Способ получения эфиров гликолевой кислоты



Способ получения эфиров гликолевой кислоты
Способ получения эфиров гликолевой кислоты
Способ получения эфиров гликолевой кислоты
Способ получения эфиров гликолевой кислоты

 


Владельцы патента RU 2538971:

Федеральное государственное бюджетное учреждение науки Институт проблем химической физики российской академии наук (ИПХФ РАН) (RU)

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов, в частности к получению эфиров гликолевой кислоты. Способ получения метилового эфира гликолевой кислоты включает стадии карбонилирования формальдегида и этерификации гликолевой кислоты, где этан или этансодержащий углеводородный газ смешивают с кислородом или с кислородсодержащим газом в мольном соотношении этан : кислород, равном 40÷1:1, проводят окисление при температуре 350-550°C и давлении 20-40 бар, полученные продукты охлаждают и разделяют на поток (I), содержащий формальдегид и воду, и поток (II), содержащий СО, метиловый и этиловый спирты, непрореагировавшие этан и метан, поток (I) направляют на стадию карбонилирования формальдегида полученным в процессе СО, поток (II) направляют на стадию этерификации гликолевой кислоты входящими в состав потока метиловым и этиловым спиртами, после которой получают поток продуктов этерификации (III), из которого известными приемами выделяют метиловый эфир гликолевой кислоты, и поток (IV), содержащий СО, непрореагировавшие этан и метан, который направляют на стадию карбонилирования, непрореагировавшие этан и метан после стадии карбонилирования частично возвращают на парциальное окисление и/или используют в виде топливного газа. По сравнению с известными способами получения эфиров гликолевой кислоты достигается существенное упрощение технологии, исключается высоко энерго- и капиталоемкая стадия получения синтез-газа. 4 пр., 1 ил.

 

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов с высокой добавленной стоимостью (процессам «газ-в-жидкость»), в частности получению эфиров гликолевой кислоты, используемых в химической промышленности в качестве полупродукта для синтезов ряда продуктов. Особенно перспективным процессом, в котором используются эфиры гликолевой кислоты, является альтернативный способ получения одного из важнейших нефтехимических продуктов - этиленгликоля. В настоящее время промышленный метод получения этиленгликоля базируется на использовании нефтяного сырья, дистилляцией которого получают нафту, перерабатываемую далее в этилен, из которого получают окись этилена, при последующей гидратации последней получают этиленгликоль-сырец, который очищают ректификацией.

Хотя нефть до сих пор является основным сырьевым источником для получения этиленгликоля, но из-за ограничения и трудностей освоения новых ресурсов нефти, по прогнозам, нефтяная отрасль в течение ближайших лет войдет в режим, когда добыча вступит в противоречие с растущим спросом на нефть. Следствием этого является существенный рост цен на этот продукт. Поэтому производство традиционных продуктов нефтехимической промышленности рассматривает другие источники углеводородов, прежде всего, природные углеводородные газы. В работе [S.A.I. Barri, D. Chadwick // Catalysis Letters, V. 141, Iss. 6, pp 749-753] описан альтернативный путь получения этиленгликоля - через синтез-газ, получаемый переработкой метана, источником которого может быть природный газ или биомасса, по схеме:

метан → синтез-газ → метанол → формальдегид → гликолевая кислота → метиловый эфир гликолевой кислоты → этиленгликоль.

Таким образом, должны быть осуществлены химические превращения, при которых из метана последовательно в несколько стадий получают сначала СО, затем метанол, из которого далее получают формальдегид и только после этого синтезируют сначала гликолевую кислоту, а затем целевой продукт - эфир гликолевой кислоты:

Гидрированием последнего может быть получен этиленгликоль.

Следовательно, перед проведением известных стадий получения метилового эфира гликолевой кислоты - карбонилирования формальдегида с получением гликолевой кислоты и ее этерификации метанолом, должны быть осуществлены стадии получения синтез-газа, синтез метанола и синтез формальдегида. Получение каждого из этих продуктов широко и давно используется в промышленности, процессы их получения защищены многочисленными патентами в различных странах и подробно описаны в литературе, например (Н.Н. Лебедев. Основной органический синтез. Химическая энциклопедия). Реализуемое на последующих стадиях карбонилирование формальдегида в присутствии гомогенных или гетерогенных кислот и цеолитов с получением гликолевой кислоты и ее этерификация метанолом описаны патентах (U.S. Pat. No. 2,152,852 (1939), U.S. Pat. No. 2,285,448 (1942), U.S. Pat. No. 3,911,003 (1975), US Patent Application 20010039364). Недостатками описанного комплексного метода получения метилового эфира гликолевой кислоты исходя из метана и получаемого из него синтез-газа является многостадийность, сложная технология и наличие высоко энерго- и капиталоемкой стадии получения синтез-газа.

Формальдегид и метанол могут быть получены без стадии получения синтез-газа прямым окислением этансодержащего газа, например, как это описано в патенте РФ 2283829. При этом в качестве побочного продукта получают СО. Чтобы ограничить его получение и увеличить выход целевого продукта - формальдегида - в патенте РФ 2283829 жестко ограничивают условия проведения процесса - температура не выше 450°С, содержание кислорода 2-10%. Недостатком способа, описанного в патенте РФ №2283829, является низкая степень химической переработки углерода углеводородного газа в целевой продукт - формальдегид (согласно примерам патента: 11-15 кг/ на 1000 м3 углеводородного газа или 0,4-0,5 кмоль на 45 кмоль этана, то есть всего лишь ~ 1 атом углерода исходного углеводородного газа из 200 полезно перерабатывается химически в целевой продукт), и отсутствие решения полезного химического использования газовой смеси после реакции, кроме сжигания этой смеси в виде топливного газа.

Задачей изобретения является обеспечение улучшенного экономичного способа производства эфиров гликолевой кислоты и этиленгликоля на их основе.

Технический результат заявляемого изобретения заключается в упрощении технологии получения эфиров гликолевой кислоты, уменьшении капитальных затрат за счет снижения числа создаваемых производств получения исходных продуктов и устранении высоко энерго- и капиталоемкой стадии получения синтез-газа.

Технический результат достигается тем, что все четыре главных химических соединения, участвующих в синтезе эфиров гликолевой кислоты, - формальдегид, метанол, этанол и СО - получают в одну стадию, проводя окисление этана или этансодержащего углеводородного газа в условиях, когда с высоким выходом одновременно образуются все три указанных соединения. Это достигается тем, что этан или этансодержащий углеводородный газ смешивают с кислородом или с кислородсодержащим газом в мольном соотношении этан:кислород, равном 40÷1:1, проводят окисление этана при температуре 350-550°С и давлении 20-40 бар, полученные продукты охлаждают и разделяют на поток (I), содержащий формальдегид и воду, и поток (II), содержащий СО, метиловый и этиловый спирты, непрореагировавшие этан и метан, поток (I) направляют на стадию карбонилирования, поток (II) направляют на стадию этерификации гликолевой кислоты, после которой получают поток продуктов этерификации (III), из которого известными приемами выделяют эфиры гликолевой кислоты, и поток (IV), содержащий СО, непрореагировавшие этан и метан, который направляют на стадию карбонилирования; непрореагировавшие этан и метан после стадии карбонилирования частично возвращают на парциальное окисление и/или используют в виде топливного газа. На фиг.1 представлены стадии процесса и схема получаемых на них потоков.

Основными химическими стадиями процесса согласно изобретению являются парциальное окисление этана или этансодержащего углеводородного газа кислородом или кислородсодержащим газом, карбонилирование получаемого на первой стадии формальдегида с помощью СО, также получаемого на первой стадии, и этерификация получаемой на второй стадии гликолевой кислоты получаемым на первой стадии метанолом и/или этанолом. Процесс включает также вспомогательные операции - сепарацию потока реакционной смеси первой стадии на жидкий поток (поток I) раствора формальдегида в воде и газовый поток (поток II), содержащий метанол, СО, этанол, непрореагировавший этан и примеси других газов; другая вспомогательная операция - выделение и очистка целевого продукта - эфира гликолевой кислоты. В соответствии с изобретением на первой стадии процесса этан или этансодержащий углеводородный газ смешивают с кислородом или с кислородсодержащим газом в мольном соотношении этан:кислород, равном 40÷1:1, проводят одноступенчатое или многоступенчатое окисление этана при температуре 350-550°С и давлении 20-40 бар, полученную реакционную смесь охлаждают и разделяют на поток (I), содержащий формальдегид и воду, и поток (II), содержащий СО, метиловый и этиловый спирты, непрореагировавшие этан и метан. Поток (I) направляют на стадию карбонилирования, поток (II) направляют на стадию этерификации гликолевой кислоты. Карбонилирование формальдегида с получением гликолевой кислоты проводят на второй стадии в присутствии гомогенных или гетерогенных кислот и цеолитов в условиях, описанных в патентах (U.S. Pat. No. 2,152,852 (1939), U.S. Pat. No. 2,285,448 (1942), U.S. Pat. No. 3,911,003 (1975), US Patent Application 20010039364), с помощью СО, поступающего со стадии этерификации в виде потока IV. Полученную на второй стадии гликолевую кислоту в виде потока V направляют на третью стадию - стадию этерификации гликолевой кислоты метанолом, поступающим на стадию этерификации в составе потока II, проводят этерификацию известными приемами, после которой получают поток продуктов этерификации (III), и поток (IV), содержащий СО, непрореагировавший этан и примеси других газов (метан, водород, СО2). Поток (IV) компримируют и направляют на стадию карбонилирования, непрореагировавший этан с примесью других газов после стадии карбонилирования в виде потока (VI) частично возвращают на парциальное окисление и/или на сдувку, которая может быть использована в виде топливного газа. Из потока продуктов этерификации (III) известными приемами выделяют эфиры гликолевой кислоты, например, последовательно проводя отгонку воды гетероазеотропной осушкой, выделение кислотных катализаторов, спиртов и дистилляцию. Кроме того, наряду с метиловым эфиром гликолевой кислоты дополнительно получают этиловый эфир гликолевой кислоты.

Таким образом, в соответствии с изобретением в одну стадию сразу же получают все три необходимые для получения эфиров гликолевой кислоты соединения - формальдегид, метиловый спирт, этиловый спирт и СО, так что получение этиленгликоля может быть осуществлено по следующей упрощенной схеме:

этан → формальдегид, метанол, СО → гликолевая кислота → эфиры гликолевой кислоты → этиленгликоль

По сравнению с известными способами получения метилового эфира гликолевой кислоты достигается существенное упрощение технологии, устраняется высоко энерго- и капиталоемкая стадия получения синтез-газа.

Примеры осуществления предложенного способа

Пример 1. Этансодержащий газ с содержанием этапа 94,2% (объемн.) при давлении 25 бар в количестве 0,4 нм3 в час нагревают до температуры 350°С и при температуре от 350 до 500°С подвергают трехступенчатому окислению кислородом, который подают в количестве по 10 л/час на каждую ступень окисления (суммарно 30 л/час). В результате парциального окисления получают газовую смесь в количестве 0,44 нм3/час, содержащую 11,3 г формальдегида, 18,9 г метанола, 15,0 г СО, 15,2 г Н2О, 4,9 г этанола. Конверсия этана составляет около 6%, конверсия кислорода ~ 100%. Смесь охлаждают до температуры 150°С и сепарируют, получая поток I формальдегида и воды в количестве 25,7 г/ч и газовый поток в количестве 0,42 нм3/час. Поток I направляют на стадию карбонилирования, где при 100% конверсии формальдегида и селективности около 90% получают 26,1 г/ч гликолевой кислоты. Раствор гликолевой кислоты направляют на стадию этерификации метанолом и этанолом, полученными на первой стадии процесса, в результате чего получают 24,5 г/ч метилового эфира гликолевой кислоты и 6,4 г/ч этилового эфира гликолевой кислоты.

Пример 2. Этансодержащий газ с содержанием этана 83,7% (объемн.) при давлении 30 бар в количестве 0,45 нм3 в час нагревают до температуры 400°С и при температуре от 400 до 500°С подвергают трехступенчатому окислению кислородом, который подают на стадию окисления суммарно в количестве 58 л/час. В результате парциального окисления получают газовую смесь в количестве 0,56 нм3/час, содержащую 15 г формальдегида, 32,6 г метанола, 48 г СО, 26,6 г Н2О, 7,2 г этанола. Конверсия этана составляет ~ 11%, конверсия кислорода ~ 100%. Смесь охлаждают до температуры 160°С и сепарируют, получая поток I формальдегида и воды в количестве 40,5 г/ч и газовый поток в количестве 0,52 нм3/час. Поток I направляют на стадию карбонилирования, где при 100% конверсии формальдегида и селективности около 90% получают 34,7 г/ч гликолевой кислоты. Раствор гликолевой кислоты направляют на стадию этерификации метанолом и этанолом, полученными на первой стадии процесса, в результате чего получают 28,2 г/ч метилового эфира гликолевой кислоты и 8 г/ч этилового эфира гликолевой кислоты.

Пример 3. Этансодержащий газ с содержанием этана 11,2% (объемн.) при давлении 40 бар в количестве 0,51 нм3 в час нагревают до температуры 450°С и при температуре от 450 до 500°С подвергают одноступенчатому окислению кислородом воздуха, который подают на стадию окисления в количестве 0,21 нм3/час. В результате парциального окисления получают газовую смесь в количестве 0,77 нм3/час, содержащую 11,0 г формальдегида, 27,7 г метанола, 19,9 г СО, 42 г Н2О, 1,1 г этанола. Конверсия этана составляет около 67%, конверсия кислорода ~ 100%. Смесь охлаждают до температуры 150°С и сепарируют, получая поток I формальдегида и воды в количестве 51,7 г/ч и газовый поток в количестве 0,71 нм3/час. Поток I направляют на стадию карбонилирования, где при 100% конверсии формальдегида и селективности около 90% получают 25,3 г/ч гликолевой кислоты. Раствор гликолевой кислоты направляют на стадию этерификации метанолом и этанолом, полученными на первой стадии процесса, в результате чего получают 22,5 г/ч метилового эфира гликолевой кислоты и 1,0 г/ч этилового эфира гликолевой кислоты.

Пример 4. Этансодержащий газ с содержанием этана 94,2% (объемн.) при давлении 40 бар в количестве 0,05 нм3 в час и рециркулирующий газ (часть потока VI) в количестве 494 л, содержащий 34% этана, 41,5% СО и 24,5% примесей, нагревают до температуры 450°С и при температуре от 450 до 550°С подвергают двухступенчатому окислению техническим кислородом (95%), который подают в количестве по 29 л/час на каждую ступень окисления (суммарно 58 л/час). После парциального окисления получают газовую смесь в количестве 0,56 нм3 /час, содержащую 9,0 г формальдегида, 25,6 г метанола, 298 г СО, 36 г H2O, 2,3 г этанола. Смесь охлаждают до температуры 150°С и сепарируют, получая поток I формальдегида и воды в количестве 42 г/ч и газовый поток в количестве 0,51 нм3/час. Поток I направляют на стадию карбонилирования, где при 100% конверсии формальдегида и селективности около 90% получают 20,5 г/ч гликолевой кислоты. Раствор гликолевой кислоты направляют на стадию этерификации метанолом и этанолом, полученными на первой стадии процесса, в результате чего получают 17,5 г/ч метилового эфира гликолевой кислоты и 2,2 г/ч этилового эфира гликолевой кислоты.

Способ получения метилового эфира гликолевой кислоты, включающий стадии карбонилирования формальдегида и этерификации гликолевой кислоты, отличающийся тем, что этан или этансодержащий углеводородный газ смешивают с кислородом или с кислородсодержащим газом в мольном соотношении этан : кислород, равном 40÷1:1, проводят окисление при температуре 350-550°C и давлении 20-40 бар, полученные продукты охлаждают и разделяют на поток (I), содержащий формальдегид и воду, и поток (II), содержащий СО, метиловый и этиловый спирты, непрореагировавшие этан и метан, поток (I) направляют на стадию карбонилирования формальдегида полученным в процессе СО, поток (II) направляют на стадию этерификации гликолевой кислоты входящими в состав потока метиловым и этиловым спиртами, после которой получают поток продуктов этерификации (III), из которого известными приемами выделяют метиловый эфир гликолевой кислоты, и поток (IV), содержащий СО, непрореагировавшие этан и метан, который направляют на стадию карбонилирования, непрореагировавшие этан и метан после стадии карбонилирования частично возвращают на парциальное окисление и/или используют в виде топливного газа.



 

Похожие патенты:

Изобретение относится к новым производным идебенона, замещенным карбоновой кислотой с общей формулой I, в которой R1 представляет собой С2-С22 сахарную кислоту с прямой или разветвленной цепью, а две или более гидрокси-группы независимо замещены С1-С22 карбоновой кислотой, где термин «разветвленной» относится к одной или нескольким группам низшего алкила.

Настоящее изобретение относится к новым соединениям формулы (I) или их фармацевтически приемлемым солям, используемым для лечения или предупреждения расстройств, опосредуемых рецепторами витамина D, а также к фармацевтической композиции, содержащей данные соединения.

Изобретение относится к способу повышения степени превращения и селективности при получении сложного эфира α-гидроксикарбоновой кислоты из амида α-гидроксикарбоновой кислоты и алифатического спирта, в котором амид α-гидроксикарбоновой кислоты и алифатический спирт подвергают газофазной реакции в присутствии катализатора на основе диоксида циркония при температуре реакции от 150 до 270°C.

Изобретение относится к способу получения соединения, являющегося производным кетомалоновой кислоты, представленного следующей общей формулой (2), в которой R1 могут быть одинаковыми или отличными друг от друга и представлять атом водорода, нормальную или разветвленную C1-С6 алкильную группу, циклическую С3-С6 алкильную группу, арильную группу или гетероарильную группу; где нормальная или разветвленная C1-С6 алкильная группа и циклическая С3-С6 алкильная группа могут иметь заместитель, выбранный из группы, состоящей из нормальной или разветвленной C1-С6 алкильной группы, циклической С3-С6 алкильной группы, гидроксильной группы, нормальной или разветвленной C1-С6 алкоксигруппы, арильной группы и гетероарильной группы; и арильная группа и гетероарильная группа могут иметь заместитель, выбранный из группы, состоящей из нормальной или разветвленной C1-С6 алкильной группы, циклической С3-С6 алкильной группы, гидроксильной группы, нормальной или разветвленной C1-С6 алкоксигруппы, арильной группы, гетероарильной группы и галогена; или его гидрата путем взаимодействия соединения, являющегося производным малоновой кислоты, представленного следующей общей формулой (1), в которой R1 являются таким же, как описано выше, или его смеси с одним или двумя или более соединениями хлористой кислоты, выбранными из группы, состоящей из хлористой кислоты или соли хлористой кислоты, для окисления соединения, являющегося производным малоновой кислоты.
Изобретение относится к усовершенствованному способу получения полиолов, включающему стадии: a) окисления ненасыщенных природных жиров, ненасыщенных природных жирных кислот и/или сложных эфиров жирных кислот моноксидом диазота, b) взаимодействия продукта, полученного на стадии а), с водородом с использованием гетерогенного катализатора на носителе.
Изобретение относится к усовершенствованному способу получения полиолов, включающему стадии: a) окисления ненасыщенных природных жиров, ненасыщенных природных жирных кислот и/или сложных эфиров жирных кислот с оксидом диазота, b) взаимодействия продукта, полученного на стадии а), с гидрирующим реагентом в присутствии катализатора, который содержит по меньшей мере один переходный металл из групп с 6 до 11, c) взаимодействия продукта реакции из стадии b) с алкиленоксидами в присутствии мультиметаллцианидного катализатора.

Изобретение относится к усовершенствованному непрерывному способу получения эфиров альфа-гидроксикарбоновых кислот, в котором подвергают взаимодействию амид альфа-гидроксикарбоновой кислоты со спиртом в качестве исходных компонентов в присутствии катализатора, с получением смеси продуктов, которая содержит эфиры альфа-гидроксикарбоновых кислот, аммиак, непрореагировавший амид альфа-гидроксикарбоновой кислоты, а также спирт и катализатор, в котором а) потоки исходных компонентов, включающие в качестве исходных компонентов амид альфа-гидроксикарбоновой кислоты, спирт и катализатор, подают в реактор повышенного давления; b) в реакторе повышенного давления под давлением от 1 бар до 100 бар проводят взаимодействие потоков исходных компонентов между собой; с) получаемую на этапе b) смесь продуктов, включающую в себя эфиры альфа-гидроксикарбоновых кислот, непрореагировавший амид альфа-гидроксикарбоновой кислоты и катализатор, выводят из реактора повышенного давления; и d) в смеси продуктов снижают содержание спирта и аммиака, причем аммиак удаляют дистилляцией под давлением, которое постоянно поддерживают на уровне выше 1 бар, не прибегая к помощи дополнительных средств очистки.

Изобретение относится к усовершенствованному способу получения алкил(мет)акрилатов, применяющихся в получении полимеров и сополимеров с другими способными полимеризоваться соединениями, включающему стадию переэтерификации сложного алкилового эфира -гидроксикарбоновой кислоты (мет)акриловой кислотой, сопровождаемую образованием алкил(мет)акрилатов и -гидроксикарбоновой кислоты, и стадию дегидратации -гидроксикарбоновой кислоты, сопровождаемую образованием (мет)акриловой кислоты.

Изобретение относится композиции на основе оксида диалкилолова, такого как ДБОО, которая может быть использована в качестве катализатора переэтерификации при синтезе сложных (мет)акриловых эфиров.

Изобретение относится к комплексному способу получения метилового эфира ятрофы (JME) и сопутствующих продуктов из семян ятрофы, находящихся в семенных коробочках и содержащих 1,06% свободных жирных кислот (FFA), включающему следующие стадии: (i) механическое вышелушивание семян ятрофы из семенных коробочек в шелушильной машине для получения оболочек семенных коробочек ятрофы и семян ятрофы; (ii) отжим масла ятрофы, получение масличного жмыха ятрофы, содержащего 4-6% азота, и отработанного масличного шлама из семян ятрофы, полученных на стадии (i), с использованием пресса для отжима масла; (iii) нейтрализация масла ятрофы, полученного на стадии (ii), добавляемым основанием; (iv) переэтерификация одной части нейтрализованного масла ятрофы, полученного на стадии (iii), со спиртом и основанием при перемешивании в течение 10-20 минут и разделение неочищенного глицеринового слоя GL1 и неочищенного метилового эфира ятрофы (JME); (v) трехкратная промывка неочищенного JME, полученного на стадии (iv), слоем чистого глицерина с отделением трех слоев нечистого глицерина (GL2, GL3 и GL4), содержащих метанол и KOH, с получением JME, промытого глицерином (JME-G3W); (vi) очистка JME-G3W, полученного на стадии (v), для удаления загрязнений щелочными металлами; (vii) обработка части оставшегося нейтрализованного масла, полученного на стадии (iii), слоями глицерина GL5 (GL1+GL2+GL3), полученными на стадиях (iv) и (v), с получением JME и слоя глицерина GL6; (viii) разделение JME и слоя глицерина GL6, полученного на стадии (vii); (ix) обработка слоя глицерина GL6, полученного на стадии (viii), оставшейся частью нейтрализованного масла для удаления метанола с получением JME и слоя глицерина GL7; (x) разделение JME и слоя глицерина GL7, полученного на стадии (ix); (xi) использование слоя глицерина GL7, полученного на стадии (x), непосредственно для производства полигидроксиалканоатов (PHAs) или для нейтрализации щелочи серной кислотой с получением чистого глицерина и кубового остатка GL8; (xii) объединение JME-G3W, полученного на стадии (vi), и JME, полученного на стадиях (viii) и (x), с получением комплексного метилового эфира; и (xiii) переэтерификация комплексного метилового эфира, полученного на стадии (xii), с метанольным раствором KOH для получения чистого метилового эфира ятрофы (биодизеля), содержащего 0,088% общего глицерина и 0,005% свободного глицерина.

Изобретение относится к способам получения диарилкарбонатов, которые позволяют получать диарилкарбонаты из газов, вызывающих парниковый эффект, таких как диоксид углерода.

Изобретение относится к усовершенствованному способу получения эфиров (мет)акриловой кислоты, включающему переэтерификацию низкокипящего эфира (мет)акриловой кислоты, температура кипения которого ниже, чем температура кипения образующегося в результате переэтерификации сложного эфира, исходным спиртом в присутствии основного ионообменного вещества, в качестве катализатора, и ингибитора полимеризации, причем переэтерификацию проводят при температуре в пределах от 50°C до 140°C.
Изобретение относится к способу получения высших алкил(мет)акрилатов, используемых для синтеза полимерных депрессорных присадок, которые предназначены для предотвращения застывания и снижения низкотемпературной вязкости парафинистых нефтей.

Изобретение относится к усовершенствованному способу получения дифторуксусной кислоты, включающему взаимодействие эфира дифторуксусной кислоты с алифатической карбоновой кислотой, приводящее в результате реакции трансэтерификации к образованию дифторуксусной кислоты и эфира соответствующей карбоновой кислоты; при этом карбоновую кислоту выбирают таким образом, чтобы эфир указанной карбоновой кислоты имел точку кипения ниже, чем точка кипения дифторуксусной кислоты, причем отношение между числом молей эфира дифторуксусной кислоты и числом молей алифатической карбоновой кислоты варьируют от 0,8 до 1,2, удаление путем перегонки эфира указанной карбоновой кислоты по мере его образования, позволяющее выделить дифторуксусную кислоту.

Изобретение относится к улучшенному способу получения аминоакрилатов (диметиламиноэтилакрилата и диметиламиноэтилметакрилата) переэтерификацией метилакрилата или метилметакрилата диметилэтаноламином при повышенной температуре в присутствии Ti-содержащего жидкофазного катализатора.
Изобретение относится к усовершенствованному способу получения аллилметакрилата, включающему взаимодействие аллилового спирта со сложным эфиром метакриловой кислоты, образованного спиртом, содержащим от 1 до 4 атомов углерода, где взаимодействие проводят при температуре в области от 80°С до 120°С в присутствии ингибитора полимеризации и при этом спирт, высвобождающийся из используемого сложного эфира метакриловой кислоты, отделяют, причем взаимодействие проводят в присутствии ацетилацетоната циркония в качестве катализатора и в условиях подачи кислородсодержащего газа.

Изобретение относится к усовершенствованному способу получения сложных эфиров жирных кислот, используемых в качестве дизельного биотоплива, из цельных семян масличных растений, включающему следующие последовательные этапы: а) предварительное нагревание необрушенных и очищенных цельных семян; b) расплющивание масличных семян вместе с их оболочкой; с) сушка расплющенных семян до достижения содержания воды и летучих веществ от 0,5 до 2,5%; d) переэтерификация путем контакта расплющенных семян со спиртовой средой в присутствии катализатора; е) разделение жидкой и твердой фаз, получаемых в результате переэтерификации; f) нейтрализация жидкой фазы, полученной на этапе е); и g) удаление спирта и отделение глицерина от эфиров жирных кислот, которые затем очищают.
Изобретение относится к способу получения этиленгликольдиметакрилата, включающему реакцию переэтерификации этиленгликолем сложного эфира метакриловой кислоты, где метакрилат образован спиртом, содержащим от 1 до 4 атомов углерода, при температуре в области от 90°C до 130°C в присутствии хлорида лития в комбинации с другим каталически активным соединением в качестве катализатора и ингибитора полимеризации и отделение спирта, высвобождающегося из используемого сложного эфира метакриловой кислоты, причем в качестве другого каталически активного соединения используют амид лития (LiNH2).
Изобретение относится к органическому синтезу, конкретно к усовершенствованному способу получения гликолевой кислоты или ее натриевой соли, которые находят широкое применение в органическом синтезе.
Наверх