Способ определения давления в скважине



Способ определения давления в скважине
Способ определения давления в скважине
Способ определения давления в скважине
Способ определения давления в скважине
Способ определения давления в скважине
Способ определения давления в скважине
Способ определения давления в скважине
Способ определения давления в скважине

 


Владельцы патента RU 2569522:

Шлюмберже Текнолоджи Б.В. (NL)

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине. Способ включает измерение давления в скважине во время всего исследования скважины, измерение температуры по меньшей мере в одной точке скважины во время всего исследования скважины, определение нестационарных профилей температуры вдоль ствола скважины во время всего исследования скважины, расчет изменения плотности скважинного флюида и изменения длины НКТ в остановленной скважине и корректировку результатов измерения давления в скважине на основе рассчитанных изменений плотности скважинного флюида и длины НКТ. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины.

В настоящее время имеет место значительное увеличение точности и надежности датчиков давления. Датчики давления имеют разрешение лучше 0.01 psi и абсолютную точность измерения порядка одного psi. Это особенно важно при исследовании высокопродуктивных пластов, когда после быстрого увеличения давления в скважине в течение длительно времени происходит очень медленное увеличение давления. В этом случае изменения температуры, которые происходят во время испытания скважины, могут изменить даже характер изменения давления во время второй медленной стадии - давление может уменьшаться, а не увеличиваться в остановленной скважине.

Изучение свойств нефтяного/газового пласта путем анализа динамики изменения давления в скважине при изменении дебита (в том числе при закрытии скважины) называется гидродинамическим исследованием скважин (ГДИ). Традиционные методы обработки данных, полученных при ГДИ, не учитывают возможного влияния неизотермических эффектов и предполагают, что датчик давления находится в скважине на некотором (50-100 м) фиксированном расстоянии от верхней границы исследуемого пласта. Современные методы обработки данных ГДИ (см., например, Kuchuk F.J., Onur M., Hollaender F. Monograph series: Vol. 57. Pressure Transient Formation and Well Testing (1 st ed.). ELSEVIER, 2010, стр. xv-xx, 23-26) предполагают вызов притока флюида из пласта, отбор пробы и регистрации дебита и давления, предпочтительно забойного. Данные ГДИ в настоящее время интерпретируют с помощью аналитических решений уравнения пьезопроводности при различных схемах заканчивания скважин и разных граничных условий. Разработанные аналитические методы применимы к трещиноватым, слоистым, горизонтально и радиально композитным пластам. Для еще более сложных гетерогенных систем и многофазных потоков используются методы численного моделирования. Однако в большинстве случаев все аналитические и численные решения предполагают, что течение флюида происходит в изотермических условиях. В этом случае уменьшение давления, зарегистрированное в некоторых высокопродуктивных скважинах, показывает, что традиционные изотермические методы интерпретации результатов измерений в этих скважинах неприменимы.

Технический результат, достигаемый при реализации изобретения, заключается в повышении точности определения давления в скважине за счет учета влияния неизотермических эффектов.

В соответствии с предлагаемым способом измеряют давление в скважине и температуру по меньшей мере в одной точке скважины во время всего исследования скважины. Затем определяют нестационарные профили температуры вдоль ствола скважины во время всего исследования скважины и рассчитывают изменение плотности скважинного флюида и изменение длины НКТ при остановке скважины. На основе рассчитанных изменений плотности скважинного флюида и длины НКТ корректируют результаты измерения давления в скважине.

Нестационарные профили температуры вдоль ствола скважины определяют либо путем проведения измерений температуры вдоль ствола скважины с помощью системы датчиков, распределенных по стволу скважины на разных глубинах, либо посредством численного или аналитического моделирования профиля температуры. При необходимости непрерывные нестационарные профили температуры вдоль ствола скважины получают путем интерполяции измеренных температур.

Измерение давления проводят с помощью по меньшей мере одного датчика, расположенного на фиксированной глубине в скважине.

Изобретение поясняется чертежами, где на фиг. 1 приведено сравнение динамики восстановления забойного давления во время остановки скважины в изотермических и неизотермических условиях, на фиг. 2 - расчетные скважинные температуры на глубине датчика и на поверхности во время исследования скважины, на фиг. 3 - расчетное скважинное давление на глубине датчика во время исследования скважины, на фиг. 4 - нестационарные профили температуры по стволу скважины для режима остановки скважины, используемого для обработки результатов ГДИ, на фиг. 5a - изменение средней температуры скважинного флюида между точкой крепления НКТ и датчиком давления, на фиг. 5b - плотность скважинного флюида между датчиком и верхней границей пласта, на фиг. 5c - изменение длины НКТ (правый график) во времени при остановке скважины, на фиг. 6 - сравнение динамики восстановления давления в нефтяном пласте после добычи без учета неизотермических эффектов и с учетом неизотермических эффектов.

Исследования скважин подразделяется на два периода: период притока и период восстановления давления. На первом периоде скважина открывается на работу с постоянным или переменным дебитом, при этом давление в скважине падает. Через некоторое время, в зависимости от целей испытания скважины, свойств пласта, состояния призабойной зоны пласта, свойств пластового флюида и депрессии на пласт, скважина останавливается и давление восстанавливается к начальному значению.

Обычно датчики давления и температуры размещают на НКТ, приблизительно на расстоянии L0=100 м выше верхней границы пласта. Поскольку температура добываемого флюида существенно выше, чем средняя температура вышележащих пород, при добыче происходит прогрев пород вблизи скважины. После остановки скважины температура около-скважинного пространства уменьшается, охлаждается к геотермальной температуре и, соответственно, уменьшается средняя температура флюида, заполняющего скважину. Расчеты показывают, что в случае глубоких скважин (4000-6000 м) средняя температура скважинного флюида может уменьшаться на 30-40°C.

Это обстоятельство приводит к следующим эффектам:

1) Увеличивается плотность флюида, заполняющего скважину между датчиком измерения давления и пластом.

2) Происходит изменение длины НКТ (закрепленной на поверхности) и изменяется положение датчика относительно пласта.

Оба эти эффекта приводят к уменьшению измеряемого давления. Изменение давления, связанное с изменением температуры в скважине, может быть рассчитано с помощью формулы (1):

где ΔP(t) - изменение давления, Па, - средняя плотность флюида в скважине ниже датчика давления, кг/м3, - средняя плотность скважинного флюида ниже датчика давления сразу после остановки скважины, кг/м3, L0 - начальное положение датчика давления сразу после остановки скважины, м, ΔL(t) - изменение длины НКТ (от точки крепления у поверхности до датчика) в остановленной скважине, м, g - ускорение свободного падения, м/с2.

Увеличение плотности флюида ниже датчика давления определяется объемным коэффициентом температурного расширения флюида αƒ, K-1 и изменением средней температуры флюида ниже датчика в остановленной скважине ΔT(t), K:

Уменьшение длины НКТ ΔL(t) и соответствующее изменение положения датчика определяется линейным коэффициентом температурного расширения НКТ αt, K-1 и изменением профиля температуры по глубине (от точки крепления у поверхности до датчика) в остановленной скважине.

Для определения величины ΔL(t) предлагается расстояние между точкой крепления НКТ и датчиком давления разбить на n одинаковых секций и рассчитывать уменьшение длины НКТ по формуле (3):

где Ti(t) - температура i-й секции в момент времени t (i=1, …, n) в остановленной скважине, K, Toi - температура i-й секции сразу после остановки остановки скважины, K.

Для количественной оценки обоих эффектов необходимо знать зависимость температуры скважинного флюида от глубины в разные моменты времени после остановки скважины. Нестационарные профили температуры в скважине должны быть измерены во время исследования скважины или получены в результате численного или аналитического моделирования.

Скорректированное значение давления в скважине, в котором исключено влияние изменения плотности флюида и длины НКТ, предлагается рассчитывать по формуле (4):

где Pg(t) - измеренное давление, Па, ΔP(t) - поправка, учитывающая влияние температурных эффектов, которая рассчитывается по формулам (1)-(3).

В случае высокопродуктивных пластов давление в остановленной скважине быстро увеличивается почти до начального давления. После этого происходит длительное, медленное увеличение давления, на динамику которого могут существенно повлиять рассмотренные выше температурные эффекты. В некоторых случаях возможно даже уменьшение измеренного давления со временем.

На фиг. 1 приведено сравнение динамики восстановления забойного давления во время остановки скважины в изотермических и неизотермических условиях. Пунктирной линией (Изотермическая) показана динамика восстановления давления в нефтяном пласте после добычи нефти с дебитом 2000 м3/день в течение 20 часов. Эта зависимость была получена с помощью модуля Saphir в программе Ecrin v4.30 при помощи опции «Test Design» для однородного пласта, имеющего толщину 100 м, проницаемость 2 Д, при скине скажины, равном 5, и внешнем радиусе пласта 1500 м. Предполагалось, что температура в пласте и в скважине постоянна.

Сплошная линия (Неизотермическая) показывает результаты расчета для того же исследования скважины, но с учетом влияния неизотермических эффектов. Предполагалось, что датчик давления находится на НКТ, на глубине 100 м выше верхней границы пласта. Согласно расчету средняя температура флюида, заполняющего НКТ, за время восстановления давления уменьшилась на 37°C, длина НКТ при этом уменьшилась на 1.7 м, а плотность флюида в скважине между датчиком давления и пластом увеличилась на 10 кг/м3.

Уменьшение средней температуры скважинного флюида в остановленной скважине в данном случае составляет 37°C. При обработке кривой давления (Неизотермическая), измеренной в остановленной скважине при таком изменении температуры, с помощью стандартных изотермических методов получают неверную модель пласта, его проницаемость и скин-фактор скважины.

Таким образом, для исключения влияния температурных эффектов необходимо провести корректировку результатов измерения давления в скважине.

Возможность корректировки измеренного давления с использованием предлагаемого способа продемонстрирована на синтетических примерах, подготовленных с помощью численного симулятора T-Mix (Рамазанов А.Ш. и др. Термогидродинамические исследования в скважине для определения параметров прискважинной зоны пласта и дебитов многопластовой системы, 2010, SPE 136256). Это код, позволяющий моделировать нестационарные распределения давления и температуры при течении однофазного флюида в пласте и в скважине и имеющий возможность воспроизводить произвольную последовательность технологических операций в скважине: начало добычи, изменение дебита, остановку скважины и т.д.

Моделирования нестационарного распределения давления в пласте проводится с использованием закона фильтрации Дарси для цилиндрически симметричного течения газа или слабосжимаемой жидкости в слоистой среде. Расчет давления в скважине проводится с использованием квазистационарного закона сохранения импульса с учетом сил трения, силы тяжести, ускорения и эффекта объема ствола скважины, заполненного сжимаемым флюидом.

Нестационарное температурное поле пласта рассчитывается с учетом кондуктивной и конвективной теплопередачи, адиабатического эффекта и эффекта Джоуля-Томсона. Нестационарная тепловая модель скважины учитывает эффект смешения флюидов, теплообмен между скважиной и окружающими породами, а также адиабатический эффект и нагрев флюида за счет сил вязкого трения.

Согласно описанному выше способу проводится измерение нестационарного распределения температур вдоль скважины или численный, или аналитический расчет этого распределения, адекватность которого контролируется по совпадению рассчитанных нестационарных значений давления, температуры и дебита с доступными скважинными измерениями этих величин для всего времени проведения испытания скважины.

Температура, давление и дебит скважины были рассчитаны для значений параметров скважины, пласта и последовательности операций, описанных выше, с помощью численного симулятора T-Mix.

Моделирование проводилось со следующими параметрами:

Свойства пласта: однородный, мощность 100 м, на внешней границе пласта радиусом 1500 м фиксируется начальное пластовое давление 7251.89 psi, проницаемость пласта 2 Д, температура 120°C, скин скважины 5, глубина скважины 4000 м.

Свойства флюида: нефть с плотностью в пластовых условиях 800 кг/м3, теплопроводность 0.14 Вт/м/K, удельная теплоемкость 2000 Дж/кг/K, вязкость 1 сП, сжимаемость 6.9·10-6 psi-1.

Последовательность технологических операций в скважине: циркуляция 70 ч, выстойка скважины 70 ч, добыча с дебитом 2000 м3/день в течение 20 ч (70-90 ч, фиг. 2, 3), выстойка 30 час (90-120 ч, фиг. 2, 3).

Результаты моделирования температуры флюида на верхней границе пласта (TOR), на глубине датчика (100 м выше пласта) и у поверхности приведены на фиг. 2. Результаты расчета давления в скважине на глубине датчика (100 м выше пласта) приведены на фиг. 3. Расчет был проведен с помощью численного симулятора T-Mix для всего времени испытания скважины.

Второй шаг заключается в получении нестационарных скважинных температурных профилей во время остановки скважины из численных расчетов, используя модель с входными параметрами, дающую наилучшее совпадение с имеющимися измерениями. Результаты моделирования нестационарных профилей температуры по стволу скважины для режима остановки скважины, используемого для обработки результатов ГДИ (90-120 ч), приведены на фиг.4.

Полученные нестационарные температурные профили используют для расчета изменения плотности скважинного флюида и длины НКТ при остановке скважины. Расстояние между точкой крепления НКТ и датчиком давления было разбито на 78 одинаковых секций. Изменение во времени средней температуры скважинного флюида между точкой крепления НКТ и датчиком давления Δ T i = 1 n i = 1 n ( T o i T i ( t ) ) , плотности скважинного флюида между датчиком и верхней границей пласта и уменьшение длины НКТ в остановленной скважине были рассчитаны по формулам (2) и (3). Результаты моделирования для режима остановки скважины 90-120 ч показаны на фиг. 5a, 5b и 5c. Уменьшение средней температуры скважинного флюида в остановленной скважине в данном случае составило 37°C. Плотность флюида в скважине между датчиком давления и пластом увеличилась на 10 кг/м3 для значения объемного коэффициента температурного расширения флюида αƒ=1.5·10-3 K-1. Длина НКТ при этом уменьшилась на 1.7 м для значения линейного коэффициента температурного расширения НКТ αt=12·10-6 K-1.

Последний этап - это коррекция результатов измерения давления в скважине, с учетом полученных результатов по плотности скважинного флюида и длине НКТ, по формуле (4) для исключения влияния неизотермических эффектов.

На фиг.6 показаны динамика восстановления давления в нефтяном пласте после добычи, соответствующая показаниям датчика, расположенного 100 м выше верхней границы пласта (сплошная кривая), и результаты расчета для того же исследования скважины, но с учетом влияния неизотермических эффектов (пунктирная кривая).

1. Способ определения давления в скважине, в соответствии с которым:
- измеряют давление в скважине во время всего исследования скважины,
- измеряют температуру по меньшей мере в одной точке скважины во время всего исследования скважины,
- определяют нестационарные профили температуры вдоль ствола скважины во время всего исследования скважины,
- рассчитывают изменение плотности скважинного флюида и изменение длины НКТ в остановленной скважине и
корректируют результаты измерения давления в скважине на основе рассчитанных изменений плотности скважинного флюида и длины НКТ.

2. Способ по п. 1, в соответствии с которым нестационарные профили температуры вдоль ствола скважины определяют путем проведения измерений температуры вдоль ствола скважины с помощью системы датчиков, распределенных по стволу скважины на разных глубинах.

3. Способ по п. 2, в соответствии с которым нестационарные профили температуры вдоль ствола скважины получают путем интерполяции измеренных температур.

4. Способ по п. 1, в соответствии с которым нестационарные профили температуры вдоль ствола скважины определяют путем численного или аналитического моделирования профиля температуры.

5. Способ по п. 1, в соответствии с которым давление в скважине измеряют по меньшей мере одним датчиком, расположенным на фиксированной глубине в скважине.



 

Похожие патенты:

Изобретение относится к оборудованию для интеллектуальной газовой и газоконденсатной скважины, используемому в районах Крайнего Севера. Техническим результатом является повышение эксплуатационных качеств, увеличение надежности эксплуатации за счет обеспечения возможности постоянного мониторинга температуры и давления внутри скважины.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для одновременно-раздельной закачки в два пласта. Установка состоит из спущенной в скважину на колонне труб компоновки подземного оборудования, включающей воронку-центратор, нижний пакер, переводник-центратор, устройство распределения закачки, верхний пакер, удлинитель.

Группа изобретений относится к способам и средствам, обеспечивающим измерение параметров продуктивных слоев, и может быть применена для одновременно-раздельной эксплуатации многопластовой скважины.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению коллекторских свойств прискважинной зоны продуктивных пластов добывающих нефтегазовых скважин и вовлечению в разработку трудноизвлекаемых и нерентабельных запасов углеводородов, а также может быть использовано для декольматажа фильтров и прифильтровых зон гидрогеологических скважин.

Изобретение относится к нефтедобывающей промышленности и может быть использовано на нефтяных месторождениях для измерения пластового давления для контроля и управления процессом добычи нефти.

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины.

Изобретение относится к нефтегазовой промышленности, а именно к устройствам для измерения температуры бурового раствора в процессе бурения. Техническим результатом является повышение надежности устройства и усовершенствование его конструкции.

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины.

Группа изобретений относится к моделированию конструкции и эксплуатационных характеристик скважин, а также к мониторингу скважин. Способ оценки доли притока флюида из каждой продуктивной зоны многозонной эксплуатационной скважины включает определение давления на устье скважины.

Изобретение относится к области измерения технологических параметров в скважине и может быть использовано для передачи информации с забоя скважины на поверхность посредством акустической связи.

Изобретение относится к технологии управления давлением в стволе скважины. Техническим результатом является возможность обеспечить давление в стволе скважины в любое время. Способ управления давлением в стволе скважины на основе теории управления с прогнозирующими моделями и теории систем относится к технологиям управления давлением в стволе скважины. Настоящий способ включает в себя: определение давления в забое скважины, давления на стояке, давления в обсадной колонне, расхода закачивания и выходного расхода в ходе процесса строительства скважины, и определение наличия перелива или утечки. Кроме того, при отсутствии перелива или утечки тонкую регулировку давления в обсадной колонне у устья скважины в соответствии с небольшими флуктуациями давления в забое скважины, давления на стояке или давления в обсадной колонне с тем, чтобы обеспечить установленное значение для давления в забое скважины, давления на стояке или давления в вертикальной обсадной колонне. Также, при наличии перелива или утечки использование динамической модели однофазного или многофазного потока в стволе скважины для имитации и вычисления местоположения перелива или утечки и времени начала перелива или утечки. Дополнительно, данный способ включает в себя: прогнозирования на будущий период времени изменения давления в стволе скважины в процессе бурения скважины и использование алгоритма оптимизации для вычисления параметра управления, обеспечивающего минимальное отклонение действительного давления в стволе скважины от заданного значения для будущего периода времени. Также повторение процесса оптимизации для следующего временного периода после выбора и установки первого параметра управления. Настоящий способ позволяет обеспечить управление давлением в стволе скважины в допустимом согласно проектным требованиям диапазоне флуктуаций, реализуя таким образом высокоточное управление давлением. 6 з.п. ф-лы, 4 ил.

Группа изобретений относится к области исследования нефтяных и газовых скважин и может быть применена в системе каротажа проведения геофизических исследований в зоне скважины ниже работающего погружного насоса (ЭЦН). Устройство содержит погружной электроцентробежный насос и закрепленные на нем децентратор и насадку с проточными каналами для протока жидкости, кабель, верхний и нижний соединительные элементы с пружинными защелками, имеющие контакты с кабелем, а также автосцеп с механизмом захвата. Причем спускаемый автосцеп обеспечивает соединение или разъединение верхнего и нижнего соединительных элементов. Также предложен способ проведения каротажа в зоне под погружным электроцентробежным насосом, который содержит установку в скважине погружного электроцентробежного насоса в компоновке с насадкой с проточными каналами для протока жидкости, децентратором, верхним и нижним соединительными элементами в положении механического и электрического контакта, кабелем, автосцепом, утяжелителем и скважинным каротажным устройством на кабеле ниже погружного электроцентробежного насоса; приведение в рабочий режим погружного электроцентробежного насоса; разъединение верхнего и нижнего соединительных элементов повторной однократной нагрузкой механизма захвата автосцепа; подъем кабеля вместе со скважинным каротажным устройством, сопровождаемый измерениями с помощью скважинного каротажного устройства в зоне скважины под погружным электроцентробежным насосом. Технический результат заключается в повышении надежности работы погружного насосного агрегата и возможности проводить периодический мониторинг работающей скважины без остановки насоса. 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу для определения профиля закачки воды в нагнетательной скважине осуществляют первую, производственную, закачку воды в нагнетательную скважину. Останавливают закачку воды в скважину. После первой выстойки скважины осуществляют вторую закачку воды в скважину. При этом объем закачиваемой воды в три-пять раз превышает объем воды в скважине в интервале поглощения. Останавливают закачку воды в скважину. Посредством датчиков температуры регистрируют профили температуры в интервале поглощения в течение всего времени второй выстойки скважины. После второй выстойки скважины осуществляют третью закачку воды в скважину. Посредством датчиков температуры регистрируют профили температуры в интервале поглощения на начальной стадии третьей закачки. Анализируют профили температуры, зарегистрированные во время второй выстойки скважины. Определяют границы зон поглощения. Анализируют профили температуры, зарегистрированной на начальной стадии третьей закачки, и определяют профиль закачки воды. 2 з.п. ф-лы, 13 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче газа при эксплуатации морских и шельфовых месторождений, включая и арктическую зону. Технический результат - повышение производительности и увеличение добычи газа за счет расширения зоны дренирования продуктивного пласта и повышение информативности о добыче газа из основного и бокового стволов. Конструкция скважины содержит пробуренный с береговой зоны основной ствол с вертикальным участком, наклонно направленным участком и горизонтальным участком, оканчивающимся в продуктивном пласте. Верхняя часть основного ствола скважины оснащена техническими колоннами и размещенной в них эксплуатационной колонной. При этом для эксплуатации скважина оборудована составной лифтовой колонной. Вертикальный участок основного ствола проложен до уровня дна моря. Наклонно направленный участок основного стола выполнен с отклонением от вертикали в диапазоне до 80 градусов. Горизонтальный участок проложен под дном моря с длиной, обеспечивающей вскрытие продуктивного пласта залежи шельфового месторождения в требуемой проектной точке. Окончание горизонтального участка основного ствола проложено вдоль продольной оси залежи шельфового месторождения в горизонтальном направлении параллельно кровле продуктивного пласта, перпендикулярно горизонтальному участку и выше газоводяного контакта. В основном стволе перед окончанием основного ствола по тому же продуктивному пласту проложен горизонтально боковой ствол, направленный в диаметрально противоположном направлении от окончания горизонтального участка основного ствола. Окончание горизонтального ствола и боковой ствол оснащены хвостовиками-фильтрами. Составная лифтовая колонна снабжена подземным скважинным оборудованием. Скважина оснащена расположенными в окончании горизонтального участка основного ствола и в боковом стволе встроенными расходомерами и скважинными камерами с датчиком давления и температуры, а фонтанная арматура колонной головки скважины снабжена исполнительными механизмами, выполненными с возможностью управления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройству мониторинга давления и температуры для интеллектуальных газовых и газоконденсатных скважин. Техническим результатом является повышение надежности и эксплуатационных качеств устройства. Устройство включает погружное оборудование и наземное оборудование, соединенное с погружным оборудованием. Причем погружное оборудование содержит оптический датчик измерения температуры и давления, размещенный в держателе и снабженный погружным оптоволоконным кабелем, а наземное оборудование содержит систему обработки, контроля и хранения информации постоянного мониторинга температуры и давления, снабженную наземным оптоволоконным кабелем, соединенным посредством герметичной муфты с погружным оптоволоконным кабелем, и включающую пост оператора и оптоэлектронный блок, обеспечивающий обработку информации постоянного мониторинга температуры и давления и имеющий возможность взаимодействия посредством беспроводной связи с постом оператора, обеспечивающим контроль и хранение параметров мониторинга температуры и давления, при этом оптоэлектронный блок установлен в защитный корпус, оборудованный системами отопления и кондиционирования и автономными источниками питания. 3 ил.

Группа изобретений предназначена для использования в области подземного хранения CO2 и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO2 выбирают ловушку водоносного пласта с термобарическими параметрами, способствующими длительному захоронению CO2 в жидком агрегатном состоянии. Бурят скважины в купольной части структуры ловушки. Закачивают жидкий CO2 в центральные скважины и по мере опускания контакта «жидкий CO2-вода» закачивают CO2 в периферийные скважины. Осуществляют контроль динамики пластового давления с одновременным мониторингом появления жидкого СО2 в наблюдательных скважинах. Закачку жидкого СО2 прекращают при обнаружения его в наблюдательных скважинах, а также при достижении в ловушке давления, соответствующего максимально допустимому пластовому давлению. Контроль за герметичностью по латерали ловушки осуществляют посредством наблюдательных скважин, расположенных вблизи замыкающей изогипсы ловушки, а по вертикали ловушки - посредством расположенных на вышезалегающих горизонтах контрольных скважин. Во втором варианте реализации способа закачивают газообразный CO2. Одновременно контролируют динамику пластового давления глубинными манометрами. При достижении давления в ловушке значения, соответствующего жидкому агрегатному состоянию CO2, продолжают закачку CO2 уже в жидком агрегатном состоянии в приконтактные зоны ловушки, контролируя динамику пластового давления глубинными манометрами. 2 н.п. ф-лы, 6 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами. Техническим результатом является повышение достоверности определения интервалов заколонного перетока жидкости в скважинах перекрытых НКТ. Способ включает регистрацию термограмм до и после кратковременного локального нагрева обсадной колонны в предполагаемом интервале движения флюида путем регистрации температуры по стволу скважины с последующим их анализом. При этом опускают насосно-копрессорную трубу из стеклопластика с размещенными снаружи датчиками температуры в выбранный интервал исследования, далее осуществляют индукционный нагрев обсадной колонны через стеклопластиковую насосно-компрессорную трубу в течение времени, определяемого по математическому выражению, и проводят регистрацию температуры во времени в процессе локального кратковременного нагрева колонны и по стволу скважины в исследуемом интервале при работе скважины, а об интервале заколонного перетока судят по повышенному темпу изменения температуры. 1 ил.

Изобретение относится к испытанию пласта при бурении с контролем давления. Техническим результатом является повышение эффективности испытания пласта. Способ испытания земляного пласта содержит постепенное открытие дросселя во время приостановления бурения пласта, тем самым обеспечивающее снижение давления в стволе скважины, и детектирование притока в ствол скважины вследствие снижения давления в стволе скважины. Другой вариант способа содержит бурение пласта при герметично изолированном от атмосферы кольцевом пространстве между буровой колонной и стволом скважины, последующее постепенное открытие дросселя во время приостановления бурения, тем самым обеспечивающее снижение давления в стволе скважины, и определение приблизительного порового давления пласта как давления в стволе скважины при детектировании притока. Буровая текучая среда может протекать или не протекать через буровую колонну при детектировании притока. Для проверки давления в стволе скважины может быть использован скважинный датчик давления. 3 н. и 25 з.п. ф-лы, 4 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при основании и эксплуатации месторождений, расположенных в зоне распространения многолетне-мерзлых пород. Техническим результатом является повышение точности прогнозирования теплового состояния мерзлых пород при эксплуатации скважин, т.е. радиуса оттаивания вокруг скважины и расчет температуры нефти в скважине. В способе учитывают связь вертикального теплового потока в скважине с горизонтальным потоком тепла от скважины в горные породы: насколько нефть охладилась при подъеме от забоя к устью, настолько прогрелись (протаяли) горные породы вокруг скважины, на основании этого получено сложное интегро-дифференциальное условие на границе скважины и горных пород. Температурное поле горных пород определяют с помощью численного моделирования. Температурное поле флюида в скважине находится на основании решения уравнения притока тепла. 1 ил.
Наверх