Вихревая топка

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим козырьком, выполненным в виде дуги окружности радиусом в два раза меньшим радиуса камеры горения, диффузор с углами раскрытия 40°≤α≤50° и относительной шириной горловины 0,3≤h≤0,4, вертикальную камеру охлаждения и расположенные в верхней части камеры горения тангенциальные сопла, основные - для подвода топливовоздушной смеси, ориентированные под углом 20°≤β≤30° к горизонту, и дополнительные - для подачи вторичного окислителя, ориентированные вертикально вниз. Технический результат - подавление эффекта Коанда в камере охлаждения, предотвращение выноса части несгоревшего топлива из камеры горения для повышения полноты выгорания пылеугольного топлива, снижение уровня эмиссии оксидов азота. 2 ил.

 

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях.

Известна вихревая топка [Авторское свидетельство СССР №340836, F23C 5/24, 01.01.1972, Авторское свидетельство СССР №483559, F23C 5/12, 05.09.1975], содержащая, по крайней мере, одну наклонную щелевую горелку для подачи смеси топлива с воздухом и сопло вторичного воздуха, размещенное в нижней части топки.

Известна вихревая топка [SU 288218, F23J 1/08, F23C 5/24, 01.01.1970], имеющая цилиндрическую камеру горения, сопла для подвода топливовоздушной смеси, размещенные по касательной к внутренней окружности топки и козырек, отклоняющий газы и частицы топлива к месту подвода воздуха. Кроме того, с целью предотвращения уноса несгоревших частиц топлива и получения равномерного поля скоростей газового потока на входе в камеру охлаждения, плоскости экранов, образующие пережим топки, наклонены по отношению к вертикали в сторону, противоположную направлению вращения топливовоздушного потока с тем, чтобы погасить крутку потока в зоне пережима. Достоинствами конструкции являются рациональные массогабаритные характеристики топки, однофронтальное расположение горелок, маневренные характеристики.

Недостатком такой топки является ряд негативных аэродинамических факторов в структуре закрученного потока в вихревой топке, таких как эффект Коанда в камере охлаждения, наличие возвратных течений и рециркуляционных зон [Саломатов В.В., Красинский Д.В., Аникин Ю.А., Ануфриев И.С., Шарыпов О.В., Энхжаргал X. Экспериментальное и численное исследование аэродинамических характеристик закрученных потоков в модели вихревой топки парогенератора // Инженерно-физический журнал. 2012. Т. 85, №2. С. 266-276]. Причиной этих эффектов являются конструктивные особенности топки.

Наиболее близким техническим решением является вихревая топка [Патент РФ №2042084, F23C 5/32, 19.11.1990], содержащая горизонтальную цилиндрическую футерованную камеру горения с направляющим козырьком и плоским пережимом, тангенциальными соплами подачи топлива и первичного окислителя и золоотводящими патрубками, отличающаяся тем, что, с целью повышения эксплуатационной надежности, камера горения дополнительно содержит тангенциальный патрубок подвода вторичного окислителя, расположенный в нижней точке периметра камеры горения.

Недостатками такого устройства является наличие застойных зон в нижней части топки и отклонение верхней струи от своего первоначального направления. Последняя особенность является причиной выноса части несгоревшего топлива из камеры горения [Аникин Ю.А., Ануфриев И.С. Красинский Д.В., Саломатов В.В., Шадрин Е.Ю., Шарыпов О.В. Физическое и численное моделирование внутренней аэродинамики вихревой топки с рассредоточенным тангенциальным вводом горелочных струй // Вестник Новосиб. гос. ун-та. Серия: Физика. 2013. Т. 8, вып. 2. С. 86-94, Красинский Д.В., Саломатов В.В., Ануфриев И.С., Шарыпов О.В., Шадрин Е.Ю., Аникин Ю.А. Моделирование топочных процессов при сжигании распыленного угля в вихревой топке усовершенствованной конструкции. Часть 1. Аэродинамика течения в вихревой топке // Теплоэнергетика. 2015. №2. С. 41-46].

Техническими задачами, на решение которых направлено предлагаемое устройство, являются: подавление эффекта Коанда в камере охлаждения, предотвращение выноса части несгоревшего топлива из камеры горения из-за подпирания верхней струи для повышения полноты выгорания пылеугольного топлива, и ограничение уровня эмиссии оксидов азота, образующихся в высокотемпературном потоке в камере горения.

Поставленные задачи решают путем использования новой конфигурации вихревой топки с многоступенчатым тангенциальным вводом топливовоздушных струй для организации форсированного нестехиометрического сжигания распыленного угля в вихревом факеле с высокой степенью циркуляции потока. Согласно изобретению вихревая топка, содержащая горизонтальную цилиндрическую футерованную вихревую камеру горения с направляющим козырьком, диффузор, вертикальную камеру охлаждения и тангенциальные сопла для подвода топливовоздушной смеси (основные сопла) и подачи вторичного окислителя (дополнительные сопла), имеет следующие параметры: основные и дополнительные тангенциальные сопла расположены в верхней части камеры горения так, что основные сопла ориентированы под углом 20°≤β≤30° к горизонту, что позволяет устранить отклонение верхнего факела, а дополнительные сопла расположены напротив основных и ориентированы вертикально вниз, что позволяет «прижать» основные струи и снизить вынос несгоревшего топлива в камеру охлаждения, направляющий козырек, расположенный под основными соплами в камере горения, выполнен в виде дуги окружности радиусом, в два раза меньшим радиуса камеры горения, относительная ширина горловины диффузора h=H/2R, где Η - ширина горловины диффузора, R - радиус камеры горения, лежит в диапазоне 0,3≤h≤0,4, что уменьшает проявление эффекта Коанда в камере охлаждения, при этом углы раскрытия диффузора лежат в диапазоне 40°≤α≤50°.

На фиг. 1 показана схема вихревой топки (общий вид в системе координат XYZ, верхняя часть камеры охлаждения не показана). Пунктирной линией обозначена плоскость симметрии. На фиг. 2 показано поперечное сечение топки. Где: 1 - вихревая камера горения; 2 - диффузор; 3 - камера охлаждения; 4 - основные сопла; 5 - дополнительные сопла; 6 - «козырек»; α - углы раскрытия диффузора; β - рациональный угол наклона оси основных сопел к горизонту; h - относительная ширина горловины диффузора; R - радиус вихревой камеры горения.

Вихревая топка содержит горизонтальную футерованную вихревую камеру горения 1 с тангенциальными соплами 4 для подвода струи аэросмеси, в которой создается вихревой факел с горизонтально расположенной осью вращения, и соплами 5 для подачи вторичного окислителя, диффузор 2, вертикальную камеру охлаждения 3, насыщенную двухсветными экранами и ширмами.

В конструкции вихревой топки реализовано разделение на две зоны: высокотемпературного горения внутри футерованной вихревой камеры горения 1; теплосъема, организованного в камере охлаждения 3, насыщенной тепловоспринимающими экранными поверхностями. Тангенциальные сопла основные 4 и дополнительные 5 расположены в верхней части камеры горения. Основные сопла, которые служат для подвода топливовоздушной смеси, установлены под углом 20°≤β≤30° к горизонту, что позволяет устранить отклонение верхнего факела. Дополнительные сопла 5, которые служат для подачи вторичного окислителя, ориентированы вертикально вниз, что позволяет «прижать» основные струи и снизить вынос несгоревшего топлива в камеру охлаждения. Под основными соплами расположен направляющий «козырек» 6, выполненный в виде дуги окружности, радиус которой в два раза меньше радиуса камеры горения. Такое конструктивное решение способствует предотвращению выноса части несгоревшего топлива из камеры горения из-за подпирания основных струй и, соответственно, повышению полноты выгорания пылеугольного топлива и ограничению уровня эмиссии оксидов азота, образующихся в высокотемпературном потоке в камере горения.

Стенки вихревой камеры горения 1 покрыты слоем теплозащитной износостойкой футеровки, за счет которой в камере 1 создают тепловые условия, близкие к адиабатическим, в результате чего в процессе сжигания угольного топлива в вихревой камере горения 1 достигают температуры порядка 2000°С и обеспечивают тем самым условия для устойчивого режима непрерывного жидкого шлакоудаления.

Вихревая топка работает следующим образом.

Путем подачи горелочных струй через тангенциальные сопла 4 и 5 в вихревой камере горения 1 формируют закрученный поток с горизонтально расположенной осью вихря. Через основные сопла 4 подают струи первичного воздуха с распыленным в нем угольным топливом (струи аэросмеси), одновременно этим струям организуют дутье вторичного сухого воздуха через сопла 5. Основные входные струи топливовоздушной смеси, подаваемые под углом 20°≤β≤30° к горизонту, развиваются вдоль закрученного потока в вихревой камере горения 1 и взаимодействуют с нисходящими струями вторичного окислителя, подаваемого из дополнительных сопел 5. Прогрев топливовоздушных струй, истекающих из основных сопел 4, происходит при их взаимодействии с горячим закрученным потоком в вихревой камере, что сопровождается процессом выхода летучих компонент угольного топлива и их сгоранием с интенсивным тепловыделением. Подача вторичного воздуха через дополнительные сопла 5 обеспечивает приток окислителя, необходимый для дожигания углерода кокса.

Аэродинамическая структура потока в вихревой топке характеризуется «перчаточной» схемой, т.е. пространственным пересечением входящих из основных сопел 4 топливовоздушных струй с закрученным потоком в вихревой камере горения 1, восходящая часть которого обтекает эти струи снизу вверх и затем поступает в область диффузора 2 и далее в камеру охлаждения 3. Такая аэродинамическая структура обусловливает высокую интенсивность турбулентного перемешивания, интенсификацию процессов тепломассопереноса в вихревой камере горения 1 и, соответственно, надежное сжигание низкореакционных твердых топлив, а также рециркуляцию продуктов сгорания в зону пылеугольного факела, за счет которой понижается эмиссия оксидов азота в вихревой камере горения. При этом благодаря наличию в новых конфигурациях вихревой топки дополнительного тангенциального дутья обеспечивают расширение способов управления аэродинамической структурой потока и режимными параметрами, включая использование принципа стадийного сжигания путем обеспечения условий недостатка окислителя в вихревом факеле камеры горения с последующим дожиганием топлива, и, как следствие, возможность повышения показателей усовершенствованной топки [Аникин Ю.А., Ануфриев И.С. Красинский Д.В., Саломатов В.В., Шадрин Е.Ю., Шарыпов О.В. Физическое и численное моделирование внутренней аэродинамики вихревой топки с рассредоточенным тангенциальным вводом горелочных струй // Вестник Новосиб. гос .ун-та. Серия: Физика. 2013. Т. 8, вып. 2. С. 86-94, Красинский Д.В., Саломатов В.В., Ануфриев И.С., Шарыпов О.В., Шадрин Е.Ю., Аникин Ю.А. Моделирование топочных процессов при сжигании распыленного угля в вихревой топке усовершенствованной конструкции. Часть 1. Аэродинамика течения в вихревой топке // Теплоэнергетика. 2015. №2. С. 41-46].

Выбор соотношения расходов газовых фаз первичной и вторичной струй, γ, определяет взаимодействие между двумя входными потоками, так, например, для γ=3 часть вторичной струи отклоняется, что приводит к возникновению зоны рециркуляции, расположенной над основной входной струей (вблизи горловины диффузора), и происходит частичное перенаправление потока окислителя через диффузор в камеру охлаждения. Это позволяет интенсифицировать процесс дожигания несгоревшего топлива (кокса и углерода в газовой фазе СО).

В камере охлаждения температура быстро уменьшается по высоте топки, причем основным механизмом отвода тепла в экранные поверхности является лучистый теплоперенос. При этом температурное поле в камере охлаждения становится более равномерным, что обусловлено эффективным теплоотводом из топочного объема в теплоноситель парогенератора благодаря заложенному в конструкции насыщению камеры охлаждения вихревой топки тепловоспринимающими экранными поверхностями. В результате достигается повышение КПД котла и уменьшение высоты топки.

С помощью математической модели, основанной на смешанном эйлер-лагранжевом описании двухфазной среды, были описаны все основные взаимосвязи процессов переноса: турбулентного движения, межфазного взаимодействия с учетом скоростного и температурного скольжения фаз, химического гетерогенного и газофазного реагирования, лучистого теплообмена, при сжигании распыленного бурого угля в вихревой топке предлагаемой конструкции, а также были рассчитаны ее основные теплотехнические и экологические характеристики.

Полученные в расчетах интегральные в выходном сечении камеры охлаждения х=8.1 м (перед выпускным газоходом) теплотехнические и экологические параметры исследуемой вихревой топки имеют следующие значения: осредненная по сечению температура Tmean=1018°C, максимальная температура Tmax=1199°C, коэффициент потерь тепла от механической неполноты сгорания топлива q4=2.0%, осредненные значения концентраций (по объему): [O2]=1.12%, [СО]=48 ppm, [NO]=313 ppm. При этом концентрация NO2 (в пересчете на 6%-ное содержание О2 при нормальных условиях) в выходном сечении составила 485 мг/нм3. Отсюда можно сделать вывод о том, что полученный уровень выбросов NOx остается в пределах допустимых значений, принятых в теплоэнергетике - несмотря на высокий уровень температуры в вихревой камере горения - благодаря использованию пониженного значения коэффициента избытка воздуха, а также эффекту рециркуляции продуктов сгорания в зону горения в вихревой камере.

В расчетах показана также повышенная эффективность работы тепловоспринимающих поверхностей в камере охлаждения предложенной вихревой топки. Эффективность работы тепловоспринимающих поверхностей в камере охлаждения топки оценивалась путем расчета коэффициентов тепловой эффективности экранов Ψ=Qрез/Qпад по полученному в результате численного моделирования полю тепловых потоков (где Qпад - падающий на стенку тепловой поток, a Qрез - результирующий (т.е. воспринятый) тепловой поток). Осредненные по площади каждой экранной поверхности значения Ψаv находятся в диапазоне 0.41<Ψav<0.57 (в зависимости от типа поверхности). Полученные значения Ψav в вихревой топке в целом выше, чем типичный уровень Ψ ~0.4 для большинства топочных устройств.

Таким образом, результаты численного моделирования для принятых конструктивных и режимных параметров вихревой топки свидетельствуют, что ее основные теплотехнические и экологические характеристики соответствуют принятым в теплоэнергетике ограничениям, что подтверждает обоснованность выбора конструктивных и режимных параметров. Одновременно с этим для предложенной конструкции вихревой топки достигаются такие показатели энергоэффективности, как повышенные значения коэффициента тепловой эффективности экранных поверхностей (что способствует повышению КПД котла) и режим непрерывного жидкого шлакоудаления, который обеспечивается высоким объемным тепловыделением (и соответствующим высоким уровнем температуры) в камере горения.

Поэтому использование в составе паровых котлов тепловых электростанций предлагаемой вихревой топки новой конструкции позволит повысить энергоэффективность при одновременном снижении выбросов оксидов азота.

Вихревая топка, содержащая горизонтальную цилиндрическую футерованную вихревую камеру горения с направляющим козырьком, диффузор, вертикальную камеру охлаждения и тангенциальные сопла для подвода топливовоздушной смеси - основные, и для подачи вторичного окислителя - дополнительные, отличающаяся тем, что основные и дополнительные тангенциальные сопла расположены в верхней части камеры горения так, что дополнительные сопла ориентированы вертикально вниз, а основные сопла расположены напротив дополнительных под углом 20°≤β≤30° к горизонту, направляющий козырек, расположенный под основными соплами в камере горения, выполнен в виде дуги окружности радиусом, в два раза меньшим радиуса камеры горения, относительная ширина горловины диффузора h=H/2R, где H - ширина горловины диффузора, R - радиус камеры горения, лежит в диапазоне 0,3≤h≤0,4, при этом углы раскрытия диффузора лежат в диапазоне 40°≤α≤50°.



 

Похожие патенты:

Изобретение относится к камерным вихревым топочным устройствам с тангенциальной схемой расположения горелок. Вихревая топка разделена двухсторонним пережимом на камеру дожигания с дополнительными горелками и расположенную под ней камеру сгорания с установленными тангенциально основными горелками.

Группа изобретений относится к области теплоэнергетики, в частности к камерным топкам с пылевидно-дисперсным сжиганием топлива (уголь, торф, мазут, суспензия), например к топкам котельных установок в промышленных печах.

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки.

Изобретение может быть использовано для утилизации горючих отходов, биомассы или иных веществ, содержащих углерод и водород, с целью получения горючих газов. Способ включает подачу в реактор топлива воздуха, их смешивание, сгорание смеси и/или газификации содержащейся в ней твердой основы.

Изобретение относится к способу активирования фракционированных по размеру частиц порошкообразного угля путем их ввода вертикально-щелевыми потоками в смеси с продуктами сгорания и нагрева спутными вертикально-щелевыми газовыми факелами в горизонтальных камерно-факельных нагревателях, выделения и сжигания легких и тяжелых фракций летучих веществ при взаимодействии с газообразными продуктами сгорания, воздухом и паром в инверторных реакторах, охлаждения воздухом в кипящем слое с одновременным отводом теплоты поверхностному теплообменнику, отличающийся тем, что факельный нагрев осуществляют при недостатке кислорода с выделением влаги и легких фракций летучих веществ, а продукты неполного сгорания и нагретые частицы угля вводят в вертикальные инверторные кольцевые реакторы, в которых вначале организуют воспламенение и сжигание легких фракций летучих веществ в кольцевых опускных потоках с воздушной подпиткой факелов радиальными струями из вертикально-приосевых участков, затем выводят и сжигают тяжелые фракции летучих веществ в опускных потоках с продувкой факелов тангенциальными струями пара при одновременном отводе теплоты встроенным поверхностным охладителям.

Топка // 2489647
Изобретение относится к области энергетики и может быть использовано на котлах тепловых электростанций при сжигании угольной пыли и природного газа. .

Изобретение относится к области промышленной энергетики, в частности к бесколосниковым вихревым топкам, предназначенным для водогрейных котлов отопительных установок, сушильных камер и т.д., и позволяет при его использовании упростить конструкцию топки путем повышения эффективности процесса сжигания топлива при снижении содержания вредных веществ в генераторном газе.

Изобретение относится к теплоэнергетике и может быть использовано в котлах, работающих на угле и различных типах топлива, содержащих серу. .

Изобретение относится к устройствам для одновременного или попеременного сжигания жидкого и газообразного топлива, а именно к циклонным предтопкам для сжигания жидкого топлива и/или газа в различных котельных установках и позволяет повысить эффективность сжигания газа, а также надежность его работы и увеличить срок службы.

Заявляемая пылегазомазутная топка относится к области тепловой энергетики и может быть использована на паровых котлах, снабженных шаровыми барабанными мельницами. Она содержит экранированные вертикальную прямоугольную камеру сгорания 1 и двускатную холодную воронку 2, шлаковый комод 3, группы из пылеугольных 4 и расположенных под ними газовых горелок 5, а также из мазутных горелок 6 и расположенных под ними сопл сбросного агента пылесистем 7, установленных на больших стенах камеры сгорания 1 в общих вертикальных плоскостях. Горелки и сопла каждого наименования установлены на противоположных стенах по встречно-смещенной схеме, направлены с наклоном вниз и тангенциально относительно горизонтальной поверхности цилиндрического условного тела вращения 9, а сопла сбросного агента пылесистем 7 повернуты в горизонтальной проекции в одну сторону относительно указанных вертикальных плоскостей на угол arctg2S/B, где S - среднее расстояние между вертикальными плоскостями размещения горелок и сопл, В - расстояние между большими стенами камеры сгорания. На больших стенах шлакового комода 3 в вертикальных плоскостях размещения горелок и сопл дополнительно установлены комбинированные сопла воздуха и газов рециркуляции 8 с направлением их осей наклонно вверх и тангенциально относительно горизонтальной поверхности цилиндрического условного тела вращения 9. Использование данной пылегазомазутной топки обеспечит повышение надежности, экономичности и экологической безопасности ее работы. 1 з.п. ф-лы, 3 ил.

Изобретение относится к топочным устройствам мощных энергоблоков и может быть использовано в теплоэнергетике. Холодная воронка котла с кольцевой топкой 1 образована коаксиальными равносторонними призмами, боковые грани которых образованы внутренними 2 и наружными 3 трубными экранами, в нижней части кольцевой топки 1 все наружные трубные экраны 3 загнуты внутрь под углом 50-60° к горизонту, эти скаты наружных трубных экранов 3 образуют восьмискатную холодную воронку 5. У каждого второго наружного трубного экрана 3 скаты 6 выполнены прямоугольной формы и они удлинены до противолежащих им внутренних трубных экранов 2, а скаты 7 других наружных трубных экранов 3, расположенных между скатов 6 прямоугольной формы, выполнены в форме равнобедренных трапеций и между их меньшими основаниями и противолежащими им внутренними трубными экранами 2 выполнены окна 8 выхода шлака, нижние боковые части скатов 6 прямоугольной формы продлены до окон 8 выхода шлака, а в центре нижних частей этих скатов 6 выполнены двускатные разделители 9 потока шлака, причем все скаты 6 и 7 холодной воронки 5 и скаты разделителей 9 потока шлака выполнены из труб 4 наружных трубных экранов 3. Изобретение позволяет повысить надежность и долговечность работы котла с кольцевой топкой, технологичность ее изготовления, а также снизить высоту холодной воронки и котла в целом, уменьшив при этом материалоемкость котла. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области теплоэнергетики и может быть использовано при разработке парогенераторов с пылевым сжиганием углей. Топка парогенератора содержит горизонтальную камеру сгорания, ограниченную двумя вертикальными экранированными боковыми стенками, вертикальной экранированной фронтальной стенкой, горизонтальной экранированной крышей, горелки, холодную воронку, образованную группой наклонных экранированных стенок, согласно изобретению, горизонтальная камера сгорания выполнена квадратного сечения, горелки выбраны прямоточного типа, топка снабжена дополнительной холодной воронкой, образованной группой наклонных экранированных стенок, как и основная воронка, холодные воронки выполнены продольной формы и соединены горизонтальной экранированной стенкой, снабженной N≥1 рядами горелок, каждая боковая стенка снабжена M≥1 рядами горелок, плоскости, образованные пересечением продольных осей горелок, формируют ярусы горелок, продольные оси в каждом ярусе горелок направлены по касательной к условной окружности с относительным диаметром 0.15<dy<0.20, ,где d - диаметр условной окружности, D - диаметр окружности, условно вписанной в квадратное сечение камеры сгорания. Технический результат заключается в уменьшении шлакования поверхностей нагрева топки парогенератора в котлах с горизонтальной компоновкой. 2 ил.

Изобретение относится к энергетике и касается разработки слоевых котлов, универсальных по типам сжигаемых топлив и отходов при условии их минимальной подготовки и с организацией экономичного вихревого сжигания с повышенными экологическими показателями, причем как отдельно, так и при совместном сжигании разных топлив. Слоевой котел с вертикальной вихревой топкой содержит слоевое топочное устройство, включающее питатели топлива, колосниковую решетку и тракт выгрузки золы, установленные под вихревой камерой сгорания, образованной стенами из обмуровки и топочных экранов, с газоотводящим окном, расположенным на потолочном экране, и соплами вторичного дутья, причем часть этих сопл установлена на стенах, ориентирована тангенциально к условному телу вращения формируемого вихря с осью, проходящей через газоотводящее окно, и направлена по ходу вращения вихря и вниз, в сторону колосниковой решетки, а часть сопл вторичного дутья установлена в углах камеры сгорания, и они направлены вниз, причем газоотводящее окно выполнено в виде защищенного обмуровкой и трубами выступающего в вихревую камеру сгорания отрезка воздуховода в форме полого конуса с полууглом раскрытия от +35 до -35 градусов, на торцевой и боковых поверхностях которого установлены ориентированные тангенциально и направленные в топку сопла дожигающего дутья. В итоге обеспечивается глубокое выжигание горючих из слоя, уноса и летучих, причем благодаря ступенчатой подаче дутья по экологически эффективной схеме с оптимальным по применяемому топливу слоевым топочным устройством. 20 з.п. ф-лы, 3 ил.

Изобретение относится к паровым и водогрейным котлам с камерной топкой. Котел с камерной топкой, которая имеет установленные встречно-смещенно на стенах холодной воронки сопла нижнего дутья и расположенные выше по меньшей мере в один ярус тангенциально направленные к оси топки горелки, над ними топка разделена на камеру дожигания и расположенную ниже камеру сгорания газоплотным пережимом, который выполнен в виде воронки, набранной из изогнутых в виде восьмиугольников последовательно вписанных и вложенных труб, соединенных между собой проставками и включенных в тракты принудительной циркуляции котла. Изобретение направлено на повышение экономичности за счет снижения мехнедожога, снижение вредных выбросов и регулирование температуры перегрева пара за счет дожигания на выходе из топки. 4 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим козырьком, выполненным в виде дуги окружности радиусом в два раза меньшим радиуса камеры горения, диффузор с углами раскрытия 40°≤α≤50° и относительной шириной горловины 0,3≤h≤0,4, вертикальную камеру охлаждения и расположенные в верхней части камеры горения тангенциальные сопла, основные - для подвода топливовоздушной смеси, ориентированные под углом 20°≤β≤30° к горизонту, и дополнительные - для подачи вторичного окислителя, ориентированные вертикально вниз. Технический результат - подавление эффекта Коанда в камере охлаждения, предотвращение выноса части несгоревшего топлива из камеры горения для повышения полноты выгорания пылеугольного топлива, снижение уровня эмиссии оксидов азота. 2 ил.

Наверх