Запаянная нейтронная трубка


 


Владельцы патента RU 2540983:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") (RU)

Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Техническим результатом изобретения является увеличение эффективности источника ионов запаянной нейтронной трубки и увеличение потока нейтронов. Технический результат достигается тем, что в запаянной нейтронной трубке между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный с вытягивающим электродом и выводом проходного изолятора. 1 ил.

 

Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств.

Известна запаянная нейтронная трубка, содержащая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе, цилиндрические анод и катод с отверстием для извлечения ионов, расположенные коаксиально, ускоряющий электрод, соединенный с корпусом ускорительной трубки через фланец, и мишень. Сборник материалов межотраслевой научно-технической конференции "Портативные генераторы нейтронов и технологии на их основе", 23-30 мая 2003 г., Москва, с.67. Недостатком запаянной нейтронной трубки является малая величина потока нейтронов из-за низкой величины тока ионов на мишени. Малая величина тока обусловлена отсутствием вытягивающего электрода. Нейтронные трубки такой конструкции используют для получения потоков нейтронов до 109 нейтр/с в каротажных приборах "Портативные генераторы нейтронов и технологии на их основе", 18-22 октября 2004 г., Москва, с.79.

Известна запаянная нейтронная трубка, включающая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом, катодом с отверстием для извлечения ионов, расположенными коаксиально, и проходным изолятором, соединенным с корпусом ускорительной трубки через фланец, включающей вытягивающий электрод, являющийся частью внешнего, обычно металлокерамического, корпуса трубки, ускоряющий электрод и мишень. Недостатком аналога является сложность и увеличенная длина конструкции корпуса трубки и трубки в целом из-за появления дополнительного металлокерамического или металлостеклянного соединения. Усложнение конструкции приводит к уменьшению надежности и увеличению стоимости нейтронной трубки. Увеличение длины приводит к увеличению потерь тока ионов из-за роста вероятности взаимодействия ионов пучка с молекулами газа в промежутке катод - ускоряющий электрод трубки и, в конечном итоге, к уменьшению потока нейтронов. Сборник материалов 15-й научно-технической конференции "Вакуумная наука и техника", октябрь, 2008 г., с.156

За прототип выбрана запаянная нейтронная трубка, содержащая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом и катодом, расположенными коаксиально, с отверстием в катоде для извлечения ионов, с вытягивающим электродом, и проходной изолятор для питания вытягивающего электрода, ускоряющий электрод и мишень. Вопросы Атомной науки и техники, Сер. Радиационная техника, Вып.2 (39), 1989 г., с.68-71. Недостатком прототипа является малая величина потока нейтронов. Низкая величина тока на мишени обусловлена малой величиной индукции магнита из-за невозможности разместить на фланце нейтронной трубки цилиндрический магнит с внешним диаметром больше двойного расстояния от оси трубки до проходного изолятора на фланце. Увеличение расстояния от оси трубки до проходного изолятора на фланце приводит к увеличению диаметра всей нейтронной трубки. Низкая величина магнитной индукции ограничивает эффективность горения разряда в источнике ионов, ограничивает величину тока на мишени и, как следствие, величину потока нейтронов.

Данное изобретение устраняет недостатки аналогов и прототипа.

Техническим результатом изобретения является увеличение эффективности источника ионов запаянной нейтронной трубки и увеличение потока нейтронов.

Технический результат достигается тем, что в запаянной нейтронной трубке, содержащей расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом, катодом с отверстием для извлечения ионов, расположенными коаксиально c проходным изолятором, соединенным с корпусом ускорительной трубки через фланец, закрепленный на фланце через изолятор вытягивающий электрод, ускоряющий электрод и мишень, что между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный с вытягивающим электродом.

Сущность изобретения поясняется чертежом, на котором схематично представлен поперечный разрез запаянной нейтронной трубки, где: 1 - цилиндрический магнит, в полости которого расположен герметичный источник ионов 2, 3 - цилиндрический анод, 4 - катод в виде двух дисков, 5 - отверстие в катоде для извлечения ионов, 6 - проходной изолятор, 7 - корпус ускорительной трубки, 8 - фланец, 9 - изолятор, закрепленный на фланце 8, 10 - вытягивающий электрод, 11 - ускоряющий электрод, 12 - мишень, 13 - проволочный проводник, 14 - трубчатый изолятор, 15 - внешний проводящий слой, нанесенный по длине трубчатого изолятора 14, 16 - концы трубчатого изолятора без проводящего слоя.

Запаянная нейтронная трубка работает следующим образом.

Газоразрядная камера источника ионов 2 образована цилиндрическим анодом 3 и катодом 4, состоящим из двух дисков, расположенных соосно с анодом 3 дисков. Во втором диске катода 4 по ходу инжекции выполнено отверстие 5. В объеме, ограниченном анодом 3 и дисками катода 4, цилиндрическим магнитом 1, создают продольное магнитное поле. Цилиндрический магнит 1 охватывает корпус источника ионов 2. Один торец цилиндрического магнита 1 расположен на фланце 8 корпуса ускорительной трубки 7. Анод 3 и катод 4 установлены соосно в герметичном корпусе источника ионов 2. В источнике ионов 2 создают рабочее газовое давление дейтерия. К аноду 3 и катоду 4 прикладывают напряжение. Затем в газоразрядной камере источника ионов 2 зажигают разряд в скрещенных электрическом и магнитном полях. В газоразрядной камере возрастает концентрация ионов дейтерия, часть которых извлекают через отверстие 5 в катоде 4 и направляют в ускоряющий промежуток трубки. Напряжение на вытягивающий электрод 10 подают через проходной изолятор 6, размещенный на фланце 8 трубки. Ускоренные ионы попадают на мишень 12, насыщенную тритием и образуют нейтроны в результате термоядерных реакций. Эффективность горения разряда и концентрация заряженных частиц в плазме растет с увеличением магнитной индукции. Для увеличения магнитной индукции необходимо увеличить диаметр цилиндрического магнита 1. Оптимальным было бы увеличение диаметра цилиндрического магнита 1 до диаметра фланца 8 трубки. Однако это невозможно, поскольку на фланце 8 трубки установлен проходной изолятор или ввод питания вытягивающего электрода 10. Напряжение на вытягивающий электрод 10 подают от вывода проходного изолятора 6 источника ионов 2 и вывода проволочного проводника 13, расположенного в трубчатом изоляторе 14. Трубчатый изолятор 14 установлен между корпусом источника ионов 2 и анодом 3 параллельно оси трубки и покрыт внешним проводящим слоем 15, который соединен электрически с катодом 4. Проводящий слой 15 нанесен по всей длине трубчатого изолятора 14 за исключением его концов 16. Проводящий слой 15 обеспечивает "привязку" поверхности трубчатого изолятора к потенциалу герметичного корпуса 2 и исключает искрение между внешней поверхностью анода 3 и корпусом источника ионов 2.

Такое исполнение электрической схемы зажигания разряда позволило увеличить диаметр цилиндрического магнита 1, не увеличивая диаметр нейтронной трубки, увеличить магнитную индукцию в газоразрядной камере источника ионов. Это, в свою очередь, позволяет увеличить величину тока ионов и, в конечном итоге, поток нейтронов запаянной нейтронной трубки.

Запаянная нейтронная трубка, содержащая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом, катодом с отверстием для извлечения ионов, соединенным электрически с корпусом источника ионов, расположенными коаксиально с проходным изолятором, соединенным с корпусом ускорительной трубки через фланец, закрепленный на фланце через изолятор вытягивающий электрод, ускоряющий электрод и мишень, отличающаяся тем, что между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный на концах с вытягивающим электродом и выводом проходного изолятора.



 

Похожие патенты:

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств.

Изобретение относится к генератору нейтронов и способу его конструирования. Генератор включает в себя решетку, выполненную с возможностью выработки ионизируемого газа при нагреве электронами, сталкивающимися с ней.

Изобретение относится к области плазменной техники. Способ генерирования импульсного потока высокоэнергичных частиц, содержащий следующие этапы: инициирование ионной плазмы на первом электроде (111) в вакуумной камере (110) и обеспечение возможности развития указанной плазмы по направлению ко второму электроду (112) в указанной вакуумной камере, подача короткого импульса высокого напряжения между указанными электродами в промежутке времени, при котором указанная ионная плазма находится в переходном состоянии с пространственным распределением ионов или электронов на расстоянии от указанного второго электрода, с целью ускорения указанных распределенных ионов или электронов по направлению к указанному второму электроду, благодаря чему генерируется высокоэнергетический поток заряженных частиц, в то же время преодолевается предел тока, связанный с пространственным зарядом, обычного вакуумного диода и генерирование указанных частиц высокой энергии на указанном втором электроде (112).

Изобретение относится к средствам контроля движения гранулированных твердых тел по тракту пневмотранспортирования. .

Изобретение относится к отпаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в т.ч.

Изобретение относится к ускорительным трубкам для получения нейтронов при проведении неразрушающего элементного анализа вещества и проведения физических исследований нейтронно-радиационными методами.

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для исследования геофизических и промысловых скважин. .

Изобретение относится к генераторам нейтронов и может быть использовано в нейтронном каротаже, в нейтронном активационном анализе, в лучевой терапии. .

Изобретение относится к области ядерной техники, в частности к нейтронным генераторам, и может быть использовано в ряде приложений, например в нейтронных трубках, для каротажных исследований.

Изобретение относится к области прикладной ядерной физики, конкретно, к устройствам для генерации импульсных нейтронных потоков, предназначенных для использования в прикладных задачах науки и техники, например, для геофизических применений. Импульсный генератор нейтронов состоит из источника импульсного высоковольтного напряжения и вакуумной камеры, содержащей катод и анод, анод выполнен в виде полой тороидальной азимутально-симметричной конструкции из двух пластин кольцевой конфигурации с внешним радиусом R и внутренним радиусом r, находящихся на расстоянии l друг от друга, между которыми размещено n, где n не менее 3, импульсных источников ионов тяжелых изотопов водорода каждый высотой h и шириной f, при этом внутри анода соосно с ним расположен катод, состоящий из двух симметрично расположенных относительно анода цилиндрических магнитных элементов диаметром d и отстоящих друг от друга на расстоянии L с продольной намагниченностью до индукции 0,3<В<0,6 Тл. Выходные отверстия источников ионов тяжелых изотопов водорода направлены к оси анода, а размеры R, r, l, L, h, f, d удовлетворяют установленным соотношениям. Технический результат - повышение ресурса импульсного генератора нейтронов за счет увеличения ресурса нейтронообразующей мишени, так как в качестве нейтронообразующей мишени выступают движущиеся навстречу друг другу ускоренные дейтроны в объеме между частями катода. 2 ил.

Изобретение относится к средствам создания и поддержания тока в плазме. В заявленном изобретении предусмотрено создание вакуумированного объема средствами вакуумной откачки в токамаке в объеме, ограниченном катушкой тороидального магнитного поля. Далее внутрь реакторной камеры запускают газ, при этом в центральном соленоиде (1) изменяют ток. Изменением тока центрального соленоида в газе создают индукционное электрическое поле и индукционный электрический ток, стягивают плазму в шнур, затем путем продолжения изменения тока в центральном соленоиде поддерживают протекание тока в плазме. Соленоид предварительно электрически соединяют с первой системой магнитов (2). Предусмотрена также вторая система магнитов (10), соединенная с системой катушек полоидального магнитного поля (9), а также третья система магнитов (16), соединенная с катушкой (8) тороидального магнитного поля. Магниты первой, второй и третьей систем выполнены с возможностью перемещения посредством устройств изменения расстояния между магнитами (3), (11) и (17), а также с возможностью охлаждения до температуры жидкого гелия посредством криостатов и перевода в сверхпроводящее состояние. Техническим результатом является повышение КПД при создании и поддержании шнура с током в плазме, а также повышение длительности поддержания тока в плазме индукционным способом. 2 н. и 54 з.п. ф-лы, 19 ил.

Изобретение относится к области ускорительной техники и может быть применено для получения пучков заряженных частиц для ионной имплантации, нейтронозахватной терапии рака или для обнаружения взрывчатых и наркотических веществ. Традиционно напряжение на ускоритель подается от высоковольтного источника питания через проходной изолятор с омическим делителем. Новым является то, что высоковольтный источник питания секционного типа размещается внутри изолятора, на котором крепятся высоковольтный и промежуточные электроды ускорителя. Напряжение на высоковольтный и промежуточные электроды ускорителя подается от секций высоковольтного источника питания. Технический результат - повышение компактности и надежности ускорителя. 2 ил.

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в том числе для проведения геофизических исследований нефтегазовых скважин. Технический результат - повышение надежности и увеличение ресурса запаянной нейтронной трубки. В запаянной нейтронной трубке, содержащей трубчатый изолятор, на одном конце которого герметично закреплен источник ионов с центральным отверстием для извлечения ионов, на другом конце закреплена мишень и ускоряющий электрод с центральным отверстием для прохождения ионов, размещенный в полости трубчатого изолятора, трубчатый изолятор имеет аксиальную внутреннюю проточку со стороны мишени, а ускоряющий электрод имеет форму усеченного конуса и введен в проточку до упора. 1 ил.
Наверх