй добывающей скважины, на расстоянии 15 м от нее и ликвидируют скважины существующего ряда нагнетательных скважин, находящиеся на расстоянии более 20 м и менее 10 м от оси трещины, образованной из второй добывающей скважины. 2 ил.
Наверх