Коррозионностойкая мартенситностареющая сталь


 


Владельцы патента RU 2532785:

Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко" (RU)

Изобретение относится к области металлургии, а именно к производству высокопрочных коррозионностойких мартенситностареющих сталей, используемых в энергетическом машиностроении для изготовления высоконагруженных упругих металлических уплотнений разъемных соединений энергетических установок, работающих в агрессивных средах при температурах от 20 до 723K. Сталь содержит компоненты в следующем соотношении, мас.%: углерод до 0,03, азот до 0,02, хром 9,3-10,5, никель 7,0-8,5, молибден 1,2-3,0, кобальт 3,5-7,0, ванадий 0,1-0,3, вольфрам 0,05-0,2, марганец 0,05-0,15, кремний 0,05-0,15, кальций 0,001-0,05, церий 0,001-0,05, ниобий 0,05-0,15, титан 0,01-0,08, иттрий 0,001-0,05, железо остальное. Повышается структурная стабильность и сопротивление водородной хрупкости изготавливаемых упругих металлических уплотнений криогенной техники, что обеспечивает требуемую высокую герметичность разъемных фланцевых соединений энергетических установок, в частности, жидкостных ракетных двигателей (ЖРД) с криогенными компонентами топлива. 2 табл.

 

Изобретение относится к металлургии, а именно к производству высокопрочных коррозионностойких мартенситностареющих сталей, и может быть использовано в энергетическом машиностроении для изготовления высоконагруженных упругих металлических уплотнений разъемных соединений энергетических установок, работающих в агрессивных средах при температурах от 20 до 723K.

Упругие металлические уплотнения разъемных фланцевых соединений агрегатов жидкостных ракетных двигателей (ЖРД) с криогенными компонентами топлива работают в сложных условиях динамических и вибрационных нагрузок, высоких контактных давлений, воздействия агрессивной среды и криогенных температур. Этим условиям в наибольшей степени отвечают коррозионностойкие мартенситностареющие стали, имеющие требуемое сочетание прочности, пластичности, вязкости разрушения, упругости, хладостойкости, коррозионной стойкости и сопротивления водородной хрупкости. Последнее особенно важно для уплотнений, работающих в водородсодержащих средах (жидком и газообразном водороде), а также при нанесении мягких герметизирующих покрытий гальваническим способом, при котором происходит насыщение металла диффузионно-подвижным водородом.

Известна высокопрочная коррозионностойкая мартенситностареющая пружинная сталь марки 04Х14К13Н4М3ТБВ-ВД (ЭП767-ВД) следующего химического состава, масс.%:

Углерод до 0,04
Хром 13,5-15,0
Никель 3,8-4,8
Молибден 2,6-3,2
Кобальт 13,0-14,0
Титан 0,2-0,5
Вольфрам 0,15-0,3
Церий до 0,01
Марганец до 0,2
Кремний до 0,02
Железо остальное

(Металловедение и термическая обработка стали и сплавы; справ, изд. Т.II. Основы термической обработки / Под ред. М.Л. Берштейна., А.Г. Рахштадта. М.: Металлургия, 1983. 368 с.).

После закалки, холодной пластической деформации, обработки холодом и старения известная сталь имеет высокие характеристики прочности, релаксационной стойкости и сопротивления малым пластическим деформациям (предел упругости σ0,005=1130 МПа). Однако эта сталь имеет неудовлетворительный порог хладноломкости, что не позволяет использовать ее в ответственных конструкциях криогенной техники.

Известна коррозионностойкая сталь мартенситного класса марки 03Х12Н10МТР-ВД (ЭП810-ВД) со слабым эффектом упрочнения при старении, работоспособная в интервале температур от 20 до 723K. Сталь имеет следующий химический состав, масс.%:

Углерод до 0,03
Хром 11,5-12,5
Никель 9,0-10,3
Молибден 0,5-0,8
Кобальт 0,15-0,25
Титан до 0,2
Вольфрам до 0,1
Церий до 0,003
Марганец до 0,25
Кремний до 0,25
Железо остальное

(Коррозионностойкие, жаростойкие и высокопрочные стали и сплавы; справ, изд. / А.П. Шлямнев и др. - М.: "Проммет-сплав", 2008. 336 с.).

Недостатком известной стали, имеющей структуру безуглеродистого слабопересыщенного α-твердого раствора, является низкий уровень прочностных и упругих свойств (σв=950-1050 МПа, σ0,2=800-900 МПа, σ0,005=700-800 МПа), что связано с ограниченными возможностями упрочнения ОЦК-решетки мартенсита, склонной к хладноломкости.

Для решения проблемы "прочность - хладноломкость" в криогенной технике применяют высокопрочные коррозионностойкие мартенситно-стареющие стали переходного аустенитно-мартенситного класса с двухфазным (ОЦК+ГЦК)-строением. Наличие в структуре этих сталей до 30-40% пластичной аустенитной фазы с ГЦК-решеткой позволяет эффективно использовать известные способы твердорастворного и дисперсионного упрочнения, при этом сохраняется высокое сопротивление хладноломкости.

В частности, известна коррозионностойкая мартенситно-стареющая сталь аустенитно-мартенситного класса следующего химического состава, масс.% (патент РФ №2275439, C22C 38/52):

Углерод до 0,05
Хром 11,2-12,5
Никель 7,0-8,0
Кобальт 5,6-7,0
Молибден 3,7-4,5
Ниобий до 0,5
Алюминий до 0,05
Марганец до 0,2
Кремний до 0,2
Кальций до 0,05
Церий до 0,1
Барий до 0,02
РЗМ до 0,15
Железо остальное

Данная сталь имеет высокие значения предела прочности в сочетании с высокой ударной вязкостью при 20K: σв=1350-1500 МПа, KCV=0,3-0,5 МДж/м2. Однако она имеет низкое сопротивление малым пластическим деформациям (низкие упругие свойства) и склонна к охрупчиванию в водородсодержащих средах, что характерно для сталей переходного класса с нестабильным остаточным аустенитом.

Наиболее близким техническим решением является коррозионностойкая мартенситностареющая сталь мартенситного класса с регулируемым мартенситным превращением, работоспособная в интервале температур от 20 до 723K (патент РФ №2169790, C22C 38/00). Сталь имеет следующий химический состав, масс.%:

Углерод 0,01-0,04
Хром 9,5-13,5
Никель 6,0-9,0
Молибден 0,8-4,0
Кобальт 2,5-7,8
Марганец 0,1-0,9
Кремний 0,1-0,75
Ванадий 0,03-0,3
Азот 0,01-0,08
Кальций 0,001-0,05
Церий 0,001-0,05
Вольфрам 0,02-0,3
Железо остальное

Принципиальной особенностью сталей этого класса является способ формирования требуемого структурного состояния - путем трансформации исходной мартенситной структуры в двухфазную аустенитно-мартенситную структуру в процессе специальной термоциклической обработки. Формируемая таким образом аустенитная фаза (вторичный ревертированный аустенит обратного α→γ мартенситного превращения) имеет повышенную прочность и деформационную устойчивость, что связано с особым субмикрокристаллическим строением и фазовым наклепом ревертированного аустенита, а также с высокой энергией упругого межфазового взаимодействия ОЦК- и ГЦК-кристаллов в составе аустенитно-мартенситной структуры.

Недостатком известной стали является наличие в фазовом составе, наряду со стабильным вторичным аустенитом, до 10-15% нестабильного остаточного аустенита, склонного к мартенситному превращению при пластическом деформировании в криогенных средах. Это вызвано повышенным содержанием в химическом составе аустенитообразующих элементов, прежде всего элементов внедрения (азота и углерода). Наличие нестабильного остаточного аустенита ухудшает упругие характеристики и релаксационную стойкость сплава. Кроме того, для уплотнений с герметизирующими гальваническими покрытиями в процессе эксплуатации возможно появление в структуре металла хрупкой пересыщенной водородом α-фазы, являющейся продуктом превращения нестабильного аустенита, что может привести к отслоению покрытия и нарушению герметичности разъемных соединений энергетических установок.

Задача изобретения - создание высокопрочной коррозионностойкой мартенситностареющей стали, имеющей высокую структурную стабильность и не склонную к водородной хрупкости при использовании в высоконагруженных упругих металлических уплотнениях с герметизирующими гальваническими покрытиями, что позволяет обеспечить высокую работоспособность и герметичность разъемных соединений энергетических установок, эксплуатируемых при температурах от 20 до 723K.

Задача решена за счет того, что коррозионностойкая мартенситностареющая сталь, содержащая углерод, азот, хром, никель, молибден, кобальт, ванадий, вольфрам, марганец, кремний, кальций, церий и железо, дополнительно содержит ниобий, титан и иттрий при следующем соотношении компонентов, масс.%:

Углерод до 0,03
Азот до 0,02
Хром 9,3-10,5
Никель 7,0-8,5
Молибден 1,2-3,0
Кобальт 3,5-7,0
Ванадий 0,1-0,3
Вольфрам 0,05-0,2
Марганец 0,05-0,15
Кремний 0,05-0,15
Кальций 0,001-0,05
Церий 0,001-0,05
Ниобий 0,05-0,15
Титан 0,01-0,08
Иттрий 0,001-0,05
Железо Остальное

В химическом составе предложенной стали содержится минимальное количество примесей внедрения углерода и азота, которые ухудшают хладноломкость ОЦК-решетки мартенсита, а также приводят к появлению нежелательных карбонитридных фаз.

Концентрация хрома в пределах 9,3-10,5% обеспечивает требуемую коррозионную стойкость, а концентрация никеля в пределах 7,0-8,5% - требуемое сопротивление хладноломкости криогенной стали.

Совместное легирование молибденом и кобальтом в заданных пределах упрочняет сталь при старении в результате распада пересыщенного α-твердого раствора с появлением зон предвыделения интерметаллидной R-фазы состава хром-железо-молибден. Такого рода дисперсионное упрочнение, в отличие от упрочнения интерметаллидной фазой состава Ni3(Ti, Al), не сопровождается обеднением мартенситной матрицы никелем, что позволяет сохранить высокую хладостойкость α-мартенсита.

Добавки ванадия и вольфрама, а также дополнительное легирование ниобием в количестве 0,05-0,15% и титаном в количестве 0,01-0,08%, необходимы для уменьшения диффузионной подвижности углерода в твердом растворе, что предотвращает образование в процессе термоциклической обработки нежелательных вторичных карбидных фаз состава Cr23C6. Кроме того, ниобий и титан повышают порог рекристаллизации аустенитной фазы, тем самым сохраняется фазовый наклеп и высокая прочность вторичного (ревертированного) аустенита. Более высокое содержание ниобия и титана может привести к загрязнению сплава хрупкими специальными карбидами и включениями δ-феррита.

Добавки марганца, кремния, кальция, церия и иттрия необходимы для качественного раскисления, рафинирования и модифицирования расплава в процессе выплавки. Легирование иттрием в количестве 0,001-0,05% позволяет дополнительно очистить границы зерен от вредных примесей, а также измельчить исходное кристаллическое строение металла.

Химический состав сбалансирован по суммарному количеству аустенито- и ферритообразующих элементов таким образом, чтобы после выплавки и гомогенизации предложенная сталь имела преимущественно однофазную структуру пакетного (реечного) мартенсита с минимальным количеством остаточного аустенита (не более 5%), без включений δ-феррита и избыточных интерметаллических фаз.

Предложенную сталь выплавили в вакуумной индукционной печи с последующим вакуумно-дуговым переплавом. Химический состав исследованных плавок показан в таблице 1.

Результаты контроля механических свойств и фазового состава предложенной стали, термообработанной по режимам термоциклирования с целью тепловой стабилизации аустенитной фазы, показаны в таблице 2. Как следует из приведенных данных, сталь имеет высокие значения прочностных свойств и сопротивления хрупкому разрушению, не склонна к водородной хрупкости, не чувствительна к концентрации напряжений и имеет стабильную аустенитную фазу при испытаниях в среде жидкого водорода. Разъемные фланцевые соединения с упругими уплотнениями из предложенной стали имеют высокую герметичность при контроле по жидкому водороду и газообразному гелию.

Сталь найдет применение в ракетно-космической и уплотнительной технике, в частности в ЖРД с криогенными компонентами топлива для уплотнения разъемных соединений.

Коррозионностойкая мартенситностареющая сталь, содержащая углерод, азот, хром, никель, молибден, кобальт, ванадий, вольфрам, марганец, кремний, кальций, церий и железо, отличающаяся тем, что она дополнительно содержит ниобий, титан и иттрий при следующем соотношении компонентов, мас.%:

Углерод до 0,03
Азот до 0,02
Хром 9,3-10,5
Никель 7,0-8,5
Молибден 1,2-3,0
Кобальт 3,5-7,0
Ванадий 0,1-0,3
Вольфрам 0,05-0,2
Марганец 0,05-0,15
Кремний 0,05-0,15
Кальций 0,001-0,05
Церий 0,001-0,05
Ниобий 0,05-0,15
Титан 0,01-0,08
Иттрий 0,001-0,05
Железо Остальное



 

Похожие патенты:
Изобретение относится к области металлургии и может быть использовано для получения высокопрочной теплостойкой проволоки различных типоразмеров и листового материала.

Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным хромоникелевым сталям, применяемым при производстве высокопрочного сортового проката.
Изобретение относится к сварочным присадочным проволокам для аргонодуговой сварки неплавящимся электродом в защитных газах легированных теплоустойчивых сталей для оборудования и трубопроводов АЭС, работающих при воздействии пароводяной смеси и ионизирующего излучения.

Изобретение относится к области металлургии, а именно к получению закаленной мартенситной стали, используемой для изготовления различных конструкционных и приводных деталей.

Изобретение относится к области металлургии, а именно к высокопрочной стали, используемой для изготовления изделий, применяемых в различных областях техники. .

Изобретение относится к области металлургии, в частности к технологии получения листового проката, используемого в бронезащитных конструкциях. .

Изобретение относится к области металлургии, а именно к изготовлению сварочной проволоки для сварки жаропрочных хромистых мартенситных сталей. .

Изобретение относится к области металлургии, а именно к конструкционным сталям, используемым для корпусных конструкций атомных энергоустановок. .
Изобретение относится к сварке и касается состава сварочной проволоки для сварки и наплавки изделий, работающих при больших знакопеременных нагрузках и повышенных температурах, и может быть использовано для наплавки первого слоя кромок углеродистых и низколегированных сталей при выполнении разнородных сварных соединений со сталями аустенитного класса, преимущественно, при изготовлении сварных конструкций атомного и энергетического машиностроения.
Изобретение относится к области металлургии, а именно к составу сплава, используемого для изготовления штампового инструмента. Сплав содержит углерод, кремний, молибден, хром, вольфрам, кобальт, марганец, титан, никель, ванадий и железо при следующем соотношении компонентов, мас.%: углерод 0,20-0,30, кремний 0,40-0,80, молибден 2,00-2,50, хром 8,00-10,00, вольфрам 2,50-3,00, кобальт 1,00-1,50, марганец 1,00-1,40, титан 0,20-0,30, никель 6,00-8,00, ванадий 0,20-0,30, железо - остальное. Повышается эксплуатационная стойкость инструмента за счет увеличения твердости, теплостойкости и окалиностойкости. 1 пр.

Изобретение относится к способу получения мартенситной стали. Для повышения механических свойств и сокращения значений их разброса в стали, содержащей другие металлы, обеспечивающие её упрочнение при выделении интерметаллических соединений и карбидов, а также Al между 0,4% и 3%, указанную сталь подвергают термической обработке, включающей нагрев стали выше температуры ее аустенизации, охлаждение стали примерно до температуры окружающей среды, помещение стали в криогенную среду при температуре Т1, причем температура Т1 является более низкой, чем температура Mf мартенситного преобразования, и выдержку стали в криогенной среде с продолжительностью, по меньшей мере равной ненулевому времени t1 выдержки от момента, когда самая горячая часть стали достигла температуры ниже, чем температура Mf мартенситного преобразования, причем температура Т1 (в ºС) и время t1 выдержки (в часах) определяется уравнением Т1=ƒ(t1), причем первая производная функции ƒ по t, ƒ'(t), является положительной, и вторая производная ƒ по t, ƒ”(t), является отрицательной. 3 н. и 5 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к области металлургии, а именно к созданию высокопрочных дисперсионно-твердеющих сталей для высоконагруженных зубчатых колес и подшипников, работающих при температуре до 500°C. Сталь содержит, мас.%: углерод 0,22-0,27, кремний 0,2-0,4, марганец 0,2-0,6, хром 3,3-4,0, кобальт 8,0-9,5, никель 6,0-6,9, молибден 2,5-3,0, вольфрам 0,4-0,6, ванадий 0,20-0,24, ниобий 0,05-0,15, иттрий 0,008-0,01, лантан 0,04-0,05, церий 0,02-0,03, неодим 0,015-0,02, азот 0,03-0,04, железо - остальное. Повышаются предел текучести, ударная вязкость и теплопрочность стали при пределе прочности σB не менее 1800 МПа. 2 табл.

Изобретение относится к области металлургии. Для повышения среднего значения усталостной прочности получают мартенситную сталь, которая имеет такое содержание других металлов, что она способна упрочняться в результате выделения интерметаллических соединений и карбидов и имеет содержание Al от 0,4 до 3 мас.%. Температура горячего формования при последнем проходе горячего формования стали ниже температуры растворимости нитридов алюминия в этой стали, и температура каждой из возможных термообработок после этого последнего прохода горячего формования ниже температуры растворимости в твердом состоянии нитридов алюминия в этой стали. 4 н. и 4 з.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к области металлургии, а именно к нержавеющей стали, используемой для изготовления труб для нефтяных скважин. Сталь содержит, мас.%: С не более 0,05, Si не более 1,0, Mn от 0,01 до 1,0, Р не более 0,05, S менее 0,002, Cr от 16 до 18, Mo от 1,8 до 3, Cu от 1,0 до 3,5, Ni от 3,0 до 5,5, Со от 0,01 до 1,0, Al от 0,001 до 0,1, О не более 0,05 и N не более 0,05, остальное количество составляют Fe и неизбежные примеси. Содержание компонентов в стали удовлетворяет выражениям: Cr+4Ni+3Mo+2Cu≥44 и Cr+3Ni+4Mo+2Cu/3≤46. Сталь имеет высокую стойкость к высокотемпературной коррозии и предел текучести не менее 862 МПа. 5 н. и 10 з.п. ф-лы, 2 табл.
Наверх