Способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Способ включает формирование и стабилизацию вихревого потока. Формирование вихревого потока осуществляют за счет симметричного и зеркального расположения горелок на противоположных стенках вихревой топки и направленного выхода горячего газа, а стабилизацию осуществляют за счет разделения основного вихревого потока, как минимум, на два сопряженных вихря, которые образуют за счет изменения угла наклона внутренней поверхности нижнего пода и смещения выпускных отверстий верхнего пода вихревой топки, при этом векторы вращательной и поступательной скоростей движения сопряженных вихрей относительно продольной оси вихревой топки выполняют по траектории двойной спирали в одном направлении, в то время как векторы угловых скоростей вращения сопряженных вихрей вокруг их собственных осей направляют в противоположные стороны друг относительно друга. Изобретение позволяет повысить устойчивость и эффективность сжигания топлива в вихревой топке энергетической установки, исключает использование дорогостоящего и сложного в эксплуатации оборудования. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Изобретение может быть использовано в других областях промышленности, в частности в установках по глубокой переработке угля в другие виды топлива или при утилизации промышленных и бытовых отходов.

Эффективность процесса горения связана со временем удержания частиц топлива в реакционной зоне - чем больше частички топлива находятся при высокой температуре внутри топки, тем более эффективно используется его теплотворная способность. Время удержания можно увеличивать как за счет турбулизации потока, так и за счет его стабилизации внутри замкнутого пространства. Известен способ стабилизации вихревого потока путем регулирования его параметров [патент РФ №2174875, 2001 г., B04C 5/04; B01D 45/12], включающий ввод газа через тангенциальные щелевые каналы с изменяемой геометрией. При регулировании параметров вихревого потока изменениям подвергают тангенциальную составляющую скорости движения вихревого потока и его сечение, оптимальные значения которых достигаются за счет изменения пропускной способности тангенциальных щелевых каналов.

Данный способ эффективен для камер сгорания ракетных двигателей, но он практически неприемлем для установок большой и малой энергетики, в которых устойчивость и эффективность процесса сжигания топлива выходит на первый план, а недожог и пережог топлива напрямую связан с их рентабельностью. В известном способе стабилизации вихревого потока турбулизация струи способствует повышению ее эффективности, но не решает вышеуказанных проблем большой и малой энергетики. К тому же он весьма трудоемок и дорог в процессе реализации.

Известен другой способ и устройство для сжигания угля в вихревой топке [патент РФ №2339874, 2008 г., F23B 7/00; F23K 1/00; F23C 5/24], включающий тангенциальный ввод газа и использование повторного возврата несгоревших частиц топлива в реакционную зону за счет воздействия на них двух вихревых потоков, располагаемых последовательно друг за другом по ходу движения горючего газа. При этом для эффективного возврата несгоревших частиц в реакционную зону используется инертный материал, циркулирующий по замкнутому контуру - первая вихревая камера, вторая вихревая камера, центробежный ловитель для несгоревших частиц топлива, циклон и узел ввода угольного топлива.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относится то, что известный способ весьма трудоемок в реализации и малоэффективен в процессе эксплуатации ввиду необратимых потерь, которые неизбежны при высокотемпературном рециклинге инертного материала и несгоревших частиц топлива.

Наиболее близким по совокупности признаков к заявляемому способу является способ сжигания угольной пыли в вихревой топке [патент РФ №2418237, 2010 г., F23C 5/24; F23K 1/00], в котором дожег несгоревших частиц топлива осуществляется при помощи дополнительной горелки, использующей механоактивированный уголь микропомола, и установки ее в зоне взаимодействия двух вихревых потоков, вращающихся в противоположных направлениях относительно друг друга.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что он также как и ранее описанные способы, весьма трудоемок в реализации и малоэффективен в процессе эксплуатации. Установка дезинтегратора и дополнительной горелки для подсветки непосредственно возле вихревой топки накладывает дополнительные требования по безопасности и весьма сильно усложняет процесс регулирования при резком изменении параметров внешней среды и поступления неконденсационного вида топлива.

Задачей настоящего изобретения является устранение вышеперечисленных недостатков регулирования процесса сжигания топлива в вихревой топке энергетической установки.

Указанная задача решается за счет достижения технического результата, заключающегося в получении более эффективного и простого способа повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки, исключающего использование дорогостоящего и сложного в эксплуатации оборудования.

Согласно изобретению в способе повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки, включающем формирование и стабилизацию вихревого потока, формирование вихревого потока осуществляют за счет симметричного и зеркального расположения горелок на противоположных стенках вихревой топки и направленного выхода горячего газа, а стабилизацию осуществляют за счет разделения основного вихревого потока, как минимум, на два сопряженных вихря, которые образуют за счет изменения угла наклона внутренней поверхности нижнего пода и смещения выпускных отверстий верхнего пода вихревой топки относительно продольной оси вихревой топки. При этом векторы вращательной и поступательной скоростей движения сопряженных вихрей относительно продольной оси вихревой топки выполняют по траектории двойной спирали в одном направлении, в то время как векторы угловых скоростей вращения сопряженных вихрей вокруг их собственных осей направляют в противоположные стороны друг относительно друга, при их проекции на плоскость перпендикулярную продольной оси вихревой топки.

Указанный технический результат по объекту-способу достигается также тем, что при прямоугольном поперечном сечении вихревой топки предпочтение отдают образованию только одной пары сопряженных вихрей, в то время, как при ее квадратном сечении основной вихревой поток делят уже на две пары сопряженных вихрей, а при круглом ее сечении вихревой поток делят на три и более пар сопряженных вихрей. При этом оси вращения сопряженных вихрей располагаются на равноудаленном расстоянии от близлежащих стенок вихревой топки.

Указанный технический результат по объекту-способу достигается также тем, что направленный выход горячего газа обеспечивают с помощью направляющих управляемых решеток, которые устанавливают в отверстиях верхнего пода вихревой топки.

На фигуре 1 схематично представлен способ формирования и стабилизации вихревого потока при прямоугольном поперечном сечении вихревой топки, где: 1 - продольная ось вихревой топки; 2 - выпускные отверстия для выхода горячего газа; 3 - верхний под вихревой топки; 4 - одна пара сопряженных вихрей; 5 - нижний под; 6 - отклоняющие пластины; , - векторы угловых скоростей вращения сопряженных вихрей вокруг своих осей; . - вектор угловой скорости вращения пары сопряженных вихрей вокруг продольной оси вихревой топки; , - векторы поступательных скоростей движения пары сопряженных вихрей вдоль продольной оси вихревой топки; δ1, δ2 - смещения осей отверстий для выхода газа; - вектор поступательной скорости движения пары сопряженных вихрей.

Сведения, подтверждающие возможность осуществления заявляемого изобретения с помощью указанного технического результата, состоят в следующем. Заявленный способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки в большей степени предназначен для нужд большой и малой энергетики, но это не исключает его использование в других отраслях промышленности. Действующие котловые агрегаты обходятся пока без применения таких технологий и современных средств управления, однако ужесточение норм по экологии и их рентабельности вынуждают эксплуатационников обращать внимание на эти проекты. Основным показателем, определяющим рентабельность, сегодня принято считать соотношение «топливо-воздух». От того насколько грамотно будет выбрано это соотношение зависит и экология, и экономичность процесса сжигания. Недостаток воздуха при горении вызывает неполное сгорание и, как следствие, ведет к перерасходу топлива. В то время как избыток воздуха также приводит к перерасходу топлива на нагрев лишнего воздуха в составе отходящих газов. В обоих случаях сжигание топлива сопровождается повышением выбросов в атмосферу высокотоксичных газов. Другой путь к решению данной проблемы лежит в интенсификации процесса сжигания топлива за счет увеличения времени удержания частиц топлива в реакционной зоне. Турбулизация потока способствует не только увеличению времени удержания частиц топлива в реакционной зоне, но и существенно увеличивает поверхность горения, а, следовательно, исключает химический недожог топлива. Однако простые методы турбулизации потока не всегда приносят ожидаемый эффект и, поэтому, отодвигаются на второй план.

Предлагаемый способ трудоемок в процессе исследования, так как визуализация и расчет вихревых потоков для реальных систем практически невыполним, однако, после выявления определенных закономерностей, его использование не вызывает особых трудностей. К таким закономерностям в первую очередь следует отнести формирование и стабилизацию вихревого потока за счет образования сопряженных вихрей. Взаимовлияние сопряженных вихрей друг на друга непредсказуемо и в реальных условиях не всегда может быть выявлено расчетным путем, поэтому вопросы моделирования таких процессов являются первоочередными задачами. Проведенные в ИТ СО РАН модельные эксперименты показали, что при определенной конфигурации сопряженные вихри обладают повышенной устойчивостью к возмущающим факторам и легко поддаются расчету.

В предлагаемом способе вихревой поток формируют и стабилизируют с помощью определенного скейлинга приемов. Горелочные устройства в вихревой топке необходимо располагать симметрично и зеркально на противоположных ее стенках. При этом совершенно неважно, как будет выполнен ее внутренний объем. Он может быть выполнен как в виде прямоугольника, так и в виде квадрата или цилиндра из огнеупорной керамики или из другого материала, например, из жаростойкой высокопрочной листовой стали. Другими необходимыми условиями для образования вихревого потока являются смещение выпускных отверстий для горячего газа 2 на величины δ1 и δ2, относительно продольной оси 1 вихревой топки и наличие отклоняющих пластин 6 (лопаток) в нижнем поде 5 вихревой топки. Этот скейлинг уже позволяет формировать вихревой поток в виде сопряженных вихрей. Еще одним необходимым условием, обеспечивающим устойчивость образующихся сопряженных вихрей, является установка в отверстиях для горячего газа направляющих решеток. С их помощью можно заставить вращаться сопряженные вихри вокруг своих осей как по часовой стрелке, так и против нее, при проекции вектора угловой скорости . на плоскость перпендикулярную продольной оси вихревой топки. Однако при моделировании было обнаружено, что более предпочтительным вариантом для устойчивости сопряженных вихрей относительно друг друга является случай, когда векторы угловых скоростей вращения сопряженных вихрей вокруг их собственных осей, и , направлены в противоположные стороны. Особенно это было наглядно видно при одновременном запуске сразу нескольких пар сопряженных вихрей, когда каждая сопряженная пара вихрей мгновенно начинала взаимодействовать с другой примыкающей к ней парой сопряженных вихрей. В одном случае такое содружество приводило к их смыканию и помпажу, а в другом случае - к взаимному отталкиванию и образованию новой более устойчивой структуры их перемещения относительно продольной оси вихревой топки.

Предлагаемый способ позволяет вести процесс сгорания топлива при весьма малых расходах воздуха, так как уменьшение коэффициента избытка воздуха, помимо снижения потерь теплоты с уходящими газами, также является весьма эффективным средством подавления образования оксидов азота.

Технический эффект от использования предложенного изобретения состоит в следующем. Предложенный способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки существенно улучшает как экономические его параметры, так и экологические. Автоматизация процесса сжигания при данном способе не требует ни сложного оборудования, ни дорогостоящих устройств для улучшения его экологических параметров. Его можно использовать как на уже существующих энергетических комплексах, так и на вновь создаваемых. Недожог и пережог топлива, как и выброс токсичных газов в данном способе сведены к минимуму.

1. Способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки, включающий формирование и стабилизацию вихревого потока, отличающийся тем, что формирование вихревого потока осуществляют за счет симметричного и зеркального расположения горелок на противоположных стенках вихревой топки и направленного выхода горячего газа, а стабилизацию осуществляют за счет разделения основного вихревого потока, как минимум, на два сопряженных вихря, которые образуют за счет изменения угла наклона внутренней поверхности нижнего пода и смещения выпускных отверстий верхнего пода вихревой топки относительно продольной оси вихревой топки, при этом векторы вращательной и поступательной скоростей движения сопряженных вихрей относительно продольной оси вихревой топки выполняют по траектории двойной спирали в одном направлении, в то время как векторы угловых скоростей вращения сопряженных вихрей вокруг их собственных осей направляют в противоположные стороны друг относительно друга, при их проекции на плоскость, перпендикулярную продольной оси вихревой топки.

2. Способ по п.1, отличающийся тем, что при прямоугольном поперечном сечении вихревой топки предпочтение отдают образованию только одной пары сопряженных вихрей, в то время как при ее квадратном сечении основной вихревой поток делят на две пары сопряженных вихрей, а при круглом ее сечении вихревой поток делят на три и более пар сопряженных вихрей, при этом оси вращения сопряженных вихрей располагают на равноудаленном расстоянии от близлежащих стенок вихревой топки.

3. Способ по п.1, отличающийся тем, что направленный выход горячего газа обеспечивают с помощью направляющих управляемых решеток, которые устанавливают в выпускных отверстиях верхнего пода вихревой топки.



 

Похожие патенты:

Изобретение может быть использовано для утилизации горючих отходов, биомассы или иных веществ, содержащих углерод и водород, с целью получения горючих газов. Способ включает подачу в реактор топлива воздуха, их смешивание, сгорание смеси и/или газификации содержащейся в ней твердой основы.

Изобретение относится к способу активирования фракционированных по размеру частиц порошкообразного угля путем их ввода вертикально-щелевыми потоками в смеси с продуктами сгорания и нагрева спутными вертикально-щелевыми газовыми факелами в горизонтальных камерно-факельных нагревателях, выделения и сжигания легких и тяжелых фракций летучих веществ при взаимодействии с газообразными продуктами сгорания, воздухом и паром в инверторных реакторах, охлаждения воздухом в кипящем слое с одновременным отводом теплоты поверхностному теплообменнику, отличающийся тем, что факельный нагрев осуществляют при недостатке кислорода с выделением влаги и легких фракций летучих веществ, а продукты неполного сгорания и нагретые частицы угля вводят в вертикальные инверторные кольцевые реакторы, в которых вначале организуют воспламенение и сжигание легких фракций летучих веществ в кольцевых опускных потоках с воздушной подпиткой факелов радиальными струями из вертикально-приосевых участков, затем выводят и сжигают тяжелые фракции летучих веществ в опускных потоках с продувкой факелов тангенциальными струями пара при одновременном отводе теплоты встроенным поверхностным охладителям.

Топка // 2489647
Изобретение относится к области энергетики и может быть использовано на котлах тепловых электростанций при сжигании угольной пыли и природного газа. .

Изобретение относится к области промышленной энергетики, в частности к бесколосниковым вихревым топкам, предназначенным для водогрейных котлов отопительных установок, сушильных камер и т.д., и позволяет при его использовании упростить конструкцию топки путем повышения эффективности процесса сжигания топлива при снижении содержания вредных веществ в генераторном газе.

Изобретение относится к теплоэнергетике и может быть использовано в котлах, работающих на угле и различных типах топлива, содержащих серу. .

Изобретение относится к устройствам для одновременного или попеременного сжигания жидкого и газообразного топлива, а именно к циклонным предтопкам для сжигания жидкого топлива и/или газа в различных котельных установках и позволяет повысить эффективность сжигания газа, а также надежность его работы и увеличить срок службы.

Изобретение относится к области энергетики. .

Изобретение относится к энергетике и может быть использовано в топочной технике на котлах тепловых электростанций, отопительных котельных и парогенерирующих установках металлургических предприятий при комбинированном факельном сжигании природного и промышленных доменного и коксового газов во вращающемся вертикально восходящем потоке.

Группа изобретений относится к области теплоэнергетики, в частности к камерным топкам с пылевидно-дисперсным сжиганием топлива (уголь, торф, мазут, суспензия), например к топкам котельных установок в промышленных печах. Способ сжигания топочных газов в вертикальной камерной топке включает подачу топливовоздушной смеси через горелки в вертикальную камеру сгорания со смещением относительно ее центральной оси, снижение температуры по высоте камеры и отвод горячих топочных газов, в которой из верхней зоны вертикальной камеры часть топочных газов отводят для охлаждения вниз посредством вертикально расположенного в ее центральной зоне полого двухсветного водоохлаждаемого экрана (обечайки), а охлажденные топочные газы направляют в нижнюю зону камеры для смешивания с топочными газами, поступающими из горелок нижнего пояса, обеспечивая процесс рециркуляции топочных газов и подхват выпадающих вниз из кольцевой зоны камеры сгорания частиц топлива с их подачей на догорание. Вертикальная камерная топка содержит кольцевую камеру сгорания, образованную коаксиальными полыми емкостями, с горелками, расположенными на внешней полой емкости, снабжена внутренней полой емкостью, выполненной в виде двухсветного экрана типа обечайки для рециркуляции топочных газов и имеющей верхнюю и нижнюю воронки, расположенные в камере сгорания. Изобретение способствует снижению температуры топочных газов в зоне активного горения, увеличению теплообмена топки и снижению ее загрязнений. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к камерным вихревым топочным устройствам с тангенциальной схемой расположения горелок. Вихревая топка разделена двухсторонним пережимом на камеру дожигания с дополнительными горелками и расположенную под ней камеру сгорания с установленными тангенциально основными горелками. Тангенциальная подача угольной пыли с первичным дутьем через горелки формирует высокотемпературное ядро горения и раскаленный горящий поток, движущийся сначала вниз и поднимающийся далее по стенкам камеры сгорания вверх в виде периферийного вихря, который омывает корни факелов. Задачей изобретения является: повышение экономичности, расширение диапазона регулирования нагрузки. 6 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим козырьком, выполненным в виде дуги окружности радиусом в два раза меньшим радиуса камеры горения, диффузор с углами раскрытия 40°≤α≤50° и относительной шириной горловины 0,3≤h≤0,4, вертикальную камеру охлаждения и расположенные в верхней части камеры горения тангенциальные сопла, основные - для подвода топливовоздушной смеси, ориентированные под углом 20°≤β≤30° к горизонту, и дополнительные - для подачи вторичного окислителя, ориентированные вертикально вниз. Технический результат - подавление эффекта Коанда в камере охлаждения, предотвращение выноса части несгоревшего топлива из камеры горения для повышения полноты выгорания пылеугольного топлива, снижение уровня эмиссии оксидов азота. 2 ил.

Заявляемая пылегазомазутная топка относится к области тепловой энергетики и может быть использована на паровых котлах, снабженных шаровыми барабанными мельницами. Она содержит экранированные вертикальную прямоугольную камеру сгорания 1 и двускатную холодную воронку 2, шлаковый комод 3, группы из пылеугольных 4 и расположенных под ними газовых горелок 5, а также из мазутных горелок 6 и расположенных под ними сопл сбросного агента пылесистем 7, установленных на больших стенах камеры сгорания 1 в общих вертикальных плоскостях. Горелки и сопла каждого наименования установлены на противоположных стенах по встречно-смещенной схеме, направлены с наклоном вниз и тангенциально относительно горизонтальной поверхности цилиндрического условного тела вращения 9, а сопла сбросного агента пылесистем 7 повернуты в горизонтальной проекции в одну сторону относительно указанных вертикальных плоскостей на угол arctg2S/B, где S - среднее расстояние между вертикальными плоскостями размещения горелок и сопл, В - расстояние между большими стенами камеры сгорания. На больших стенах шлакового комода 3 в вертикальных плоскостях размещения горелок и сопл дополнительно установлены комбинированные сопла воздуха и газов рециркуляции 8 с направлением их осей наклонно вверх и тангенциально относительно горизонтальной поверхности цилиндрического условного тела вращения 9. Использование данной пылегазомазутной топки обеспечит повышение надежности, экономичности и экологической безопасности ее работы. 1 з.п. ф-лы, 3 ил.

Изобретение относится к топочным устройствам мощных энергоблоков и может быть использовано в теплоэнергетике. Холодная воронка котла с кольцевой топкой 1 образована коаксиальными равносторонними призмами, боковые грани которых образованы внутренними 2 и наружными 3 трубными экранами, в нижней части кольцевой топки 1 все наружные трубные экраны 3 загнуты внутрь под углом 50-60° к горизонту, эти скаты наружных трубных экранов 3 образуют восьмискатную холодную воронку 5. У каждого второго наружного трубного экрана 3 скаты 6 выполнены прямоугольной формы и они удлинены до противолежащих им внутренних трубных экранов 2, а скаты 7 других наружных трубных экранов 3, расположенных между скатов 6 прямоугольной формы, выполнены в форме равнобедренных трапеций и между их меньшими основаниями и противолежащими им внутренними трубными экранами 2 выполнены окна 8 выхода шлака, нижние боковые части скатов 6 прямоугольной формы продлены до окон 8 выхода шлака, а в центре нижних частей этих скатов 6 выполнены двускатные разделители 9 потока шлака, причем все скаты 6 и 7 холодной воронки 5 и скаты разделителей 9 потока шлака выполнены из труб 4 наружных трубных экранов 3. Изобретение позволяет повысить надежность и долговечность работы котла с кольцевой топкой, технологичность ее изготовления, а также снизить высоту холодной воронки и котла в целом, уменьшив при этом материалоемкость котла. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области теплоэнергетики и может быть использовано при разработке парогенераторов с пылевым сжиганием углей. Топка парогенератора содержит горизонтальную камеру сгорания, ограниченную двумя вертикальными экранированными боковыми стенками, вертикальной экранированной фронтальной стенкой, горизонтальной экранированной крышей, горелки, холодную воронку, образованную группой наклонных экранированных стенок, согласно изобретению, горизонтальная камера сгорания выполнена квадратного сечения, горелки выбраны прямоточного типа, топка снабжена дополнительной холодной воронкой, образованной группой наклонных экранированных стенок, как и основная воронка, холодные воронки выполнены продольной формы и соединены горизонтальной экранированной стенкой, снабженной N≥1 рядами горелок, каждая боковая стенка снабжена M≥1 рядами горелок, плоскости, образованные пересечением продольных осей горелок, формируют ярусы горелок, продольные оси в каждом ярусе горелок направлены по касательной к условной окружности с относительным диаметром 0.15<dy<0.20, ,где d - диаметр условной окружности, D - диаметр окружности, условно вписанной в квадратное сечение камеры сгорания. Технический результат заключается в уменьшении шлакования поверхностей нагрева топки парогенератора в котлах с горизонтальной компоновкой. 2 ил.

Изобретение относится к энергетике и касается разработки слоевых котлов, универсальных по типам сжигаемых топлив и отходов при условии их минимальной подготовки и с организацией экономичного вихревого сжигания с повышенными экологическими показателями, причем как отдельно, так и при совместном сжигании разных топлив. Слоевой котел с вертикальной вихревой топкой содержит слоевое топочное устройство, включающее питатели топлива, колосниковую решетку и тракт выгрузки золы, установленные под вихревой камерой сгорания, образованной стенами из обмуровки и топочных экранов, с газоотводящим окном, расположенным на потолочном экране, и соплами вторичного дутья, причем часть этих сопл установлена на стенах, ориентирована тангенциально к условному телу вращения формируемого вихря с осью, проходящей через газоотводящее окно, и направлена по ходу вращения вихря и вниз, в сторону колосниковой решетки, а часть сопл вторичного дутья установлена в углах камеры сгорания, и они направлены вниз, причем газоотводящее окно выполнено в виде защищенного обмуровкой и трубами выступающего в вихревую камеру сгорания отрезка воздуховода в форме полого конуса с полууглом раскрытия от +35 до -35 градусов, на торцевой и боковых поверхностях которого установлены ориентированные тангенциально и направленные в топку сопла дожигающего дутья. В итоге обеспечивается глубокое выжигание горючих из слоя, уноса и летучих, причем благодаря ступенчатой подаче дутья по экологически эффективной схеме с оптимальным по применяемому топливу слоевым топочным устройством. 20 з.п. ф-лы, 3 ил.

Изобретение относится к паровым и водогрейным котлам с камерной топкой. Котел с камерной топкой, которая имеет установленные встречно-смещенно на стенах холодной воронки сопла нижнего дутья и расположенные выше по меньшей мере в один ярус тангенциально направленные к оси топки горелки, над ними топка разделена на камеру дожигания и расположенную ниже камеру сгорания газоплотным пережимом, который выполнен в виде воронки, набранной из изогнутых в виде восьмиугольников последовательно вписанных и вложенных труб, соединенных между собой проставками и включенных в тракты принудительной циркуляции котла. Изобретение направлено на повышение экономичности за счет снижения мехнедожога, снижение вредных выбросов и регулирование температуры перегрева пара за счет дожигания на выходе из топки. 4 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Способ включает формирование и стабилизацию вихревого потока. Формирование вихревого потока осуществляют за счет симметричного и зеркального расположения горелок на противоположных стенках вихревой топки и направленного выхода горячего газа, а стабилизацию осуществляют за счет разделения основного вихревого потока, как минимум, на два сопряженных вихря, которые образуют за счет изменения угла наклона внутренней поверхности нижнего пода и смещения выпускных отверстий верхнего пода вихревой топки, при этом векторы вращательной и поступательной скоростей движения сопряженных вихрей относительно продольной оси вихревой топки выполняют по траектории двойной спирали в одном направлении, в то время как векторы угловых скоростей вращения сопряженных вихрей вокруг их собственных осей направляют в противоположные стороны друг относительно друга. Изобретение позволяет повысить устойчивость и эффективность сжигания топлива в вихревой топке энергетической установки, исключает использование дорогостоящего и сложного в эксплуатации оборудования. 2 з.п. ф-лы, 1 ил.

Наверх