Инструментальная сталь для горячего деформирования


 


Владельцы патента RU 2535148:

Открытое акционерное общество "Машиностроительный концерн ОРМЕТО-ЮУМЗ" (RU)

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления инструментов горячего деформирования цветных металлов и сплавов. Сталь содержит в мас.%: углерод 0,6-0,7, кремний 0,4-0,7, марганец 1,9-2,1, хром 2,8-3,2, ванадий 0,5-0,6, бор 0,001-0,003, титан 0,15-0,3, железо - остальное. Суммарное содержание хрома, марганца, кремния, ванадия, бора и титана составляет 5,35-6,2 мас.%. Повышается ударная вязкость, стойкость к трещинам и износостойкость. 1 табл.

 

Изобретение относится к области металлургии, в частности к инструментальным сталям, используемым для горячего деформирования цветных металлов и сплавов.

ПО ГОСТ 5950-2000 известна инструментальная сталь, содержащая углерод 0,32-0,40%, кремний 0,9-1,20%, марганец 0,20-0,50%, хром 4,50-5,50%, ванадий 0,30-0,50%, молибден 1,20-1,50%, никель до 0,35% по мас., при этом сумма карбидообразующих элементов составляет 7,25-9,05%.

Недостатком этой стали является повышенная структурная полосчатость из-за неравномерного распределения карбидов в структуре, приводящая к получению пониженной ударной вязкости.

Наиболее близким техническим решением является инструментальная сталь, содержащая углерод 0,37-0,44%, кремний 0,60-1,0%, марганец 0,20-0,50%, никель до 0,6%, хром 3,20-4,0%, ванадий 0,60-0,90%, молибден 1,20-1,50%, вольфрам 0,8-1,2%, при этом сумма карбидообразующих элементов составляет 7,0-9,20% по мас. ГОСТ 5950-2000.

Эта сталь также склонна к образованию структурной полосчатости и имеет пониженный уровень ударной вязкости.

Задачей изобретения является повышение ударной вязкости, стойкости к трещинам и износостойкости инструментальной стали для горячего деформирования.

Поставленная задача решается путем введения в инструментальную сталь для горячего деформирования титана в количестве 0,15-0,30% и бора в количестве 0,001-0,003% по мас. при суммарном содержании карбидообразующих элементов 5,35-6,20% по мас., и компоненты взяты в следующем соотношении, мас.%:

Углерод 0,6-0,7
Хром 2,80-3,20
Марганец 1,90-2,10
Ванадий 0,50-0,60
Кремний 0,40-0,70
Титан 0,15-0,30
Бор 0,001-0,003
Железо Остальное

Снижение содержания карбидообразующих элементов в пределах 5,35-6,2 мас.% с дополнительным легированием титаном и бором обеспечивает получение низкой структурной полосчатости, однородной дисперсной структуры стали с карбидным и карбонитридным упрочнением и повышенную ударную вязкость.

Дополнительное легирование стали титаном в количестве 0,15-0,30% способствует образованию устойчивого тугоплавкого карбида титана (TiC) пл. 3140°С и карбонитрида титана (TiCХNУ) пл. 3127°C. Дисперсные частицы указанного карбида и карбонитрида сохраняются в структуре стали при высокотемпературных нагревах (ковка, отжиг, закалка), препятствуют росту аустенитного зерна, что способствует получению дисперсной структуры троостосорбита при комнатной температуре. Сталь с дисперсной структурой троостосорбита и низкой структурной полосчатостью имеет повышенный уровень ударной вязкости и стойкости. Содержание титана в пределах 0,15-0,30 мас.% является оптимальным. Содержание титана менее 0,15% не оказывает существенного сдерживающего влияния на рост аустенитного зерна. Легирование титаном в количестве более 0,30% нецелесообразно, так как приводит к образованию значительного количества грубых включений высокотвердого, хрупкого карбида титана при кристаллизации, что не устраняется термической обработкой и снижает ударную вязкость.

Дополнительное введение в сталь бора в количестве 0,001-0,003% в качестве модифицирующей добавки измельчает литую структуру, упрочняет границы зерен, тормозит рост столбчатых кристаллов, что увеличивает устойчивость стали к трещинам. Указанный элемент увеличивает также стабильность аустенита. При его содержании менее 0,015 мас.% указанный эффект снижается. При переходе за верхний уровень легирования 0,003 мас.% по границам зерен появляется борсодержащая фаза эвтектического происхождения, что снижает механические свойства стали, в том числе устойчивость к трещинам.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый состав инструментальной стали для горячего деформирования отличается от известного и пониженным содержанием карбидообразующих элементов, и дополнительным легированием титаном и бором. То есть заявляемый состав стали соответствует критерию "новизна", так как обладает отличительными признаками.

Дополнительное легирование титаном и бором, пониженное содержание карбидообразующих элементов обеспечивает получение инструментальной стали с низкой структурной полосчатостью и повышенным уровнем ударной вязкости и износостойкости. Предложенное решение соответствует критерию "существенные отличия", так как отличительные признаки не выявлены в других технических решениях.

Примеры осуществления предлагаемого состава стали.

Из известной и предложенной сталей были изготовлены образцы для исследования микроструктуры и определения ударной вязкости. Структурная полосчатость оценивалась по шкале N 5 ГОСТ 801-78, ударная вязкость при комнатной температуре в соответствии с ГОСТ 9454-78. Перед проведением исследований образцы подвергались термической обработке улучшению (закалка с высоким отпуском). Режимы термической обработки: закалка в масле с температурой 1050±50°C с предварительным подогревом образцов при температуре 800±10°C; время выдержки при температурах подогрева и нагрева под закалку в течение 30 минут; отпуск стали производили при температуре 550±5°C, выдержка 2 ч; охлаждение на воздухе. Такая термическая обработка обеспечивает получение высокодисперсной структуры троостосорбита отпуска с дисперсионным твердением.

Сравнительный анализ инструментальных сталей для горячего деформирования указан в таблице. В таблице приведены содержания легирующих элементов в указанной стали, полученные значения балла структурной полосчатости, твердости, стойкости к трещинам и ударной вязкости. Суммарное содержание карбидообразующих элементов определяли суммированием концентраций хрома, марганца, кремния, молибдена, ванадия, титана и бора в известной и предлагаемой сталях.

Приведенные в таблице данные позволяют сделать вывод, что предлагаемая сталь имеет более высокий комплекс механических свойств при пониженной структурной полосчатости, что ведет к повышению износостойкости инструмента для горячего деформирования.

Таблица
Инструментальная сталь для горячего деформирования
Химический состав, в % по массе
С Cr Mn Si Mo V Ti B Σ карбидо-образую-
щих
Fe Структурная полосчатость, балл Твердость, HRC Ударная вязкость, KCU,
Дж/см2
Трещино-
стойкость, МПа·м1/2
Предлагаемая сталь
0,60 2,80 1,90 0,40 - 0,5 0,15 0,001 5,751 остальное 2 54 60 57,5
0,65 3,00 2,00 0,60 - 0,55 0,20 0,002 6,352 остальное 2 56 58 56
0,70 3,20 2,10 0,70 - 0,60 0,30 0,003 6,903 остальное 2 56 58 56
Известная сталь
0,40 5,50 0,50 1,20 1,50 0,50 - - 9,200 остальное 3-4 52 51 52,5

Инструментальная сталь для горячего деформирования, содержащая углерод, хром, марганец, ванадий, кремний и железо, отличающаяся тем, что она дополнительно содержит титан и бор при следующем соотношении компонентов, мас.%:

углерод 0,60-0,70
хром 2,80-3,20
марганец 1,90-2,10
ванадий 0,50-0,60
кремний 0,40-0,70
титан 0,15-0,30
бор 0,001-0,003
железо остальное,

при этом суммарное содержание хрома, марганца, ванадия, кремния, титана и бора составляет 5,35-6,20 мас.%.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к сталям бейнитного класса с повышенной прокаливаемостью, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в спецтехнике.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.

Высокопрочный с низким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с низким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с низким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с низким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2530199
Изобретение относится к области металлургии, а именно к высокопрочному оцинкованному погружением стальному листу, используемому в автомобилестроении. Лист выполнен из стали, содержащей в мас.%: 0,03-0,20 С, 1,0 или менее Si, от более 1,5 до 3,0 Mn, 0,10 или менее P, 0,05 или менее S, 0,10 или менее Al, 0,010 или менее N, 0,5 или менее Cr и 0,01-0,50 Мо и остальное Fe с неизбежными примесями.
Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане. Для повышения прочностных свойств проката до уровня судостали категории GL-A36, GL-D36, GL-E36 и др.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах.
Изобретение относится к обработке металлов давлением, в частности к производству горячекатаного широкополосного рулонного проката. Для повышения потребительских свойств и прочностных свойств проката последний производят из стали, содержащей, мас.%: 0,07 углерода, 0,03 кремния, 0,4÷1,6 марганца, 0,03 хрома, 0,03 никеля, 0,012 серы, 0,014 фосфора, 0,047 алюминия, 0,04 меди, 0,018 титана, 0,007 азота, 0,02÷0,09 ниобия, 0,003 ванадия, которую подвергают прокатке, ускоренному охлаждению и смотке полос в рулон, при этом при толщине полосы до 5 мм включительно используют сталь с фактическим содержанием марганца и ниобия, при толщине проката от 5,01 мм до 12 мм включительно - сталь с содержание марганца большим в 1,5 раза и содержанием ниобия в 1,2 раза большим, чем при производстве проката толщиной до 5 мм, при толщине проката от 12,01 мм до 16 мм включительно - сталь с содержанием марганца большим в 1,9 раза и содержанием ниобия в 1,5 раза большим, чем при производстве проката толщиной до 5 мм, при этом температуру конца прокатки выдерживают ниже температуры Ar3÷(Ar3-30)°C, температуру смотки обеспечивают ниже Ar1 на 100÷150°C, вычисляя величины Ar3 и Ar1 по формулам: Ar3=879,2-94,24[C]-21,13[Si]-25,56[Mn]+47,71[Cr]+16,44[Ni]; Ar1=729,2-9,24[C]+12,13[Si]-15,56[Mn]+17,71[Cr]-46,44[Ni].

Изобретение относится к области металлургии, а именно к изготовлению шестерней для приводных поездных систем, используемых для передачи высокого крутящего момента.
Изобретение относится к металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов с применением контролируемой прокатки.

Изобретение относится к прокатному производству, в частности производству листового проката для изготовления электросварных труб. .
Изобретение относится к области металлургии, конкретно к листопрокатному производству, и может быть использовано при получении высокопрочных холоднокатаных листов для глубокой вытяжки.

Изобретение относится к способу изготовления конструктивных элементов из стали, способной к самозакаливанию на воздухе. Сталь состоит из элементов, мас.%: С ≤ 0,20, Al ≤ 0,08, Si ≤ 1,00, Mn 1,20 до ≤ 2,50, Р ≤ 0,020, S ≤ 0,015, N ≤ 0,0150, Cr 0,30 до ≤ 1,5, Мо 0,10 до ≤ 0,80, Ti 0,010 до ≤ 0,050, V 0,03 до ≤ 0,20, В 0,0015 до ≤ 0,0060, железо и неизбежные примеси - остальное. Заготовку из горячекатаной или холоднокатаной листовой стали или стальной трубы нагревают до температуры ϑзаготовки= от 800 до 1050°С и пластически деформируют в штампе в конструктивный элемент. После извлечения из штампа деталь охлаждают на воздухе, причем после извлечения из штампа конструктивный элемент имеет температуру ϑизвлечения выше 200°С и ниже 800°С, а во время охлаждения на воздухе обеспечивается закалка. Достигаются требуемые механические свойства в пластически деформируемом элементе без необходимости проведения операции заключительного обжига. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии, а именно к стали для изготовления высокопрочных колес для рельсового транспорта. Сталь содержит, в мас.%: С от 0,65 до 0,84%, Si от 0,02 до 1,00%, Mn от 0,50 до 1,90%, Cr от 0,02 до 0,50%, V от 0,02 до 0,20%, S: 0,04% или менее, при необходимости от 0 до 0,2% Мо, Fe и примеси - остальное. В качестве примесей сталь содержит: Р 0,05 мас.% или менее, Cu 0,20 мас.% или менее и Ni 0,20 мас.% или менее. Для компонентов стали выполняются следующие соотношения: Fn1=34≤2,7+29,5×C+2,9×Si+6,9×Mn+10,8×Cr+30,3×Mo+44,3×V=34÷43, и Fn2=exp(0,76)×exp(0,05×C)×exp(1,35×Si)×exp(0,38×Mn)×exp(0,77×Cr)×exp(3,0×Mo)×exp(4,6×V)≤25. Сталь обладает высокой износостойкостью, усталостной прочностью в зоне контакта качения и устойчивостью к скалыванию, что обеспечивает длительный срок службы колеса. 1 з.п. ф-лы, 16 ил., 4 табл.

Изобретение относится к металлургии, более точно к прокатному производству, и может быть использовано при производстве толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов. Способ включает получение толстолистового проката из стали, содержащей, мас.%: углерод 0,03-0,11, кремний 0,15-0,45, марганец 1,40-1,95; хром 0,01-0,30, никель 0,01-0,30, медь 0,01-0,30, молибден 0,01-0,30, алюминий 0,02-0,05, ниобий 0,03-0,07, ванадий 0,001-0,10, титан 0,010-0,035, сера 0,0005-0,003, фосфор 0,002-0,015, азот 0,001-0,009, железо и неизбежные примеси остальное, причем углеродный эквивалент СЭ составляет: СЭ=0,0005σв+0,09±0,04, где σв - нормированное значение временного сопротивления разрыву, Н/мм2. Кратность подката для окончательной стадии прокатки определяется из соотношения: Нп/Нгп=(0,0080σт+0,1)±0,5, где σт - нормированное значение предела текучести проката, Н/мм2; Нп - толщина подката для чистовой стадии прокатки, мм; Нгп - толщина готового проката, мм. Технологическую схему прокатки выбирают в зависимости от значения расчетного коэффициента К, определяемого по формуле К=σв×Н, где Н - номинальная толщина готового проката, мм. При значении К менее 11000±2000 Н/мм применяют контролируемую прокатку с охлаждением на воздухе, а при значении К более 11000±2000 Н/мм - контролируемую прокатку с ускоренным охлаждением. Технический результат заключается в получении толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов с повышенными механическими характеристиками. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов. Для обеспечения хладостойкости проката при температурах до -20°C, улучшения свариваемости и получения проката толщиной 8-20 мм с феррито-бейнитной микроструктурой выплавляют сталь, содержащую, мас.%: С 0,03-0,010, Mn 1,2-1,8, Si 0,1-0,5, Nb 0,01-0,10, V 0,05-0,10, Ti 0,005-0,04, Мо не более 0,04, Cr не более,30, Ni не более 0,30, Cu не более 0,30%>, Al 0,01-0,05, N 0,007-0,012, S не более 0,005, P не более 0,015, Fe - остальное, при этом суммарное содержание V+Nb+Ti≤0,15, Сэ≤0,41 и осуществляют непрерывную разливку стали в сляб. Полученный сляб нагревают до 1190-1280°С и проводят черновую прокатку в области рекристаллизации аустенита с относительным обжатием 45-85%, затем раскат охлаждают со скоростью охлаждения 0,7÷1,8°C/с до температуры начала чистовой прокатки 980÷900°C, осуществляют чистовую прокатку в области отсутствия рекристаллизации с суммарной деформацией 60-80% и с завершением деформации в нижней части γ-области при температуре конца чистовой прокатки Ткп=Ar3+(30÷80)°C, производят ускоренное охлаждение в две стадии, при этом на первой стадии полосу охлаждают со скоростью 4-12°C/с до температуры 530-670°C, а охлаждение полосы на второй стадии производят со скоростью 4,0-0,5°C/с до температуры смотки полосы в рулоны. 2 табл.

Изобретение относится к области металлургии, а именно к стальному листу, используемому для горячей штамповки. Лист выполнен из стали, имеющей следующий химический состав, мас.%: C: 0,05-0,40, Si: 0,001-0,02, Mn: 0,1-3, Al: 0,0002-0,005, Ti: 0,0005-0,01, O: 0,003-0,03, один или оба из Cr и Mo в сумме 0,005-2, остальное Fe и неизбежные примеси. Средний диаметр частиц композитных оксидов на основе Fe-Mn, распределенных в стальном листе, составляет от 0,1 до 15 мкм. Обеспечиваются высокие прочность и сопротивление замедленному разрушению детали после горячей штамповки. 3 н. и 6 з.п. ф-лы, 8 ил., 8 табл., 2 пр.

Изобретение относится к области металлургии, а именно к высокопрочному холоднокатаному стальному листу. Лист выполнен из стали, имеющей химический состав, состоящий из, мас.%: C: от более 0,020 до менее 0,30; Si: от более 0,10 до максимум 3,00; Mn: от более 1,00 до максимум 3,50; P: максимум 0,10; S: максимум 0,010; раств. Al: по меньшей мере 0 и максимум 2,00; N: максимум 0,010; остальное - Fe и неизбежные примеси. Лист имеет металлургическую структуру, в которой основная фаза представляет собой продукт низкотемпературного превращения, а вторичная фаза содержит остаточный аустенит. Объемная доля остаточного аустенита составляет от более чем 4,0% до менее чем 25,0% относительно всей структуры, а средний размер его зерен составляет менее 0,80 мкм. Численная плотность зерен остаточного аустенита, размер которых составляет 1,2 мкм или более, составляет 3,0×10-2 зерен/мкм2 или менее. Обеспечиваются высокие пластичность, способность к деформационному упрочнению и способность к отбортовке-вытяжке, а также прочность на растяжение 780 МПа или более. 8 з.п. ф-лы, 4 ил., 3 табл., 1 пр.
Изобретение относится к области металлургии, а именно к облегченной конструкционной стали для изготовления емкости для содержания топлива автомобиля. Сталь имеет следующий химический состав, вес.%: C 0,04-2, Mn 14-30, Al 1,5-12, Si 0,3-3, Cr 0,12-6, дополнительно один или несколько из следующих элементов: Ti, V, Nb, В, Zr, Mo, Ni, Cu, W, Co, P и N с содержанием каждый до 5% и в сумме до 10%, остальное - железо и неизбежные примеси. Доля α'-мартенсита до или после деформации составляет не более 3%, а эквивалент α'-мартенсита составляет от 3,4 до 10,5 и определяется по выражению: 0,1*Mn + C + 0,5*Al + 0,05*Si. Обеспечивается при столкновении автомобиля высокая пластичность стали и предупреждается образование вызываемых водородом трещин. 2 н. и 4 з.п. ф-лы.

Изобретение относится к области металлургии, а именно к разработке жаростойкой ферритной стали, используемой в области энергетики для производства паровых котлов солнечных тепловых электростанций. Сталь содержит в мас.%: С: от 0,01 до 0,3, Si: от 0,01 до 2, Mn: от 0,01 до 2, P: максимум 0,10, S: максимум 0,03, Cr: от 7,5 до 14,0, раств. Al: максимум 0,3, N: от 0,005 до 0,15, баланс Fe и загрязняющие примеси. На поверхности стали сформирована оксидная пленка, содержащая, исключая кислород и углерод, от 25 до 97% Fe и от 3 до 75% Cr. Сталь обладает высокой фотоселективной абсорбционной способностью и стойкостью к окислению. 2 н. и 4 з.п. ф-лы, 4 табл., 2 пр.

Изобретение относится к области металлургии, а именно к высокопрочному, горячегальванизированному холоднокатаному стальному листу, используемому в автомобильной промышленности. Лист выполнен из стали, содержащей в вес.%: С более 0,10 и менее 0,25, Si более 0,50 и менее 2,0, Mn более 1,50% и максимум 3,0, Р менее 0,050, S: 0,010 или менее, раств. Al 0,50 или менее, N: 0,010 или менее, необязательно один или более элементов, выбранных из Ti, Nb, V, Cr, Mo, B, Ca, Mg, REM и Bi. Структура листа содержит основную фазу, содержащую мартенсит и/или бейнит и/или бейнитный феррит, и вторичную фазу, содержащую остаточный аустенит. Объемная доля остаточного аустенита составляет от более 4,0 до менее 25,0% относительно всей структуры, средний размер зерен составляет менее 0,80 мкм, а численная плотность зерен остаточного аустенита, размер которых равен 1,2 мкм или более, составляет 3,0×10-2 зерен/мкм2 или менее. Лист имеет прочность на растяжение 750 МПа или более, обладает высокой пластичностью, способностью к деформационному упрочнению и отбортовке-вытяжке. 3 н. и 4 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к области металлургии, а именно к составу низкохромистой инструментальной стали, предназначенной для работы при высоких температурах. Сталь содержит, мас.%: C 0,08-0,40, N 0,015-0,30, C+N 0,30-0,50, Cr 1-4, Mo 1,0-3, V 0,8-1,3, Mn 0,5-2, Si 0,1-0,5, факультативно Ni <3, Co ≤5, B <0,01, остальное - Fe и неизбежные примеси. Сталь обладает высокой отпускной стойкостью при высоких температурах. 2 н. и 13 з.п. ф-лы, 11 ил., 4 табл., 2 пр.
Наверх