Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом



Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом
Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом
Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом
Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом
Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом

 


Владельцы патента RU 2539445:

Баландин Лев Николаевич (RU)
Грибенников Олег Алексеевич (RU)

Изобретение относится к нефтедобывающей промышленности и может быть использовано на нефтяных месторождениях для измерения пластового давления для контроля и управления процессом добычи нефти. Техническим результатом является уменьшение времени простоя скважин при исследовании, повышение точности и надежности определения результатов пластового давления и упрощение его реализации при выводе скважины на режим после глушения. Способ заключается в определении пластового давления в нефтяной скважине, оборудованной погружным электронасосом. Причем при расчете используют точку начала притока жидкости из пласта к скважине по заранее известной, однородной по плотности, жидкости глушения, при выводе скважины на режим после глушения по математической формуле. 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано на нефтяных месторождениях для измерения пластового давления для контроля и управления процессом добычи нефти.

Известен «Способ определения пластового давления в нефтяной скважине», который заключается в остановке скважины, снятии с помощью глубинного манометра кривой восстановления давления, измерении забойного давления до остановки скважины с последующей интерпретацией кривой восстановления давления. (Патент РФ №2167289 от 19.01.1999 г., МПК E21B 47/06).

Недостатком данного способа является то, что необходима остановка скважины, также этот метод предназначен для фонтанных и компрессорных скважин.

Известен «Способ определения пластового давления нефтенасыщенных пластов», включающий определение балансового запаса нефти на ту скважину, в которой определяют пластовое давление. Также определяют накопленную добычу жидкости из скважины, накопленный объем закачки вытесняющего агента и накопленную величину его отбора из добывающей скважины. Пластовое давление определяют из расчетной формулы. (См. Патент №2107161 от 29.07.1996, МПК E21B 47/06).

Недостатком данного способа является усложнение поставленной задачи за счет дополнительных затрат и сбора большого количества информации по каждой скважине.

Известен «Способ гидродинамических исследований в скважине, оборудованной установкой электроцентробежного насоса» с частотно-регулируемым приводом, выполненным на мобильном транспортном средстве. Для контроля и автоматической регистрации в цифровом виде устьевых параметров скважины применяют аппаратно-программный комплекс. (См. Патент №2370635 от 18.09.2007, МПК E21B 43/00).

Недостатком данного способа является усложнение поставленной задачи за счет привлечения дополнительных транспортных и материальных средств.

Пластовое давление устанавливается в процессе его восстановления при отключении скважины до полной стабилизации. Это время составляет от 6 ч до нескольких суток, причем добыча нефти не производится.

Необходимость периодического измерения давления в большом количестве скважин приводит к заметному ущербу в добыче нефти. Кроме того, требуются технические операции по спуску приборов в скважину пластового давления.

Известные исследования по замеру пластовых давлений в скважинах, оборудованных погружными насосами, показали, что применяемый на практике расчет пластового давления дает большие погрешности. Это связано с неопределенностью определения среднего удельного веса смеси жидкостей в скважине.

Задачей данного изобретения является уменьшение времени простоя скважин при исследовании, повышение точности и надежности определения результатов пластового давления и упрощение его реализации при выводе скважины на режим после глушения.

Технический результат изобретения достигается за счет использования точки начала притока жидкости из пласта к скважине, по заранее известной, однородной по плотности, жидкости глушения, при выводе скважины на режим после ее глушения по формуле:

P п л = ρ ж . г л . g ( H п е р ф . H н . п р и т о к а ) , ( 1 )

где ρж.гл. - плотность жидкости глушения, кг/м3;

g - ускорение свободного падения, м/с2;

Hперф. - глубина верхних отверстий перфорации, м;

Hн.притока - значение динамического уровня в скважине при выводе на режим после глушения, соответствующее переходу от прямолинейного участка изменения к криволинейному, который характеризует начало притока из пласта, м.

На фиг.1 изображена кривая вывода скважины на режим и кривая изменения плотности жидкости в межтрубном пространстве.

На фиг.2 - определение динамического уровня графическим методом.

Во время вывода скважины на режим, при спущенном практически до забоя погружном электронасосе, осуществляется фиксирование изменения уровня в межтрубном пространстве. С начала вывода динамический уровень начинает уменьшаться, первоначально (до появления притока из пласта) закон изменения динамического уровня прямолинейный. Точка перехода от прямолинейного закона изменения к криволинейному соответствует притоку жидкости из пласта. Приток из пласта возможен при условии, что забойное давление меньше либо равно пластовому давлению. Плотность жидкости в затрубном пространстве до динамического уровня, соответствующего началу притока из пласта не изменяется и равняется плотности жидкости глушения. Давление в межтрубном пространстве равняется 0 или приближено к 0. Определить пластовое давление можно по формуле (1).

Плотность жидкости глушения, глубина перфорационных отверстий и ускорение свободного падения являются известными величинами. Поэтому определение пластового давления сводится к нахождению значения динамического уровня в скважине при выводе на режим после глушения, соответствующее переходу от прямолинейного участка изменения к криволинейному, который характеризует начало притока из пласта. Определить точку Hн.притока можно приближенным методом.

Метод определения заключается в нахождении точки пересечения между двумя прямыми, первая прямая - это продление прямолинейного участка изменения динамического уровня и две первые точки при криволинейном изменении динамического уровня (вторая прямая). На пересечении получаем значение динамического уровня в скважине при выводе на режим после глушения, соответствующее переходу от прямолинейного участка изменения к криволинейному, который характеризует начало притока из пласта. Данный метод может быть графическим и аналитическим. Графический метод определения представлен на фиг.2.

Аналитический метод заключается в составлении двух линейных уравнений и нахождении их общей точки (точки пересечения). В первом случае получаем точки 1 (H1; t1) и 2 (H2; t2), во втором - 3 (H3; t3) и 4 (H4; t4). Уравнения прямых примут вид:

где

H1, H2, H3, H4 - динамический уровень в точках 1, 2, 3, 4 соответственно, м,

t1, t2, t3, t4 - время, соответствующее динамическим уровням H1, H2, H3, H4, ч,

H1(t), H2(t) - уравнения прямых, соединяющих точки 1-2 и 3-4 соответственно.

Сделав математические преобразования, получаем систему уравнений:

где

H1, H2, H3, H4 - динамический уровень в точках 1, 2, 3, 4 соответственно, м,

t1, t2, t3, t4 - время, соответствующее динамическим уровням H1, H2, H3, H4, ч,

H1(t), H2(t) - уравнения прямых, соединяющих точки 1-2 и 3-4 соответственно.

Для нахождения общей точки необходимо приравнять уравнения и найти время. Время tн.протока равно:

где

H1, H2, H3, H4 - динамический уровень в точках 1, 2, 3, 4 соответственно, м

t1, t2, t3, t4 - время соответствующее динамическим уровням H1, H2, H3, H4, час

H1(t), H2(t) - уравнения прямых, соединяющих точки 1-2 и 3-4 соответственно.

Полученные значения t по формуле (5) подставляем в любое уравнение системы (4) и получаем Hп.притока. После нахождение Hп.притока производится расчет пластового давления по известной плотности жидкости глушения по формуле (1).

Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом, отличающийся тем, что при расчете используют точку начала притока жидкости из пласта к скважине, по заранее известной, однородной по плотности, жидкости глушения, при выводе скважины на режим после ее глушения по формуле
Pплж.гл.·g·(Hперф.-Hн.притока),
где ρж.гл. - плотность жидкости глушения, кг/м3;
g - ускорение свободного падения, м/с2;
Hперф. - глубина верхних отверстий перфорации, м;
Hн.притока - значение динамического уровня в скважине при выводе на режим после глушения, соответствующее переходу от прямолинейного участка изменения к криволинейному, который характеризует начало притока из пласта, м.



 

Похожие патенты:

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины.

Изобретение относится к нефтегазовой промышленности, а именно к устройствам для измерения температуры бурового раствора в процессе бурения. Техническим результатом является повышение надежности устройства и усовершенствование его конструкции.

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины.

Группа изобретений относится к моделированию конструкции и эксплуатационных характеристик скважин, а также к мониторингу скважин. Способ оценки доли притока флюида из каждой продуктивной зоны многозонной эксплуатационной скважины включает определение давления на устье скважины.

Изобретение относится к области измерения технологических параметров в скважине и может быть использовано для передачи информации с забоя скважины на поверхность посредством акустической связи.
Изобретение относится к нефтяной промышленности и может быть использовано при определении интервалов скважины с заколонным движением жидкости. Технический результат направлен на повышение достоверности получаемых результатов при определении интервалов заколонного движения жидкости скважин, эксплуатируемых на залежах вязкой и сверхвязкой нефти.

Изобретение относится к области горного дела, в частности к измерению и регистрации физических параметров флюида в условно-горизонтальных скважинах, и может быть использовано при проведении геофизических исследований.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение для месторождений, на которых достижение рентабельного дебита возможно только при снижении забойных давлений ниже давления насыщения.

Изобретение относится к способу оптимизирования эксплуатации скважины. Выбирают интервалы в наклонно-направленном стволе скважины и развертывают колонну испытаний и обработки скважины в стволе скважины.

Изобретение относится к нефтедобывающей промышленности и может быть использовано на нефтяных месторождениях для измерения забойного давления для контроля и управления процессом добычи нефти.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению коллекторских свойств прискважинной зоны продуктивных пластов добывающих нефтегазовых скважин и вовлечению в разработку трудноизвлекаемых и нерентабельных запасов углеводородов, а также может быть использовано для декольматажа фильтров и прифильтровых зон гидрогеологических скважин. Способ обработки прискважинной зоны продуктивного пласта, включающий спуск в скважину на колонне труб установленные последовательно снизу вверх гидроимпульсное устройство и струйный насос. Подают жидкостную среду в гидроимпульсное устройство и воздействуют этой средой на прискважинную зону продуктивного пласта с одновременной откачкой с помощью струйного насоса жидкостной среды вместе с кольматирующими частицами на поверхность. Дополнительно на колонне насосно-компрессорных труб перед гидроимпульсным устройством установлен глубинный манометр. Причем в качестве гидроимпульсного устройства используют ротационный гидравлический вибратор для создания гидромониторного и импульсно-кавитационного истечения вдоль интервала перфорации. Воздействие на структуры пласта с флюидом осуществляют путем возбуждения резонансных колебаний столба жидкости в скважине за счет совпадения частоты пульсаций ротационного гидравлического вибратора и собственной резонансной частоты обсадной колонны с флюидом, находящейся ниже ротационного гидравлического вибратора и являющейся резонатором типа «органная труба». Требуемую частоту колебаний f, Гц, определяют по приведенному математическому выражению. Техническим результатом является повышение эффективности проводимых исследований и обработки прискважинной зоны пласта с совмещением воздействий гидромониторным эффектом на перфорационные отверстия или фильтры эксплуатационной колонны и импульсно-кавитационным истечением на структуру пласта с флюидом с контролем параметров обработки. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к способам и средствам, обеспечивающим измерение параметров продуктивных слоев, и может быть применена для одновременно-раздельной эксплуатации многопластовой скважины. Установка состоит из хвостовика с заглушкой, перепускных клапанов, пакера, разъединителя-соединителя, клямсошламоуловителя, электрического клапана с запорным механизмом, снабженного датчиком давления, погружного электродвигателя (ПЭД), питающегося электрическим током через кабель, блока погружной телеметрии, электрической цепью связанного через обмотки ПЭД и кабель со станцией управления и блоком приема и обработки информации. Выше электроприводного насоса расположены сбивной и обратный клапаны. Установка содержит узел, исключающий влияние ПЭД на линию питания электрического кабеля, замера и передачи информации. Технический результат заключается в повышении эффективности замеров параметров пластов при исследовании скважины, эффективности управления электрическим клапаном, оптимизации добычи в режиме реального времени. 2 н. и 6 з.п. ф-лы, 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для одновременно-раздельной закачки в два пласта. Установка состоит из спущенной в скважину на колонне труб компоновки подземного оборудования, включающей воронку-центратор, нижний пакер, переводник-центратор, устройство распределения закачки, верхний пакер, удлинитель. Устройство распределения закачки состоит из корпусной и извлекаемой частей, снабжено верхним автономным манометром, средним автономным манометром и нижним автономным манометром. Верхний и нижний штуцеры установлены в извлекаемую часть УРЗ с возможностью извлечения обоих штуцеров за одну спуско-подъемную операцию. Технический результат заключается в обеспечении возможности получения информации о величине давления закачки до и после каждого штуцера в течение продолжительного периода времени, получении достоверных данных по режиму закачки, а также повышении надежности технологии. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к оборудованию для интеллектуальной газовой и газоконденсатной скважины, используемому в районах Крайнего Севера. Техническим результатом является повышение эксплуатационных качеств, увеличение надежности эксплуатации за счет обеспечения возможности постоянного мониторинга температуры и давления внутри скважины. Предложена интеллектуальная газовая и газоконденсатная скважина, состоящая из колонны насосно-компрессорных труб и подземного оборудования, размещенного на колонне насосно-компрессорных труб, выполненного из отдельных функциональных модулей, таких как модуль призабойный, модуль соединения трубной полости с затрубной подпакерной зоной, модуль, разделяющий затрубное пространство, модуль защитный, модуль компенсационный, модуль организации движения жидкости в затрубном и трубном пространстве в надпакерной зоне, модуль приустьевой, каждый из которых включает функциональное оборудование по принадлежности, такое как воронку, подпакерный циркуляционный клапан, пакер, скважинную камеру, тепловой компенсатор, надпакерный циркуляционный клапан, клапан-отсекатель устьевой соответственно, и содержит вспомогательное оборудование. При этом подземное оборудование дополнительно содержит функциональный модуль, такой как измерительный модуль, размещенный между модулем организации движения жидкости в затрубном и трубном пространстве в надпакерной зоне и модулем приустьевым. Причем измерительный модуль содержит в качестве функционального оборудования оптический датчик измерения температуры и давления, установленный в держателе и снабженный погружным оптоволоконным кабелем, закрепленным бандажными лентами на колонне насосно-компрессорных труб и на ее муфтах, выполненных с протекторами. Оптоволоконный кабель соединен посредством герметичной муфты, выполненной с уплотнительным элементом и расположенной в месте прохождения фонтанной арматуры, с устьевым оптоволоконным кабелем, который имеет возможность взаимодействия с оптоэлектронным блоком, который в свою очередь имеет возможность взаимодействия посредством беспроводной связи с автоматическим рабочим местом оператора. При этом погружной оптоволоконный кабель расположен внутри герметичной нержавеющей трубки, которая защищена оплеткой, а оптоэлектронный блок наземной системы установлен в защитный корпус, оборудованный системами отопления и кондиционирования и автономными источниками питания. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине. Способ включает измерение давления в скважине во время всего исследования скважины, измерение температуры по меньшей мере в одной точке скважины во время всего исследования скважины, определение нестационарных профилей температуры вдоль ствола скважины во время всего исследования скважины, расчет изменения плотности скважинного флюида и изменения длины НКТ в остановленной скважине и корректировку результатов измерения давления в скважине на основе рассчитанных изменений плотности скважинного флюида и длины НКТ. 4 з.п. ф-лы, 6 ил.

Изобретение относится к технологии управления давлением в стволе скважины. Техническим результатом является возможность обеспечить давление в стволе скважины в любое время. Способ управления давлением в стволе скважины на основе теории управления с прогнозирующими моделями и теории систем относится к технологиям управления давлением в стволе скважины. Настоящий способ включает в себя: определение давления в забое скважины, давления на стояке, давления в обсадной колонне, расхода закачивания и выходного расхода в ходе процесса строительства скважины, и определение наличия перелива или утечки. Кроме того, при отсутствии перелива или утечки тонкую регулировку давления в обсадной колонне у устья скважины в соответствии с небольшими флуктуациями давления в забое скважины, давления на стояке или давления в обсадной колонне с тем, чтобы обеспечить установленное значение для давления в забое скважины, давления на стояке или давления в вертикальной обсадной колонне. Также, при наличии перелива или утечки использование динамической модели однофазного или многофазного потока в стволе скважины для имитации и вычисления местоположения перелива или утечки и времени начала перелива или утечки. Дополнительно, данный способ включает в себя: прогнозирования на будущий период времени изменения давления в стволе скважины в процессе бурения скважины и использование алгоритма оптимизации для вычисления параметра управления, обеспечивающего минимальное отклонение действительного давления в стволе скважины от заданного значения для будущего периода времени. Также повторение процесса оптимизации для следующего временного периода после выбора и установки первого параметра управления. Настоящий способ позволяет обеспечить управление давлением в стволе скважины в допустимом согласно проектным требованиям диапазоне флуктуаций, реализуя таким образом высокоточное управление давлением. 6 з.п. ф-лы, 4 ил.

Группа изобретений относится к области исследования нефтяных и газовых скважин и может быть применена в системе каротажа проведения геофизических исследований в зоне скважины ниже работающего погружного насоса (ЭЦН). Устройство содержит погружной электроцентробежный насос и закрепленные на нем децентратор и насадку с проточными каналами для протока жидкости, кабель, верхний и нижний соединительные элементы с пружинными защелками, имеющие контакты с кабелем, а также автосцеп с механизмом захвата. Причем спускаемый автосцеп обеспечивает соединение или разъединение верхнего и нижнего соединительных элементов. Также предложен способ проведения каротажа в зоне под погружным электроцентробежным насосом, который содержит установку в скважине погружного электроцентробежного насоса в компоновке с насадкой с проточными каналами для протока жидкости, децентратором, верхним и нижним соединительными элементами в положении механического и электрического контакта, кабелем, автосцепом, утяжелителем и скважинным каротажным устройством на кабеле ниже погружного электроцентробежного насоса; приведение в рабочий режим погружного электроцентробежного насоса; разъединение верхнего и нижнего соединительных элементов повторной однократной нагрузкой механизма захвата автосцепа; подъем кабеля вместе со скважинным каротажным устройством, сопровождаемый измерениями с помощью скважинного каротажного устройства в зоне скважины под погружным электроцентробежным насосом. Технический результат заключается в повышении надежности работы погружного насосного агрегата и возможности проводить периодический мониторинг работающей скважины без остановки насоса. 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу для определения профиля закачки воды в нагнетательной скважине осуществляют первую, производственную, закачку воды в нагнетательную скважину. Останавливают закачку воды в скважину. После первой выстойки скважины осуществляют вторую закачку воды в скважину. При этом объем закачиваемой воды в три-пять раз превышает объем воды в скважине в интервале поглощения. Останавливают закачку воды в скважину. Посредством датчиков температуры регистрируют профили температуры в интервале поглощения в течение всего времени второй выстойки скважины. После второй выстойки скважины осуществляют третью закачку воды в скважину. Посредством датчиков температуры регистрируют профили температуры в интервале поглощения на начальной стадии третьей закачки. Анализируют профили температуры, зарегистрированные во время второй выстойки скважины. Определяют границы зон поглощения. Анализируют профили температуры, зарегистрированной на начальной стадии третьей закачки, и определяют профиль закачки воды. 2 з.п. ф-лы, 13 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче газа при эксплуатации морских и шельфовых месторождений, включая и арктическую зону. Технический результат - повышение производительности и увеличение добычи газа за счет расширения зоны дренирования продуктивного пласта и повышение информативности о добыче газа из основного и бокового стволов. Конструкция скважины содержит пробуренный с береговой зоны основной ствол с вертикальным участком, наклонно направленным участком и горизонтальным участком, оканчивающимся в продуктивном пласте. Верхняя часть основного ствола скважины оснащена техническими колоннами и размещенной в них эксплуатационной колонной. При этом для эксплуатации скважина оборудована составной лифтовой колонной. Вертикальный участок основного ствола проложен до уровня дна моря. Наклонно направленный участок основного стола выполнен с отклонением от вертикали в диапазоне до 80 градусов. Горизонтальный участок проложен под дном моря с длиной, обеспечивающей вскрытие продуктивного пласта залежи шельфового месторождения в требуемой проектной точке. Окончание горизонтального участка основного ствола проложено вдоль продольной оси залежи шельфового месторождения в горизонтальном направлении параллельно кровле продуктивного пласта, перпендикулярно горизонтальному участку и выше газоводяного контакта. В основном стволе перед окончанием основного ствола по тому же продуктивному пласту проложен горизонтально боковой ствол, направленный в диаметрально противоположном направлении от окончания горизонтального участка основного ствола. Окончание горизонтального ствола и боковой ствол оснащены хвостовиками-фильтрами. Составная лифтовая колонна снабжена подземным скважинным оборудованием. Скважина оснащена расположенными в окончании горизонтального участка основного ствола и в боковом стволе встроенными расходомерами и скважинными камерами с датчиком давления и температуры, а фонтанная арматура колонной головки скважины снабжена исполнительными механизмами, выполненными с возможностью управления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройству мониторинга давления и температуры для интеллектуальных газовых и газоконденсатных скважин. Техническим результатом является повышение надежности и эксплуатационных качеств устройства. Устройство включает погружное оборудование и наземное оборудование, соединенное с погружным оборудованием. Причем погружное оборудование содержит оптический датчик измерения температуры и давления, размещенный в держателе и снабженный погружным оптоволоконным кабелем, а наземное оборудование содержит систему обработки, контроля и хранения информации постоянного мониторинга температуры и давления, снабженную наземным оптоволоконным кабелем, соединенным посредством герметичной муфты с погружным оптоволоконным кабелем, и включающую пост оператора и оптоэлектронный блок, обеспечивающий обработку информации постоянного мониторинга температуры и давления и имеющий возможность взаимодействия посредством беспроводной связи с постом оператора, обеспечивающим контроль и хранение параметров мониторинга температуры и давления, при этом оптоэлектронный блок установлен в защитный корпус, оборудованный системами отопления и кондиционирования и автономными источниками питания. 3 ил.
Наверх