Способ поиска целиков нефти

Изобретение относится к области нефтедобывающей промышленности и может быть использовано для поиска целиков нефти в обводненной залежи на поздней стадии разработки. Техническим результатом является повышение надежности выявления целиков нефти в обводненных продуктивных пластах и снижение трудоемкости работ. Способ предусматривает межскважинное сейсмопросвечивание обводненного нефтепродуктивного пласта сейсмическими импульсами переменной амплитуды из одной обводненной скважины, а в соседних обводненных скважинах, расположенных вокруг нее по периметру, одновременное измерение времени прихода сейсмических волн, по которым строят временные годографы зависимости времени их прихода от амплитуды сейсмических импульсов, и по минимальному временному годографу и минимальному периоду колебаний в одном из направлений сейсмопросвечивания судят о наличии целика нефти между этими скважинами. 1 ил.

 

Предлагаемое изобретение относится к области нефтедобывающей промышленности и может быть использовано для поиска целиков нефти в обводненной залежи на поздней стадии разработки.

Известен способ поиска целиков [Патент №2327031. МПК: E21B 43/16. «Способ определения скважин для забуривания новых стволов на зрелых обводненных месторождениях»]. Этот способ реализуется путем выделения зоны добывающих скважин с резко возросшей обводненностью нефтяного пласта и уменьшенным извлечением нефти из них по сравнению с расчетным конечным извлечением. Предположительно в этой зоне находится и недренируемая зона - целик нефти. Однако обводнение в выделенных скважинах может быть вызвано целым рядом других причин: повышенное давление в нагнетательных скважинах, нарушение гидроизоляции заколонного пространства из-за старого цементного кольца, обусловливающего заколонные перетоки и др. Следовательно, предлагаемый способ недостаточно надежен.

Ближайшим прототипом является известная технология поиска невыработанной части нефтяного пласта (целика) методом томографического сейсмопросвечивания межскважинного пространства [«Изучение межскважинного пространства для оценки выработки нефтяных пластов». В.Е. Гавура, Ю.В. Коноплев, O.K. Обухов. Ж-л «Нефтяное хозяйство», №3, 1999]. Эта технология предусматривает выявление невыработанных целиков нефти в обводненных продуктивных пластах в межскважинном пространстве по пониженным значениям скоростей упругих волн в целике нефти по сравнению с обводненной частью пластов. Максимальное понижение скорости упругих волн в нефтенасыщенных породах по сравнению с водонасыщенными не превышает 5%. В то же время понижение скорости может быть вызвано не насыщением нефтью, а повышенной пористостью или литологической изменчивостью пласта. Следовательно, и этот способ недостаточно надежен. К тому же, метод сейсмотомографии весьма трудоемкий.

Целью предлагаемого изобретения является устранение указанных недостатков. Поставленная цель достигается тем, что межскважинное сейсмопросвечивание обводненного нефтепродуктивного пласта проводят сейсмическими импульсами переменной амплитуды из одной обводненной скважины, а в соседних обводненных скважинах, расположенных вокруг нее по периметру, одновременно измеряют времена прихода сейсмических волн, по которым строят временные годографы зависимости времени их прихода от амплитуды сейсмических импульсов, и по минимальному временному годографу и минимальному периоду колебаний в одном из направлений сейсмопросвечивания судят о наличии целика нефти между этими скважинами.

На чертеже представлены временные годографы зависимости времени прихода сейсмических волн от их амплитуды (величины заряда ВВ): а) - в газонасыщенной части обводненного пласта; б) - в нефтенасыщенной части (целике) обводненного пласта; в) - в обводненном пласте.

По вертикали отложены заряды взрывчатых веществ (ВВ) в граммах, а по горизонтали - времена прихода сейсмических волн в миллисекундах (мс). Верхняя часть пласта (газовая шапка) характеризуется вертикальным (нулевым) годографом (чертеж, а) с самым минимальным периодом колебаний. В остальной части пласт обводнен полностью и характеризуется максимальным временным годографом зависимости временем прихода сейсмических волн от величины заряда (чертеж, в) с максимальным периодом колебаний. На чертеже, б), показан минимальный временной годограф зависимости времени прихода сейсмических волн от величины заряда с минимальным периодом колебаний в нефтенасыщенной части обводненного пласта.

Предлагаемый способ осуществляется следующим образом. На примере промысловых скважин Туймазинского месторождения в обводненной зоне (участке) была выбрана центральная скважина, в которой проведено возбуждение сейсмических волн с помощью зарядов детонирующего шнура типа ДШТВ. Против обводненного пласта девонского песчаника пористостью 19,5% произведено поочередное возбуждение сейсмических волн зарядами ВВ 41, 58, 76 и 93 г (возможно другое сочетание, но не менее 10 г и не более 200 г и в количестве не менее 3-х зарядов). В соседних скважинах, расположенных вокруг нее по периметру на расстоянии 300-400 м, произведена одновременная регистрация приходящих сейсмических волн от каждого возбуждения. Для пласта толщиной до 5 м достаточно одной серии зарядов против середины пласта, так как пласт такой толщины является полуволновым волноводом для частот 400-500 Гц, возбуждаемых такими зарядами. Для пласта до 10 м сейсмопросвечивание производится в два этапа по 5 м каждый.

По зарегистрированным временам прихода сейсмических волн в каждой скважине построены временные годографы и сравнены между собой. В одном из направлений сейсмопросвечивания полностью дренируемая обводненная зона пласта характеризуется максимальным временным годографом, показанным на чертеже, в), с временем прихода сейсмических волн 84,0-84,38 мс и максимальным периодом колебаний 4,38 мс, а недренируемая, с целиком нефти - минимальным временным годографом, показанным на чертеже, б), с временем прихода сейсмических волн 84,0-84,25 мс и минимальным периодом колебаний 4,0 мс. Газовая шапка над пластом характеризуется вертикальным (нулевым) временным годографом (чертеж, а) с постоянным временем прихода сейсмических волн 83,13 мс и самым минимальным периодом колебаний 3,25 мс.

Приращение времени прихода сейсмических волн в обводненном пласте составляет 0,38 мс на почти удвоенное увеличение амплитуды возбуждения (93/41 г). Приращение времени прихода в целике нефти составляет 0,25 мс на такое же увеличение амплитуды. Относительное уменьшение периода колебаний сейсмических волн в целике нефти (4,0 мс) по сравнению с обводненным пластом (4,38 мс). Несмотря на малые различия во временных годографах, они закономерно устойчивы, так как погрешность прецизионных измерений времени прихода сейсмических волн составляет 21 мкс, т.е. 0,021/84 мс·100%=0,025%.

Закономерность уменьшения временного годографа и уменьшение периода колебаний в целике нефти, находящегося между обводненными скважинами, обусловлена сниженным в нем значением проницаемости горных пород по сравнению с вмещающими обводненными, например, за счет повышенной глинистости. Следовательно, он не подвержен дренированию закачиваемыми водами и остается изначально нефтенасыщенным. В результате большей фазовой проницаемости воды как менее вязкой жидкости по сравнению с нефтью этот целик обтекается со всех сторон по более проницаемой части обводненного пласта нагнетаемой в него водой для поддержания пластового давления (ППД) и вытеснения нефти, а вокруг скважины создается так называемый конус обводнения.

Технический эффект: повышение надежности выявления целиков нефти в обводненных продуктивных пластах и снижение трудоемкости работ по сравнению с сейсмотомографией.

Способ поиска целиков нефти, включающий межскважинное сейсмопросвечивание обводненного нефтепродуктивного пласта путем измерения скоростей упругих волн и последующим выделением зон с пониженной скоростью, отличающийся тем, что межскважинное сейсмопросвечивание обводненного нефтепродуктивного пласта проводят сейсмическими импульсами переменной амплитуды из одной обводненной скважины, а в соседних обводненных скважинах, расположенных вокруг нее по периметру, одновременно измеряют времена прихода сейсмических волн, по которым строят временные годографы зависимости времени их прихода от амплитуды сейсмических импульсов, и по минимальному временному годографу и минимальному периоду колебаний в одном из направлений сейсмопросвечивания судят о наличии целика нефти между этими скважинами.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано на месторождениях различных типов строения, в том числе истощенных и с трудноизвлекаемыми запасами.

Изобретение относится к области геофизики и может быть использовано для определения различных скважинных параметров во время бурения. Способ содержит перемещение прибора через подземный пласт от первой глубины на последующие глубины.

Изобретение относится к направленному бурению двойных скважин. .

Изобретение относится к области геофизических исследований скважин и может быть использовано при определении пространственных координат забоя скважины в процессе бурения, а так же ранее пробуренных наклонных и горизонтальных скважин.

Изобретение относится к сейсмическим способам и устройствам для разведки, а именно к определению степени детонации скважинного стреляющего перфоратора. .

Изобретение относится к сейсмической разведке для получения данных о характеристиках литологических формаций, пересекаемых при бурении скважины, посредством измерения распространения сейсмических сигналов через пласты.

Изобретение относится к скважинным сейсмическим исследованиям, а более конкретно - к скважинным сейсмическим методам исследования коллекторских свойств горных пород.

Изобретение относится к исследованию газонефтяных скважин на многопластовых залежах с существенными различиями параметров работы пластов. Способ включает определение значений дебитов верхнего и нижнего пластов и пластовых давлений, а также степень обводненности продукции нижнего пласта.

Изобретение относится к области измерения технологических параметров в скважине и может быть использовано для передачи информации с забоя скважины на поверхность посредством акустической связи.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано на месторождениях различных типов строения, в том числе истощенных и с трудноизвлекаемыми запасами.

Изобретение относится к способам скважинной сейсморазведки. Техническим результатом является повышение надежности определения пространственной ориентации системы трещин гидроразрыва и ее размеров.

Изобретение относится к области геофизики и может быть использовано при оценке продуктивности скважины и эффективности ее эксплуатации. .

Изобретение относится к области геофизики и может быть использовано при проведении скважинной сейсморазведки. .

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа скважин. .

Изобретение относится к области нефтегазодобычи, в частности к методам и средствам мониторинга текущего состояния технологического процесса добычи углеводородов.

Изобретение относится к области геофизики и может быть использовано в процессе мониторинга подземных хранилищ углеводородов. .

Изобретение относится к нефтяной промышленности и может найти применение при гидроразрыве пласта. Техническим результатом является повышение точности определения геометрических характеристик трещины гидроразрыва пласта. Предложен способ определения геометрических характеристик трещины гидроразрыва пласта проводят расстановку сейсмических датчиков на дневной поверхности, регистрацию микросейсмических сигналов, обработку зарегистрированных сигналов. Расположение сейсмических датчиков производят на дневной поверхности в области скважины гидроразрыва, в которой отношение «интенсивность сейсмического сигнала образования трещины гидроразрыва» / «интенсивность сейсмического шума» является максимальным, расстояния между датчиками выбирают из набора значений L=λ(n+1/2), где L - расстояние между датчиками, λ - длина волны Релея рабочей частоты, n - неотрицательное целое число, таким образом, чтобы при используемом при мониторинге гидроразрыва количестве датчиков они образовывали кольцо вокруг скважины с наружным радиусом порядка глубины проводимого гидроразрыва, рабочую частоту выбирают из возможностей измерительной техники, а также предполагаемой доминантной частоты импульсов от трещины гидроразрыва пласта. Значение энергии сейсмического сигнала образования трещины гидроразрыва пласта в пункте наблюдения рассчитывают численным моделированием распространения сейсмических волн от источника в центре возможной зоны распространения трещин гидроразрыва. Значение энергии фонового шума замеряют на площади проведения работ сейсмическими датчиками до начала проведения работ ГРП в точке, наиболее удаленной от источников шума. Значение энергии шума от флота ГРП и других поверхностных источников сейсмического шума рассчитывают на основании замеров зависимости энергии шума от расстояния или исходя из предыдущих замеров энергии шума для условий, аналогичных исследуемой площади. Регистрируют микросейсмические данные во время проведения ГРП. Восстановление пространственного положения, времени и интенсивности сейсмических событий, сопровождающих формирование трещины гидроразрыва производят, используя метод максимума правдоподобия для восстановления характеристик сигнала при многоканальном приеме, для чего методом численного моделирования рассчитывают форму сигнала от микросейсмических событий в точках предполагаемой области гидроразрыва, располагаемых по дискретной сетке, с дискретностью, определяемой рабочей частотой, в узлах численной модели, соответствующих пунктам расстановки датчиков, считая каждый компонент датчика отдельным каналом. Восстанавливают плотность вероятности распределения шума для каждого канала аппроксимацией наблюденного вариационного ряда. Для каждого дискретного момента времени проведения гидроразрыва для каждой точки восстановления сигнала восстанавливают наиболее правдоподобную амплитуду сейсмической эмиссии. Производят финальную фильтрацию временных рядов в точках восстановления сигнала и пространственную интерполяцию накопленной энергии восстановленной сейсмической эмиссии с получением финальных карт распространения трещины ГРП. 7 ил.
Наверх