Способ образования каналов на катоде в несамостоятельном дуговом разряде



Способ образования каналов на катоде в несамостоятельном дуговом разряде
Способ образования каналов на катоде в несамостоятельном дуговом разряде

 

H05H1/00 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2537383:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU)

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами. Расстояние от катода до анода выбирается таким, при котором разряд без проволочки самопроизвольно не возникает, а между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки. При этом один конец проволочки помещается в отверстии внутри катодной поверхности и касается ее, а при подаче напряжения на разрядный промежуток из точки касания проволочки и катодной поверхности на катоде образуется канал, исходящий из точки касания в направлении от места соединения катода с отрицательным полюсом источника напряжения. Технический результат - обеспечивается создание каналов на катоде в несамостоятельном дуговом разряде, что повышает эффективность проведения научных исследований в технологиях микроэлектроники. 2 ил.

 

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах, между анодом и катодом в которых при фиксированном расстоянии между ними подается напряжение. Возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами, контактируя с ними. Расстояние между электродами выбирается таким, при котором разряд без проволоки не возникает. Между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки. При этом один конец проволочки располагается в отверстии внутри катодной поверхности и касается ее, а при подаче напряжения на разрядный промежуток из точки касания проволочки и катодной поверхности на катоде образуется канал, исходящий из точки касания в направлении от места соединения катода с отрицательным полюсом источника напряжения.

Технический результат изобретения - разработка способа образования каналов на поверхности катода в несамостоятельном дуговом разряде.

Известен способ зажигания дугового разряда при подаче на него напряжения за счет начального плотного соприкосновения перемещающихся друг относительно друга электродов с последующим их раздвижением [1].

Этот способ не позволяет зажигать несамостоятельный дуговой разряд.

Известен способ зажигания несамостоятельного дугового разряда в разрядном промежутке с металлической проволочкой между электродами [2].

Этот способ не позволяет образовывать каналы на поверхности катода.

Техническая задача, решаемая в предложенном изобретении, заключается в разработке способа для создания на поверхности катода каналов в несамостоятельном дуговом разряде при испарении проволочки внутри разрядного промежутка. Суть ее заключается в следующем. Один из концов помещенной между электродами проволочки располагается в отверстии внутри катодной поверхности и касается ее. При подаче напряжения на разрядный промежуток из точки касания проволочки катодной поверхности на катоде образуется канал, исходящий из точки касания в направлении от места соединения катода с отрицательным полюсом источника напряжения.

Поставленная задача достигается тем, что между анодом и катодом при фиксированном расстоянии между ними плавится и испаряется тонкая металлическая проволочка. При этом один конец проволочки располагается в отверстии внутри катодной поверхности и касается ее, а при подаче напряжения на разрядный промежуток из точки касания проволочки и катодной поверхности на катоде образуется канал, исходящий из точки касания в направлении от места соединения катода с отрицательным полюсом источника напряжения.

Данный способ впервые дает возможность образовывать каналы на катодной поверхности в несамостоятельном дуговом разряде при испарении проволочки внутри разрядного промежутка, один из концов которой помещается в отверстии на поверхности катода.

Сущность способа заключается в следующем. Между металлическими электродами при фиксированном расстоянием между ними подается напряжение. Возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами, при этом расстояние между электродами выбирается таким, при котором газовый разряд без проволочки не зажигается, а между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки. При этом один конец проволочки располагается в отверстии внутри катодной поверхности и касается ее, а при подаче напряжения на электроды из точки касания проволочки и катодной поверхности на катоде образуется канал, исходящий из точки касания в направлении от места соединения катода с отрицательным полюсом источника напряжения.

Схема осуществления способа показана на чертеже (см. рис.1). Проволочка 1 натянута между катодом (2) и анодом (3) и контактирует с ними. При этом один конец проволочки контактирует с катодной поверхностью внутри отверстия (4) в катоде. Для подачи напряжения на электроды использовался выпрямительный агрегат «Дельфин» (5) с выпрямленным напряжением 220 B. Разрядный ток в максимуме менялся в области 10-50 А с помощью переменного сопротивления (6). Длительность разряда около 0,1 секунды. В качестве катода применялись различные металлы (Cu, Ni, Fe, Ti, латунь, нержавеющая сталь и другие). Брались проволочки разных металлов и сплавов (Cu, Ni, Fe, нихром, ковар и другие). Диаметр проволочек менялась в интервале 0,04-0,1 мм, их длина менялась от 15 до 30 мм.

При подаче напряжения на разрядный промежуток с проволочкой, натянутой между электродами, из точки касания проволочки и катодной поверхности на катоде под действием электронов катода и ионов из плазмы образуется канал (7). Фотография его на пластинке-катоде из трансформаторного железа представлена на рис.2. Канал (7) исходит из отверстия в катоде (4) в направлении от места соединения катода с отрицательным полюсом источника напряжения (8) в сторону более положительного потенциала.

Обратим внимание на ряд обстоятельств.

1. Канал на катоде, как и пробой газа, не возникает без проволочки, поскольку пробойное напряжение разрядного промежутка длиной 1 см в воздухе при атмосферном давлении составляет 31000 B [3].

2. При расположении проволочки на торце катодной пластины (см. рис.1 в [4] на стр.4) каналы не возникают.

3. Протяженность каналов 1-3 см.

4. При каждом последующем пробое разрядного промежутка канал удлиняется в течение 5-6 пробоев газа, после чего его длина перестает меняться. При этом канал имеет фиксированную на поверхности катода траекторию. Это обстоятельство дает основание предполагать, что проводимость металла на катоде внутри канала может быть больше, чем вне канала.

5. Канал можно образовать касанием поверхности катода одним из концов тонкой проволочки, при этом второй ее конец закреплен на подвижном аноде. Однако в этом случае каналы от пробоя к пробою различаются друг от друга из-за различающихся условий контакта проволочки с катодом.

Появление каналов в металле можно объяснить исходя из принципа наименьшего действия электродинамики [5] для электрического тока, протекающего через массу вещества, сопротивление которой удовлетворяет закону Ома, токи распределяются в этой массе так, чтобы скорость генерации в ней тепла была наименьшей. Отсюда можно считать, что канал - это траектория движения электронов в металле, вдоль которой потери энергии на нагрев минимальны, т.е. канал - это траектория с наибольшей электронной проводимостью. Именно поэтому электроны при каждом последующем пробое движутся по траектории, совпадающей с траекториями при предыдущих пробоях.

Таким образом, в предложенном способе впервые дано решение образования каналов на катоде в несамостоятельном газовом разряде с металлической проволочкой между электродами, один из концов которой располагается в отверстии внутри катодной поверхности и касается ее.

Способ прост в осуществлении и эффективен. Его можно применять в технике и в научных исследованиях, например в новых технологиях микроэлектроники.

Источники информации

1. Теория сварочных процессов, редактор В.В. Фролов. М.: Высшая школа, 1988.

2. Р.Н. Кузьмин, Н.А. Мискинова, Б.Н. Швилкин. Патент на изобретение №2388192. 2010.

3. Радиофизическая электроника, редактор Н.А. Капцов. Издательство МГУ, 1960, с.497.

4. Р.Н. Кузьмин, Н.А. Мискинова, Б.Н. Швилкин. Патент на изобретение №2368472. 2009.

5. Р. Фейнман, Р. Лейтон, М. Сендс. Фейнмановские лекции по физике. Т. 6. Электродинамика. Издательство «Мир». 1962, с.117.

Способ образования каналов на катоде в несамостоятельном дуговом разряде, в котором между электродами с фиксированным расстоянием между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами, при этом расстояние между электродами выбирается таким, при котором разряд самопроизвольно без проволочки не зажигается, а между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки, отличающийся тем, что проволочка располагается в отверстии внутри катодной поверхности и касается ее, а при подаче напряжения на разрядный промежуток из точки касания проволочки и катодной поверхности на катоде образуется канал, исходящий из точки касания в направлении от места соединения катода с отрицательным полюсом источника напряжения.



 

Похожие патенты:

Изобретение относится к технологии термической обработки твердых диэлектрических тел, включая их разрушение, в частности тел с низким коэффициентом поглощения электромагнитного излучения (горные породы, строительные материалы и пр.), и может быть использовано в горном деле и строительстве.

Изобретение относится к области плазменного нанесения покрытий. Установка плазменного нанесения покрытий или обработки поверхности подложки (3) содержит рабочую камеру (2), которая является вакуумируемой и в которой может быть размещена подложка (3) и плазменная горелка (4) для создания плазменной струи (5) нагреванием технологического газа, причем плазменная горелка (4) имеет сопло (41), через которое плазменная струя (5) может выходить из плазменной горелки (4) и простираться вдоль продольной оси (А) в рабочей камере (2).

Группа изобретений относится к области физической электроники и может использоваться как источник непрерывных или импульсных пучков электронов с энергией до 10-20 кэВ в газах среднего давления (0,1-10 кПа).

Изобретение относится к технологии модифицирования (обработки) поверхности полимерных материалов. Способ управления процессом модифицирования поверхности полимерных материалов в низкотемпературной плазме высокочастотного разряда при пониженных давлениях среды осуществляют путем изменения мощности разряда.

Изобретение относится к области плазменной техники. Сопло для плазменной горелки, охлаждаемой жидкостью, содержит сверление сопла для выхода струи плазменного газа на конце сопла, первый участок, внешняя поверхность которого выполнена цилиндрической, и примыкающий к нему, к концу сопла второй участок, внешняя поверхность которого суживается по направлению к концу сопла конически, причем предусмотрена/предусмотрены, по меньшей мере, одна канавка подвода жидкости и/или, по меньшей мере, одна канавка отвода жидкости и продолжаются через второй участок во внешней поверхности сопла (4) по направлению к концу сопла и причем канавка подвода жидкости или, по меньшей мере, одна из канавок подвода жидкости и/или канавка отвода жидкости или, по меньшей мере, одна из канавок отвода жидкости также продолжается/продолжаются через часть первого участка, а в первом участке находится, по меньшей мере, одна канавка, сообщающаяся с канавкой подвода жидкости или, по меньшей мере, с одной из канавок подвода жидкости или с канавкой отвода жидкости или, по меньшей мере, с одной из канавок отвода жидкости.

Изобретение относится к плазменной технике и может быть использовано в области атомно-эмиссионного спектрального анализа, при термической обработке порошковых материалов, а также в качестве их атомизатора для корректировки траектории космических аппаратов.

Изобретение относится к плазменной технике и может быть использовано для нагрева различных газов и в качестве поджигающего устройства пылеугольной горелки. Технический результат - повышение КПД устройства и увеличение ресурса рабочих электродов.
Заявленное изобретение относится к физике плазмы. В заявленном устройстве с магнитным удержанием плазмы типа «ловушка с магнитными пробками» рабочий объем заполнен плазмой из одного исходного изотопа, при этом ядра второго изотопа ускоряют до энергий (110÷700) кэВ и вводят плотными пучками, уравновешивающими давление получаемой плазмы со всех сторон.

Изобретение относится к плазменной технике, в частности к конструкции магнитного блока распылительной системы, и может быть использовано в планарных магнетронах для вакуумного ионно-плазменного нанесения тонких пленок металлов и их соединений на поверхность твердых тел.

Изобретение относится к плазменной технике. Плазменный двигатель с замкнутым дрейфом электронов содержит главный кольцевой канал ионизации и ускорения, ограниченный конструкционными элементами из изолирующего материала и открытый на своем выходном конце.

Использование: для обнаружения малых концентраций функциональных углеводородов в газовой фазе. Сущность изобретения заключается в том, что сенсорное устройство для селективного обнаружения малых концентраций функциональных углеводородов в газовой фазе содержит по меньшей мере один выполненный с возможностью нагрева резистивный датчик, имеющий резистивный сенсорный слой, и по меньшей мере один выполненный с возможностью нагрева датчик поверхностной ионизации, включающий в себя сенсорную поверхность и расположенный на расстоянии от нее противоположный электрод, между которыми существует электрическое поле, причем сенсорный слой резистивного датчика идентичен сенсорной поверхности датчика поверхностной ионизации.

Изобретение относится к области технической физики, в частности к спектральным методам определения элементного состава жидких сред с использованием электрического разряда в жидкости в качестве источника спектров.

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия.

Изобретение относится к области газового анализа и может быть использовано для решения задач разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе.

Изобретение относится к способу определения концентрации ванадия в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой (вариантам). .

Изобретение относится к области аналитического приборостроения и может найти применение при контроле примесей веществ в газах и, в частности, в воздухе. .

Изобретение относится к области газового анализа и может быть использовано для решения задач разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе.

Изобретение относится к области аналитического приборостроения, а более конкретно к приборам для обнаружения паров органических веществ в составе воздуха, в частности паров органических молекул из класса взрывчатых, наркотических и физиологически активных веществ, а также паров органических молекул, выделяющихся при горении материалов, содержащих органические компоненты.

Изобретение относится к области газового анализа и может быть использовано для решения задач скоростного циклического разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе, а также как основа для газохроматографического детектирования. Для этого в способе, включающем разделение ионов различных типов с помощью суперпозиции знакопеременного периодического несимметричного по полярности и однонаправленного электрических полей в потоке газа, ограниченном протяженными электродами, циклическое варьирование однонаправленного электрического поля в диапазоне значений напряженности, обеспечивающих транспортировку разделенных ионов потоком газа на регистрацию, регистрацию спектра разделенных ионов в виде совокупности ионных пиков, в том числе, пиков веществ, подлежащих контролю, согласно изобретению по первому варианту запуск последующего цикла варьирования осуществляют через интервал времени задержки после окончания предыдущего цикла варьирования однонаправленного электрического поля. По второму варианту в зависимости от скорости варьирования однонаправленного электрического поля начальное значение напряженности этого поля выбирают таким, что при указанной скорости варьирования к моменту регистрации в спектре первого пика вещества, подлежащего контролю, прошло время, достаточное для удаления всех типов ионов, попавших в поток газа в предыдущем цикле варьирования однонаправленного электрического поля. 6 з.п. ф-лы, 2 ил.
Наверх