Способ одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом

Изобретение относится к исследованию газонефтяных скважин на многопластовых залежах с существенными различиями параметров работы пластов. Способ включает определение значений дебитов верхнего и нижнего пластов и пластовых давлений, а также степень обводненности продукции нижнего пласта. При этом каждую трубу НКТ предварительно оснащают акустическим преобразователем-контроллером, устанавливаемым на середине ее длины и имеющим собственный код управления для связи с телеметрическим модулем системы и в период кратковременной остановки ЭЦН наряду с определением дебитов верхнего и нижнего пластов и пластовых давлений по КВУ и КВД, по результатам непрерывного опроса акустических преобразователей-контроллеров определяют границу уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в колонне НКТ, объем продукции каждой из трех составляющих трехфазной смеси и степень ее обводненности. Технический результат заключается в повышении точности определения дебитов и обводненности продукции каждого разрабатываемого пласта многопластовой скважины. 1 ил., 1 табл.

 

Изобретение относится к области исследования нефтяных скважин и может быть использовано при добыче нефти на многопластовых залежах с существенными различиями параметров работы пластов.

При одновременно-раздельной эксплуатации нефтяной скважины, оборудованной установкой электроцентробежного насоса (ЭЦН), необходим учет дебита каждого пласта, обводненности жидкостей, забойных и пластовых давлений пластов. Для одновременно-раздельной эксплуатации скважины с ЭЦН применяются установки, в которых отбор продукции нижнего пласта производится приемным патрубком насоса.

Известен способ определения пластового давления в нефтяной скважине (патент РФ №2167289, 2001 г.), согласно которому для измерения параметров работы пласта (дебит, забойное и пластовое давление) производят остановку скважины и запись кривых восстановления уровня (КВУ) в затрубном пространстве и кривой восстановления давления (КВД) на забое скважины. Угловой коэффициент прямолинейного предасимптотического участка КВУ позволяет рассчитать дебит скважины до остановки. Однако известный способ не позволяет определить раздельно дебиты при одновременном притоке жидкостей из двух пластов.

Известен способ мониторинга многопластовой скважины (патент РФ, №2387824, 2010 г.), включающий спуск на якорях в область каждого разрабатываемого пласта автономных приборов измерения дебита и параметров флюида, обеспечивающих запись показаний указанных параметров каждого пласта соответствующим автономным прибором и сохранение показаний в долговременной памяти. Согласно способу после спуска автономных приборов производят свабирование с контролем параметров флюида, глубины уровня жидкости по ее давлению и очередность включения пластов в работу. По окончании свабирования производят запись кривых восстановления давления (КВД) и уровня (КВУ), а после извлечения автономных приборов по их показаниям определяют дебит пласта, первым включившегося в работу, и дебит второго и последующих пластов путем вычитания из суммарного дебита.

Известный способ позволяет производить запись измеряемых параметров автономными приборами непосредственно в процессе свабирования, однако отличается низкой точностью измерения дебита, поскольку не позволяет разобщать пласты для раздельного учета дебита каждого пласта при остановке ЭЦН. К тому же наличие приемного патрубка ЭЦН, проходящего через пакер, обязательный при одновременно-раздельной эксплуатации, не дает возможности спустить автономный прибор в интервал перфорации верхнего продуктивного пласта и определить реальные дебиты каждого пласта. На достоверность результатов интерпретации кривой изменения давления оказывает влияние точность используемых измерительных манометров. Их аппаратурная погрешность приводит к снижению достоверности определения обводненности продукции пласта, что, в свою очередь, влияет на интерпретацию и точность определения параметров пласта. Кроме того, спуск глубинных приборов на кабеле под ЭЦН имеет свои технологические особенности, усложняющие технологию проведения исследоаваний.

Задачей настоящего изобретения является повышение технологичности исследования и повышение точности определения дебитов и обводненности продукции каждого разрабатываемого пласта многопластовой скважины.

Поставленная задача решается следующим образом.

В соответствии со способом одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом, в период автоматической кратковременной остановки электроцентробежного насоса по КВУ и КВД определяют значения дебитов верхнего и нижнего пластов и пластовых давлений, а также, с учетом глубины уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в патрубке, определяют степень обводненности продукции нижнего пласта, согласно изобретению, каждую секцию насосно-компрессорных труб предварительно оснащают акустическим преобразователем-контроллером, устанавливаемым на середине ее длины и имеющим собственный код управления для связи с телеметрическим модулем системы, а степень обводненности продукции пласта определяют с учетом непрерывного опроса акустических преобразователей-контроллеров, по результатам которого определяют границу уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в колонне насосно-компрессорных труб и объем продукции каждой из трех составляющих трехфазной смеси в колонне насосно-компрессорных труб.

Отличительной особенностью предложенного способа являются следующие преимущества:

- повышается точность определения уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси, поскольку считывание информации с акустических преобразователей-контроллеров ведется в непрерывном режиме в период всего времени отстоя с момента остановки ЭЦН,

- повышается информативность мониторинга пластов, поскольку посредством акустических преобразователей-контроллеров помимо уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси дополнительно определяется объем продукции каждого из компонентов трехфазной смеси,

- повышается технологичность работы на скважине, так как исключается необходимость спуска в скважину под ЭЦН геофизического кабеля с глубинными манометрами, что упрощает работу на скважине,

- повышается экономичность работы на скважине, так как для обеспечения работы акустических преобразователей-контроллеров в предложенном способе достаточно напряжения питания не более 5 вольт при токе потребления не более 50 МА, поскольку работа преобразователей-контроллеров осуществляется в последовательном режиме.

На основании изложенного полагаем, что предложенный способ одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом, соответствует критериям изобретения «новизна» и «изобретательский уровень».

На рисунке показана схема реализации способа одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом.

На практике предложенный способ одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом, реализуется следующим образом.

Перед началом работ на скважине на каждую насосно-компрессорную трубу 1 (далее - НКТ) на середине ее длины устанавливают акустический преобразователель 2 в виде излучателя-приемника АПi с электронной схемой контроллера Ki, имеющего собственный идентифицирующий электронный код.

После спуска в скважину колонны насосно-компрессорных труб 1, оборудованной элестроцентробежным насосом (ЭЦН) и пакером, и измерений давлений на приеме, на забое нижнего пласта, а также измерений дебита и обводненности продукции нижнего пласта на дневной поверхности с учетом параметров работающего ЭЦН производят кратковременную остановку последнего. В период остановки ЭЦН по кривой восстановления уровня (КВУ) и кривой восстановления давления (КВД) посредством наземной телеметрического модуля системы 3 определяют значения дебитов исследуемых пластов.

Одновременно в момент остановки ЭЦН по пусковому сигналу от телеметрического модуля системы 3 формируют команду для начала измерений акустическими преобразователями 2 на колонне насосно-компрессорных труб 1. Посредством электронных схем контроллеров Ki излучателями-приемниками АПi пусковые команды дешифрируются и запускают последовательно каждый из акустических преобразователей 2, который излучает акустический сигнал в поперечном сечении НКТ. Отраженный от противоположной стенки НКТ сигнал поступает обратно к своему акустическому преобразователю 2. Поскольку опрос акустических преобразователей 2 производится непрерывно, в телеметрическом модуле системы 3 временной график расслоения смеси в период отстоя показывает хаотическую линию, а выравнивание графика сигнализирует об окончании расслаивания и точной границе раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси. Построение графика осуществляют по данным с контроллеров Ki, которыми производится измерение времени пробега излученного и отраженного акустического сигнала Ti и передача значений этой величины в телеметрический модуль системы 3. Величину Ti определяют по частоте заполнения контроллера Ki тактовыми импульсами, зависящими от плотности среды, в которой проходит сигнал и вычисляют по формуле:

Ti=2D/Vж, где D - внутренний диаметр НКТ, Vж - скорость пробега акустического сигнала в среде.

Поскольку скорость Vж для различных сред индувидуальна и определяется ее физическими свойствами, то полученные данные позволяют определить обводненность нефти, а точные размеры НКТ и место установки на них акустических преобразователей 2 позволяют определить объем продукции каждого из компонентов исследуемой газоводонефтяной смеси.

Ниже приведена таблица значений измеренных параметров газовонефтяной смеси, полученных с применением предложенного способа одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом:

Вид среды Vж, м/с Ti, мкс Примечание
Окись углерода 338 355
Метан 430 280
Нефть 1330 90
Вода 1540 80 минерализованная
Диаметр НКТ=120 мм

Способ одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом, по которому в период автоматической кратковременной остановки электроцентробежного насоса по КВУ и КВД определяют значения дебитов верхнего и нижнего пластов и пластовых давлений, а также, с учетом глубины уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в патрубке, определяют степень обводненности продукции нижнего пласта, отличающийся тем, что каждую секцию насосно-компрессорных труб предварительно оснащают акустическим преобразователем-контроллером, устанавливаемым на середине ее длины и имеющим собственный код управления для связи с телеметрическим модулем системы, а степень обводненности продукции пласта определяют с учетом непрерывного опроса акустических преобразователей-контроллеров, по результатам которого определяют границу уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в колонне насосно-компрессорных труб и объем продукции каждой из трех составляющих трехфазной смеси в колонне насосно-компрессорных труб.



 

Похожие патенты:

Изобретение относится к области измерения технологических параметров в скважине и может быть использовано для передачи информации с забоя скважины на поверхность посредством акустической связи.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано на месторождениях различных типов строения, в том числе истощенных и с трудноизвлекаемыми запасами.

Изобретение относится к способам скважинной сейсморазведки. Техническим результатом является повышение надежности определения пространственной ориентации системы трещин гидроразрыва и ее размеров.

Изобретение относится к области геофизики и может быть использовано при оценке продуктивности скважины и эффективности ее эксплуатации. .

Изобретение относится к области геофизики и может быть использовано при проведении скважинной сейсморазведки. .

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа скважин. .

Изобретение относится к области нефтегазодобычи, в частности к методам и средствам мониторинга текущего состояния технологического процесса добычи углеводородов.

Изобретение относится к области геофизики и может быть использовано в процессе мониторинга подземных хранилищ углеводородов. .

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, например, для определения качества цементирования скважин. .

Группа изобретений относится к скважинным устройствам, способам разделения жидкостей и твердых веществ в скважине, а также к способам подготовки системы разделения скважинных флюидов и твердых веществ.

Изобретение относится к нефтяной промышленности и может найти применение в системе поддержания пластового давления при межскважинной перекачке воды. Техническим результатом является упрощение конструкции и повышение надёжности внутрискважинного оборудования для разделения нефти от воды с обеспечением качественной очистки добываемой воды от нефти в скважине-доноре.

Предлагаемое изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации водозаборных скважин с содержанием попутной нефти в продукции, а также высокообводненных нефтяных скважин, используемых в качестве скважин-доноров (водозаборных).

Изобретение относится к газосепараторам и может использоваться в составе погружных центробежных насосов для добычи нефти, воды и других жидкостей из скважин. Технический результат заключается в повышении эффективности сепарации жидкости и газа.

Изобретение относится к оборудованию для сепарации многофазных сред. Техническим результатом является повышение эффективности работы скважинного газопесочного сепаратора и упрощение конструкции.

Изобретение относится к нефтяной промышленности и может быть использовано для защиты погружных нефтяных насосов от гидроабразивного износа. Обеспечивает повышение надежности работы сепаратора.
Изобретение относится к нефтяной промышленности и может найти применение при определении обводненности продукции нефтедобывающей скважины. Технический результат направлен на повышение точности определения обводненности продукции скважины.

Группа изобретений относится к раздельной эксплуатации нескольких пластов с использованием штанговой насосной установки. Способ включает спуск в скважину установки, включающей колонну лифтовых труб, хвостовик с установленным на нем пакером, обеспечивающим разобщение верхнего и нижнего эксплуатируемых пластов, глубинный штанговый насос для подъема пластового флюида из двух пластов, входы которого сообщены с надпакерным пространством и подпакерным пространством через всасывающие клапаны, а выход сообщен с полостью колонны лифтовых труб через нагнетательный клапан; переходный элемент, обеспечивающий гидравлическую связь подпакерного пространства скважины через хвостовик с одним из всасывающих клапанов глубинного штангового насоса и постоянное отделение попутного газа из флюида, добываемого из нижнего пласта, в линию нефтесбора на устье скважины или в надпакерную полость скважины выше динамического уровня по скважинному трубопроводу.

Изобретение относится к насосостроению и может быть использовано при добыче нефти с высоким содержанием газа и абразивных частиц. Газосепаратор скважинного погружного насоса, содержащий корпус, основание, в котором выполнены входные отверстия для подвода газожидкостной смеси.

Изобретение относится к нефтяной промышленности и, в частности, к эксплуатации нефтедобывающей скважины с разделением пластовой продукции в скважине или эксплуатации водозаборной скважины, в добываемой пластовой жидкости которой имеется нефть.
Изобретение относится к нефтяной промышленности и может найти применение при разработке многопластового нефтяного месторождения. Обеспечивает повышение нефтеотдачи месторождения.
Наверх